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Series Preface

Mechanical engineering, an engineering discipline born of the needs of the industrial revolution,
is once again asked to do its substantial share in the call for industrial renewal. The general call
is urgent as we face profound issues of productivity and competitiveness that require engineering
solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts
and research monographs intended to address the need for information in contemporary areas of
mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range of concentrations
important to mechanical engineering graduate education and research. We are fortunate to have
a distinguished roster of series editors, each an expert in one of the areas of concentration. The
names of the series editors are listed on page vi of this volume. The areas of concentration are ap-
plied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics,
mechanics of materials, processing, thermal science, and tribology.
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Note to Instructors

The full solutions manual for the book can be found on the book’s webpage at www.springer.com.
Numerical only solutions can be found on both the book’s webpage at www.springer.com as well as
the author’s webpage www.ah-engr.com/strengthandstiffness. Supplementary information can also
be found on the author’s webpage.
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Preface

Overview and Goals
This text is concerned with how engineering components and systems support loads

without suffering failure or excessive deformation. Such topics are traditionally addressed
in texts entitled Strength of Materials or Mechanics of Materials. The aim of this text is to
develop a simple and comprehensive approach which recognizes today’s wide range of
technical applications and materials. Such an approach is well-suited to meet the demands
of interdisciplinary and rapidly changing technologies.

The scale of engineering systems considered varies from 10–6 to 103 meters. The basic
concepts are applicable to micro-electromechanical systems (MEMS, ~10–6 m),
piezoelectric devices, electronic and computer hardware, tools, machines, vehicles,
buildings, space structures and bridges (~103 m). The materials considered include metals,
ceramics, polymers, composites, piezoelectric materials and shape memory alloys.

The work is intended as a basic text and learning tool for undergraduate and graduate
students, and as a comprehensive resource – for review and introduction – for researchers,
scientists and engineers of all fields.

With these goals in mind, an attempt is made to keep the approach simple, direct and
concise. The initial chapters – Chapters 1 through 10 – are developed by means of basic
theory and illustrated with examples designed to solidify understanding of the
fundamental principles. Mastering these basic principles is vital in solving practical
problems and in creating innovative and safe designs.

Chapters 11 through 16 cover topics such as energy methods, plasticity, fracture,
composites and smart systems, each usually the subject of specialized texts and upper
division or graduate courses. As in the early chapters, these topics are approached in a
succinct and straightforward manner so that the text is comprehensive to an advanced level.

Supplemental materials are included in an accompanying web site www.ah-engr.com/

strengthandstiffness, referred to as Online Notes in the text. The Online Notes include:
(1) basic interactive problems used to test basic knowledge and skills; (2) additional
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material and information, which while important in their own right, are not necessary for
the development of the written text; and (3) basic computing tools, resources and data in
support of the text.

Organization

The first ten chapters cover topics generally taught in a sophomore- or junior-level
Strength of Materials course. These chapters can be broken into roughly four sections:

• Chapters 1-3. Chapter 1 is both an overview of the main topics of the text, and a review 
of topics studied in previous courses (e.g., units, significant figures). Chapter 2 is a 
brief review of Statics; applying the conditions of equilibrium is usually the first step 
in solving any Strength of Materials problem. Chapter 3 introduces the fundamental 
concepts of stress and strain, and the material laws that relate them. 

• Chapters 4-6. Chapters 4 through 6 develop approaches to determine the stresses, 
strains and deformations in basic engineering components: axial members, 
pressure vessels, torsion members and beams. The first three sections of Chapter 
14 – basic bolted joints – may be studied directly after Chapter 4.

• Chapters 7-9. Chapter 7 considers situations when a structural member is loaded by 
a combination of loads: axial, torsion, and/or bending about one or two axes, 
primarily to determine the general state of stress at a material point. Chapter 8 
develops the stress and strain transformation equations. Chapter 9 illustrates how 
to determine if a general state of stress causes material failure.

• Chapter 10 covers the buckling of columns, including such topics as the effect of 
transverse forces, column shortening, and buckling on an elastic foundation.

The last six chapters cover advanced topics that may be taught at any class-level.
Select chapters or sections may be included in a first Strength of Materials course, or the
latter chapters may compose the curriculum of an advanced upper-division or graduate
course. These chapters are succinct introductions to entire fields of study in engineering.

• Chapter 11 covers energy methods, expanding on approaches briefly introduced in 
Chapter 4.

• Chapters 12 considers the effect of plasticity (yielding) in ductile materials and its 
impact on design.

• Chapter 13 introduces fracture mechanics, and the statistical approach used to 
evaluate the strength of ceramic components.

• Chapter 14 covers stresses in bolted connections and adhesive joints.

• Chapter 15 introduces unidirectionally-reinforced composite materials, including 
estimating the elastic properties of a single ply and of two-ply laminates, 
determining system integrity, and basic design considerations.

• Chapter 16 introduces smart systems, including micro-electromechanical systems, 
piezoelectric devices and shape memory alloys.

Problems for the student to work out are all grouped together in a single “chapter”
entitled Problems, placed directly before the Appendix.
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Chapter 1 Opening Remarks

1.0  Introduction

Stepping on a car’s accelerator increases
the power produced by the engine. The
generated torque must be transmitted from
the engine to the wheels without any part of
the system failing. When the car is loaded
with passengers, the chassis distorts. The
frame deflections must be small so that the
doors can continue to open and close.

A bridge must be sufficiently strong to
support loads due to traffic and the
environment without any component breaking.
The bridge should also be stiff so that its
deflections are relatively small, otherwise
commuters would feel apprehensive about
using the bridge. 

Micro-electromechanical systems (MEMS)
must be designed with the proper stiffness
(force–deflection response) to perform their
functions as sensors and actuators. Biomedical
implants such as hip and heart valve
replacements must be biocompatible and
strong enough to function for long periods of
time under cyclic loads.

How do engineers design a physical system that is strong enough and that has the
appropriate stiffness? The purpose of this text is to introduce the methods used to ensure
the reliability of engineering systems subjected to various loading conditions.

1.1  Strength and Stiffness 

The Golden Gate Bridge in San Francisco (Figure 1.2) was designed to be strong
enough to support its daily traffic load, as well as the environmental loads placed on it

Figure 1.1.  Galileo Galilei (1564–1642) 
is recognized as the first to attempt to 
understand mathematically how 
structures and materials respond to 
loads. This is his drawing of a tip-loaded 
cantilever beam (Dialogues Concerning 
Two New Sciences, 1638. Translated by H. 
Crew and A. de Salvio, 1914. Reissued by 
Northwestern University Press, 1968).
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(e.g., wind). The bridge’s deflection was
also considered in the design. Under a
full six-lane load of traffic and full
sidewalks, the bridge was designed to
deflect downward 10 ft. 

In your Statics course, the primary
goal was to determine the reaction forces
that acted on a system, as well as the loads
internal to the system. In engineering
design and analysis, the next questions
that need to be asked are as follows: 

Is the system STRONG enough?
No component of the bridge can fail;
e.g., the cables must not break. In a
building, the floor joists (the beams that support floors) must be strong enough to support
the loads of people, furniture, etc. Artificial heart valves must sustain many millions of
cycles.

Is the system STIFF enough? The components must not deflect excessively under
load. The distance between the Golden Gate Bridge’s towers – the span – is 4200 ft. Since
it was designed to deflect 10 ft under its maximum service load, the deflection-to-span
ratio is 1/420. In buildings, the ratio specified for roof beams that support plastered
ceilings is 1/360 in order to avoid cracks. Relative to the length of the structure, such
deflections are difficult to observe. When deflections become readily visible, structures
that are sufficiently strong seem unsafe.

Strength is the maximum load a system can support without failure. Stiffness is
the ability of a system to resist deformation when subjected to load. By determining the
strength and stiffness of a system, and comparing it to the design requirements, the
engineer can determine if the system is adequate or if it needs to be redesigned.

1.2  Size and Shape

A structural component’s size and shape contribute to its strength and stiffness.
Component geometry may be specified or constrained by the requirements of the
customer, or may result from the design process.

Size
The range of sizes of engineering structures is great. Three systems of significantly

different size are shown in Figures 1.2 and 1.3. 

• The distance between towers of the Golden Gate Bridge is 1280 m;
• the distance between axles of a bicycle is about 1 m; 

Figure 1.2.  The Golden Gate Bridge. Photo 
by David A. Emery, ©2002.
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• the distance between supports of a V-beam atomic 
force microscope (AFM) is about 80×10–6 m.

The bridge is about 1280 times, or three orders of
magnitude (103), larger than the bicycle. The bicycle is
about 12,500, or four orders of magnitude (104) larger
than the AFM. The bridge is therefore seven orders of
magnitude larger than the AFM. 

The analysis methods described in the text apply
over these ranges of scale. However, as objects get
smaller than the AFM, atomic interactions become
significant. Analysis using nano-mechanics (beyond the
scope of this text) must then be considered.

Shape
Wooden structural members have traditionally had

rectangular cross-sections. In steel construction, I-beam
cross-sections are generally used (Figure 1.4). Although
I-beams are more costly to manufacture than rectangular
cross-sections, the I-beam shape is more efficient (per
unit weight) in supporting bending loads, the primary
type of load in a beam. The cost savings in material
compensates for the cost of forming the I-beam. It is now
common to see wooden joists with I-beam cross-
sections.

Circular cross-sections are generally used to transmit
torsional (twisting) loads in rotating shafts. Circular
cross-sections are more efficient than square cross-
sections in supporting such loads. Hollow tubes are used
in bicycles due to their strength and stiffness efficiency,
weight savings, as well as being inexpensive to
manufacture.

1.3  Loads

Building loads are generally well-defined in building codes. They include:

• Dead loads: the self-weight of the structure and any permanent equipment such as 
fire suppression and air conditioning equipment.

• Live loads: people, office equipment, the weight of stored materials, vehicle loads 
and other moveable loads. A few representative values of live loads are given in 
Table 1.1.

Figure 1.3.  (a) A bicycle 
and (b) a V-beam atomic 
force microscope. Copyright 
©2008 Dominic J. Dal Bello 
and licensors. All rights 
reserved.

(a)

(b)

Figure 1.4.  Common cross-
sections for beams. A 
wooden rectangular beam 
and a steel I-beam.
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• Wind loads: wind causes pressure 
loading on a building’s 
surfaces. The equivalent static 
pressure p in pounds per square 
foot (lb/ft2, commonly called 
psf) of wind traveling with 
velocity V in miles per hour 
(mph) is: 

[Eq. 1.1]

This pressure is modified 
(multiplied by a correction 
factor) depending on the 
building surface being 
considered. Wind speeds vary 
throughout the United States, 
and wind maps are available 
in the various building codes. 
A typical design value for the 
steady-state wind speed is 
90 mph.

• Snow loads: snow loads also 
vary throughout the United 
States. In snowy regions, the 
design snow load on roofs is 
typically 30 psf or more.

• Seismic loads: dynamic seismic 
forces are especially 
important in earthquake-prone 
regions such as California and 
the Pacific Rim. 

Loads in engines. In an engine, the
combustion of fuel releases energy as
an expanding gas that pushes against the piston. The linear motion of the piston is
converted into rotational motion by the crankshaft.

The maximum torque output of the gasoline engine of a typical pickup truck is
266 ft-lb at 4000 rpm (2008 Toyota Tacoma, 4.0 L, V-6). The maximum torque output of
the diesel engine of a larger truck is 650 ft-lb at 2000 rpm (2008 Ford F-150 SuperDuty
6.4L, V-8). The power of both engines operating at their maximum torques are comparable
(203 and 248 hp, respectively). However, since diesel systems transfer higher torques, they
must be made stronger and therefore heavier than gasoline systems.

p 0.00256V2=

Figure 1.5.  Buildings must support various 
types of loads.

2000 International Building Code. Copyright 2000,
International Code Council, Washington, D.C.
Reproduced with permission. All rights reserved.

Table 1.1.  Minimum Uniformly Distributed Live 
Loads on Floors, 2000 International Building 

Code (SI units converted, rounded up).

Building type
Distributed load

lb/ft2 kN/m2

Residential, basic floor 40 2.0
Classrooms 40 2.0
Offices 50 2.4
Lobbies; first floor corridors 100 4.8
Corridors above first floor 80 3.9
Library reading rooms 60 2.9
Library stack rooms 150 7.2
Retail stores, first floor 100 4.8
Garages (passenger cars) 50 2.4
Light manufacturing; storage 125 6.0
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The operating conditions in gasoline and diesel engines are also different because of
the form of combustion. In gasoline engines combustion is caused by an electric spark; in
diesel engines combustion is caused by high pressure. The high pressure in diesel
cylinders requires them to be made of sufficient strength and size, a second reason that
diesel engines are more substantial than gasoline engines.

Cyclic loads. In a four-stroke engine, pressure is applied to each piston and cylinder
once every two cycles (two strokes per cycle). The high-pressure stroke is followed by three
low-pressure strokes. Such repetitive loading is known as cyclic loading. Cyclic loading
can cause failure by a phenomenon known as fatigue. Fatigue must be considered in the
design of engines, rotating parts, and other systems subjected to repeated loads.

Loads in micro-electromechanical devices. Micro-structures of dimensions on the
order of 100 μm (= 100×10–6 m) long and 10 μm thick are used as micro-sensors and
actuators. An example of a micro-sensor is an accelerometer used to detect large negative
accelerations that trigger air bag deployment in automobiles. The behavior of micro-
cantilever beams is the key to the operation of the atomic force microscope. The forces in
these devices can be 10 nN (1 nanonewton = 10–9 N); in biological systems, the loads can
be 10 pN (1 piconewton = 10–12 N). Micro-mechanisms are useful tools in medicine,
environmental engineering, and micro-scale manufacturing.

1.4  Failure Modes

When creating a new product, the designer must anticipate the many ways – modes –
in which it might fail. Failure is when a component or system can no longer safely
perform its intended function within the specified requirements. Time spent thinking
through possible failure modes is time well spent. A lack of good information does not
stifle the creative process, but encourages it. With experience, information is gradually
filled out and is often incorporated into design practices and building codes. Experience
gained from structural failures of the Loma Prieta (1989) and Northridge (1997)
earthquakes in California, and other earthquakes, along with experimental and theoretical
studies facilitated by computer modeling, is used to continually improve the earthquake
requirements of building codes. 

The following is a partial list of failure modes.

Excessive Deflection of a Component
While a structure may not break into two parts, it may become unusable because it

deflects too much. The requirements on deflection are rather severe and deflection can be
the limiting failure condition in many structural applications.

Deflection of bridges. Bridges are often designed so that the maximum deflection is
no more than 1/240 of the span. This translates into a 12 in. deflection for a 240 ft
bridge. If the deflection is too large, drivers would become aware of the sag and believe
the bridge to be unsafe even though it does not break into two parts or permanently
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deform. The criterion is therefore based partly on psychological factors. The Golden Gate
Bridge was designed to have a maximum deflection-to-span ratio of 1/420.

Deflection of buildings. In buildings, the deflection of roof beams that support non-
plaster ceilings must be less than 1/240 of the span, while the deflection of floor beams
due to live loads must be less than 1/360 of the span (2000 International Building Code,
Table 1604.3). Doors must still open when the wind load changes direction and
magnitude, or as the building’s occupancy weight increases. Pre-fabricated units such as
shelves and ceramic plumbing fixtures must continue to fit in place. Brittle plaster ceilings
must not crack; their supports are limited in deflection to 1/360 of the span. 

Deflection of vehicles. The distortion of vehicles such as automobiles, trains and
subway cars must be small. When passengers enter or exit a vehicle, it is essential that the
doors continue to operate. A requirement for the stiffness of an automobile chassis is that
the relative displacement of any corner point must be less than about 0.5 in. Since a
chassis is typically 10 ft long, the ratio of displacement to the span is 1/240. 

The above examples of the performance of load-bearing systems demonstrate that the
requirements across different industries are often similar.

Deflection of aircraft wings. By contrast with the previous examples, deflection is
rarely a limiting factor in aircraft. The maximum tip deflection/wing span ratio is on the
order of 1/12. The deflections in large aircraft are large enough to be observed visually,
which can be a little disconcerting to nervous passengers. Although there are large
deflections, airplanes still function properly and safely.

Overloading a Component
Fracture. In any manufacturing or construction program, it is impossible to avoid

flaws and cracks. One source of flaws occurs during welding. If the size of a crack
introduced during manufacture of a component is greater than a critical crack length, then
when a sufficient load is applied, the component will fracture or break into two parts. The
larger the crack or flaw, the smaller the applied load required to cause fracture.

Yielding. Although a component may not break into two parts, the loads may cause
the material to permanently deform or yield. The component will not return to its initial
dimensions and/or shape when unloaded. Yielding or plastic deformation is easily
demonstrated by bending a paper clip out of shape; the permanently deformed paper clip
no longer serves its intended purpose. Materials that plastically deform can absorb a large
amount of energy. Automobile designs include a crumple zone. During a collision, the
kinetic energy of a moving vehicle is partially dissipated by the plastic deformation of the
crumple zone structure.

Fatigue. Fatigue is one of the most common modes of failure and occurs when the
applied loads are cyclic over time. Such failure is common in engines, and rotating shafts and
axles. An unfortunate feature of fatigue is that there is little indication that failure is close at
hand. One moment all seems well, and the next moment, the component has broken in two.
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Fatigue failures tend to occur at locations where there is a change in component geometry
that causes the stress to be locally higher than the average stress.

Corrosion. When steel is exposed to water and oxygen, the iron in the steel combines
with hydrogen and oxygen to form a weaker surface layer of ferric oxide – rust. The layer
becomes thicker with time and eventually spalls off. Consequently, less material is
available and the load-carrying capacity of the component is diminished. Steel surfaces are
often painted or coated to provide protection in a corrosive environment (the Golden Gate
Bridge is painted continuously).

1.5  Materials

Various systems are made from different materials. The choice of material depends on
the requirements and constraints of the application. A bridge is primarily made of steel
and concrete; a bicycle is made of aluminum or a composite material; an atomic force
microscope (AFM) is made of silicon nitride; hip replacements are made of titanium. Each
material was chosen for each application due to its particular properties or characteristics.
In this text, the most important properties include:

• density: the mass per unit volume of a material; 
– weight density: the weight per unit volume of a material; 

• strength: the maximum force per unit area that a material can support without
failure;

• stiffness: the ability of a material to resist deformation. 

If two bicycle frames with the same dimensions are built, one of steel and the other of
aluminum, the qualitative responses are similar, but the quantitative responses differ:

• steel is three times stiffer than aluminum; under the same load (e.g., the weight of the 
biker), the aluminum frame deflects three times more than the steel frame; however,

• steel is three times denser than aluminum; the steel frame is three times heavier than 
aluminum frame.

Density is a physical property, a characteristic of a material’s physical nature. Strength
and stiffness are mechanical properties that characterize the material’s response when the
material system is subjected to applied forces and moments.

Other factors, such as ductility (material elongation at failure), corrosion resistance,
thermal expansion, heat and electrical conductivity, ease of manufacture, cost of raw
material, overall weight of the structure, etc., are also issues to consider when choosing a
material for a particular application.

Representative material properties are given throughout the text, in Appendix B, and in
the Online Notes. These approximate properties should not be used for actual design.
Properties may also be found in printed references and on various web sites. When
designing and analyzing actual systems, the properties used should be those provided by
manufacturers or found through mechanical tests on the actual material.
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1.6  Factor of Safety, Proof Testing

Factor of Safety
The load at which a system fails is the failure load or ultimate load Pf , which is

determined by calculations or by actual tests on the component. The design load or
working load PD  is the maximum load that the system is expected to support during
service. This load is also referred to as the allowable load. The design load is determined
from the performance requirements, e.g., building codes.

The factor of safety FS is the ratio of the failure load to the design load:

[Eq. 1.2]

Both loads in the equation must have the same units. A factor of safety is used in design to
account for uncertainties in loads, construction methods, and materials.

Factor of safety values depend on the industry. In construction, a typical factor of
safety is 2.0; the structure should support twice the maximum load that it is expected to
carry. Where the manufacturing environment is very controlled and the service loads are
well known, such as in aircraft engines, the FS can be made closer to 1.0. 

Example 1.1  Factor of Safety 

Given: A number of specimens are tested from a
production run of Steel A36 bars. Each bar has a cross-
sectional area A = 1.0 in.2 (Figure 1.6), and on average,
each supports a tensile force of P = 36,000 lb before
yielding (before starting to permanently deform). The
steel designation A36 indicates a material with a yield
strength of 36,000 lb/in.2 (psi).

Required: If the required factor of safety is 2.0 against
yielding, determine the allowable load (the design load,
or maximum working load), PD .

Solution:

Answer: 

Note: 1 kip = 1000 lb.

In service, the bar should not be loaded to more than
PD = 18,000 lb.

FS
Pf

PD
-------=

PD

Pf

FS
------- 36 000 lb,

2.0
----------------------- 18 000 lb,= = =

PD 18 kips=

Figure 1.6.  A steel bar 
loaded by tensile force P. 
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Margin of Safety
In the aerospace industry, a common measure is the margin of safety. The margin of

safety m is the fraction of the design load that the failure load Pf is above the design
load PD :

[Eq. 1.3]

For an acceptable design, the values of m must be positive since FS > 1.0 to avoid failure.
In the above example problem, FS = 2.0, so m = 1.0. If FS = 1.5, which is common in
aircraft applications, then m = 0.5.

Proof Testing
Before purchasing an automobile, it is

common practice to give it a test drive to
determine if it meets your requirements.
Likewise, an engineering system is typically
tested before it is placed into service to prove
that it works. A proof test is especially
necessary when the system or construction
methods are new, the structure is difficult to
analyze, or when the failure of the system is
dangerous to human life or can cause
significant damage to other systems.

The load at which a component or
system is tested is called the proof load PP (Figure 1.7). The proof load is greater than the
design load PD (to prove that the system will work at its maximum expected load), but less
than the failure load Pf (the purpose of the test is to prove the component works, not to
break it). 

Pressure vessels, such as propane tanks or steam pipes, often contain gasses at high
pressure. Fracture of these vessels releases a large amount of energy that can tear a vessel
apart and result in serious injuries to people nearby. Even if the vessel does not
catastrophically fail, a leak in a toxic-gas vessel is dangerous.

The American Society of Mechanical Engineers (ASME) Design Code for pressure
vessels specifies that pressure vessels are, in general, to be tested at a proof load of 1.5
times the maximum working pressure. Proof testing of gas pressure vessels is often done
with water because the energy stored in a pressurized liquid is much less than that in a
compressed gas under the same pressure. If the vessel breaks during testing, the water
simply gushes out of the vessel as opposed to there being a violent gas-explosion. 

Experience and modern manufacturing and analysis techniques reduce, if not
eliminate, the need for proof testing. However, whenever there is any uncertainty, a proof
test should be performed.

m
Pf PD–

PD
------------------

Pf

PD
-------= 1 FS 1–=–=

Figure 1.7.  Graph showing the 
relationship between the various loads. 
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1.7  Unit Systems

There are two systems of
measurement used by American
engineers: (1) the US Customary System,
English System or British Imperial
System and (2) the International System
of Units or simply, the SI System (from
the French Système International
d’Unités). The most important
dimensions in this text are force and
length.

The US Customary System
The unit of force in the US

Customary System (USCS) is the pound
(lb). One thousand pounds is known as a
kilopound, abbreviated as kip
(1 kip = 1000 lb). The unit of length is
the foot (ft). The inch (1 ft = 12 in.) is
used for dimensioning parts and
specifying cross-sectional areas. The
unit of time is the second (sec). 

The SI System
The unit of force in the SI system is the newton (N). One thousand newtons is known

as a kilonewton, abbreviated as kN. The unit of length is the meter (m). The unit of time is
the second (s).

Order of magnitude in the SI system is efficiently indicated by adding a preface to the
base unit. For example, 0.001 meter (m) is 1 millimeter (mm); 1000 newtons (N) is
1 kilonewton (kN); 1,000,000 watts (W) is 1 megawatt (MW). It is much easier to write
and read 1.0 MW than 1,000,000 W. In this way, the numerical values are kept at a
reasonable size – generally between 0.1 and 1000 – while the prefix (k, M, etc.) gives the
order of magnitude. The prefixes for the standard orders of magnitude in the SI system are
given in Table 1.2. Results are typically given using the standard SI prefix form.

Conversion
Four basic conversion factors for length and force are listed in Table 1.3. For example,

1.000 m equals 39.37 in., and 1.000 lb equals 4.448 N. For back-of-the-envelope
approximations, 1 m is about 40 in. or 3.25 ft (~1.5% error) or 3.0 ft (~8.6% error), and
1 lb is about 4.5 N (~1.2% error). 

Figure 1.8.  Comparison of length, area, and 
force between US and SI systems. 
(a) Length. (b) Area. (c) Two plates of the 
same material and same thickness, one 
weighing 1 newton, one weighing 1 pound.
Note: Figures are to scale within each 
comparison (length, area, weight) only.

1 foot = 12 inches

1 meter = 39.37 inches

(a)

1 newton

1 pound(c)(b)

Square
Meter

Square Foot

1 lb = 4.448 N
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 * http://www.nasa.gov/worldbook/saturn_worldbook.html Accessed May 2008.
 ** http://physicsweb.org/articles/world/12/9/9 Accessed May 2008.

A table of conversion factors for length, force, and temperature, and for other quantities, is
given in the Online Notes. Conversion calculators are also available at various Internet
sites and in computer analysis tools. 

Example 1.2  Converting Units 1

Required: How fast is 60.0 miles per hour (mph) in meters per second (m/s)?

Solution: The velocity V = 60.0 mph is multiplied by various conversion factors as follows:

Answer: 

In this example, a step-by-step conversion has been performed, using unit equalities that
the reader should be familiar with. The term in each set of parentheses is simply equal to
unity (1), as shown here:

Table 1.2.  Standard prefixes of the SI system between 10–12 and 1012.

Letter 
preface 

Preface Value Value Example

T tera- 1012 trillion Saturn is on average, about 1.43 Tm from the Sun*

G giga- 109 billion 3.0 GHz (processor speed)

M mega- 106 million 50 MW (electrical power)

k kilo- 103 thousand 
8.288 kN = 2,000 lb = 2 kips = 2 kilopounds (a force), 
1.28 km (length of central span of Golden Gate Bridge)

1 one m (meter), N (newton)

m milli- 10–3 one-thousandth 1.00 in. equals 25.4 mm

μ micro- 10–6 one-millionth 100 μm (diameter of human hair, or composite fiber)

n nano- 10–9 one-billionth the size of an atom is between 0.1 and 0.5 nm

p pico- 10–12 one-trillionth 200 pN (approximate strength of a chemical bond)**

Table 1.3.  Basic conversion factors for length and force.

To convert from multiply by to get. To convert from multiply by to get

inches, in. 0.0254 meters, m 39.37 inches, in.

pounds, lb 4.448 newtons, N 0.2248 pounds, lb

V 60 miles
h

-------------
5280 ft

mile
-----------------⎝ ⎠
⎛ ⎞ 12 in.

ft
--------------⎝ ⎠
⎛ ⎞ 2.54 cm

in.
--------------------⎝ ⎠
⎛ ⎞ 1 m

100 cm
------------------ ⎝ ⎠
⎛ ⎞ 1 h

60 min
----------------- ⎝ ⎠

⎛ ⎞ 1 min
60 s

-------------- ⎝ ⎠
⎛ ⎞=

V 26.8 m/s=
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;

The unit names cancel just as if they were variables. For example, miles in the numerator
of the first term cancels with miles in the denominator of the second term:

Likewise, the other units cancel except for meters in the numerator and seconds in the
denominator.

The conversion factor to convert from mph to m/s can be given directly as:

To convert any velocity from mph to m/s, multiply the numerical value of the velocity in
mph by the conversion factor, 0.447; e.g., 75 mph is:

Example 1.3  Converting Units 2

Given: Stress is an important quantity in this text. Stress is the intensity of force per unit
area, and so has units of lb/in.2 or N/m2. 

Required: Convert a stress of σ = 10.0 ksi (kilopounds per square inch) into its SI
equivalent (MN/m2).

Solution: The stress of σ = 10.0 ksi is multiplied by conversion factors from Table 1.3:

Answer:

A good rule of thumb is illustrated here: to convert from lb/in.2 to N/m2 (a N/m2 is a
pascal, Pa), the conversion factor is approximately 7,000; e.g., 10 ksi ~
70,000 kN/m2 = 70 MN/m2. Alternatively, multiply lb/in.2 by 7 and increase the prefix by
three orders of magnitude (e.g., 1 psi ~ 7 kN/m2, 1 ksi ~ 7 MN/m2).

Most of the world currently uses the SI system (meters, kilograms, and seconds). In
the United States, most scientific work is done in SI units. However, most US industrial
work and day-to-day measurements are done using the US system (feet, pounds, and
seconds). While there has been a long-term effort to convert the United States to the SI
system, and the Federal government requires the use of SI units in technical reports, an

5280 ft 1 mile
5280 ft
1 mile
-----------------→= 1= 1 h 60 min

1h
60 min
-----------------→= 1=

V 60 
mile

h 
---------- 5280 ft

mile
-----------------⎝ ⎠
⎛ ⎞ 60 5280×( ) ft

h
---= =

Vm/s

Vmph
------------ 26.8 m/s

60.0 mph
----------------------- 0.447 

m/s
mph
----------= =

75 mph( ) 0.447 m/s
mph
----------⎝ ⎠

⎛ ⎞ 33.5 m/s=

σ 10.0 10
3× lb

in.2
-------- 39.37 in.

1.00 m
---------------------⎝ ⎠
⎛ ⎞ 2 4.448 N

1.00 lb
-------------------⎝ ⎠
⎛ ⎞ 6.894 10

7× N

m2
-------= =

 σ 68.9 MN/m2=
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American engineer will need to work in both systems – USCS and SI – for years to come.
Engineers must be aware of the differences between the two systems, and always
communicate which system they are working with. 

Mass and Weight
The difference between mass and weight (a force) can be a source of confusion, so a

word may be appropriate here.

Mass
Mass is the amount of matter that an object is composed of. The mass of an object is

constant regardless of where it is in the universe. 

Newton’s Second Law states that the vector acceleration a of an object is proportional
to the resultant force F acting on it, and that a is in the direction of that force. For an object
of mass m, the relationship is: 

[Eq. 1.4]

Mass is therefore a measure of an object’s inertia – the resistance the object has to changes
in velocity. The more mass an object has, the more force is required to give it a certain
acceleration (change in velocity).

In the SI system, the unit of mass is the kilogram (kg). The kilogram is one of the
base or fundamental units in the SI system (the meter and second are two others). The
SI unit of force, the newton (N), is a derived unit. One newton is required to accelerate
1 kg by 1 m/s2:

[Eq. 1.5]

In the USCS, the unit of mass is the slug. The slug is a derived unit, defined in terms
of the US base units of pound, foot and second. One pound is required to accelerate 1 slug
by 1 ft/s2:

[Eq. 1.6]

Weight

Weight is the force of gravitational attraction exerted by the earth on an object: 

[Eq. 1.7]

where g is the acceleration of gravity, taken as constant at the surface of the earth. In the SI
system, the standard value of g is 9.81 m/s2; in the US system, the standard value is
32.2 ft/s2. Since g has units of acceleration, weight has units of force. In addition, weight
is proportional to mass.

In the SI system, the unit of weight (gravitational force) is the newton. A mass of 1 kg
weighs 9.81 N. In the US system, a mass of 1 slug weighs 32.2 lb.

[Eq. 1.8]

F ma=

1 N = 1 kg( ) 1 m/s2( )

1 lb = 1 slug( ) 1 ft/s2( )

W mg=

9.81 N = 1 kg( ) 9.81 m/s2( )
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[Eq. 1.9]

Away from the earth – in space, on the moon, or on another planet – the weight of an
object is still proportional to its mass, but the effective value of g varies per Newton’s
Universal Law of Gravitation. Therefore, weight depends on where an object is in the
universe; the mass of an object is the same everywhere.

When to Multiply by g

The weight of an object in the metric system is often given in kilograms (or kilogram
force, kgf), which in a scientific context is its mass. If the weight (mass) of an object is
given in kilograms, it is necessary to multiply by the acceleration of gravity g = 9.81 m/s2

to obtain the weight (gravitational force) in newtons.

When weight is given in newtons, it is not necessary to multiply by g.

In the US system, weight is given in pounds, the unit of force; it is not necessary to
multiply by g.

1.8  Coordinate Systems

Most problems in this text use the
standard 3D cartesian (x–y–z)
coordinate system, and many
problems can be reduced to a planar or
2D (x–y) coordinate system
(Figure 1.9). In 2D, the x-direction is
commonly drawn horizontal, the y-
direction vertical, and the z-direction
is out of the plane of the paper
(Figure 1.9b).

There are times when aligning the
x- and y-directions with the horizontal
and vertical is not convenient. It is
often useful to have the x-axis correspond to the axis of a rod or a beam, and this may not
coincide with a horizontal line on the paper (Figure 1.10b). To avoid confusion, the
coordinate system triad, or at least the two in-plane axes, should be included on each
drawing.

Sometimes more than one coordinate system is necessary to describe a system and its
components. A set of axes associated with the entire structure is called the global
coordinate system (X–Y, Figure 1.10a), while a set of axes specific to a particular member
is a local coordinate system (x–y, Figure 1.10b).

32.2 lb = 1 slug( ) 32.2 ft/s2( )

Figure 1.9.  (a) 3D and (b) 2D coordinate 
systems.

x

y

x-y plane

x

y

z

x-y plane
y-z plane

(a) 3-d Space (b) 2-d Space
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The Right-Hand Rule
The cartesian coordinate system consists

of three orthogonal (mutually perpendicular)
axes. The positive directions of the x- and y-
axes are 90º to each other, with the +y-axis
being found by rotating counterclockwise
from the +x-axis. The positive direction of
the z-axis (third axis) is defined by the
Right-Hand Rule. 

To determine the direction of the +z-
axis, the Right-Hand Rule is performed as
shown in Figure 1.11. Referring to
Figure 1.11a, the fingers of the right-hand
are initially pointed in the +x-direction (palm
upward). The fingers are then closed upon
themselves (counterclockwise) toward the
+y-axis, wrapping around the z-axis. The direction that the right thumb points is along the
+z-axis.

The Right-Hand Rule is necessary to define the positive and negative sense of torques
and moments (loads that cause twisting or bending about an axis). Mathematically, the
Right-Hand Rule gives the direction of the cross-product result of two vectors. The cross-
product of the x- and y-direction unit vectors, i and j, is the unit vector in the z-direction:
k = i × j.

Position, Displacements, and Angles
The position of a point is indicated by its x–y–z coordinates. The displacement – the

change in position – of a point in the x-, y-, and z-directions are u, v, and w, respectively.
Displacements are positive if they are in the same direction as the positive axis of interest;
otherwise they are negative.

Figure 1.11.  The Right-Hand Rule. Direction of the positive moment about 
each axis, found by taking the cross-product of the unit vectors: (a) i × j = k, 
(b) j × k = i, and (c) k × i = j.

Figure 1.10.  (a) Truss ABC in the 
traditional X–Y set of axes. (b) A set of 
axes based on the orientation of a 
particular member is a local coordinate 
system, while a set of axes describing 
the entire system is a global coordinate 
system, e.g., Figure (a).
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Angles are positive counterclockwise about each positive axis – in the same sense as
the Right-Hand Rule (Figure 1.11). In the 2D x–y coordinate system, the angle is generally
measured from the x-axis.

Forces
A force F is a vector:

[Eq. 1.10]

with scalar components in the x-, y-, and z-directions, Fx, Fy, and Fz, respectively. If the x-
component of the force acts in the positive x-direction, then scalar component Fx is
positive. If the x-component of the force acts in the negative direction, then scalar
component Fx is negative. The same rules hold for the y- and z-components.

Moments and Torques
A moment M is also a vector:

[Eq. 1.11]

with scalar components Mx, My, and Mz (Mx acts
about the x-axis). When the x-axis corresponds to
the axis of a shaft or beam, the x-component Mx
is known as the torque. 

A scalar component of the moment (e.g., Mz)
is positive if it causes counterclockwise rotation
about its corresponding positive axis (e.g., the
positive z-axis). The positive sense about each
axis is shown in Figure 1.11.

A moment or torque is represented in this
text in one of the two ways: by a curved arrow
about an axis, or by a straight vector with a
double arrow. Both methods are shown in
Figure 1.12.

In Figure 1.13, a planar slab rotates about the
z–z axis, which is perpendicular to the slab and
passes through point O. Force F acts in the plane
of the slab at point A, vector position r from
point O. The moment arm – the perpendicular
distance from the moment center (point O) to the
line of action of the force – is d = r sinθ. The
moment about point O due to force F is:

[Eq. 1.12]

F Fx i Fy j Fz k+ +=

M Mx i My j Mz k+ +=

M r F×=

Figure 1.12.  The circular arrow in 
the x–y plane indicates twisting 
about the positive z-axis. The double 
arrowhead vector along the +z-axis 
represents the same action.

Figure 1.13.  Using the Right-Hand 
Rule to determine the direction of 
moment M caused by force F.
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The moment has magnitude M = Fd, and its direction is represented by either the circular
arrow or the double-headed vector. The curved arrow is the path that the fingers of the
right-hand follow when performing the Right-Hand Rule on vectors r and F. The double-
headed vector defines the axis and direction of rotation, the arrow coinciding with the
direction of the thumb during the Right-Hand Rule.

1.9  Numbers

Significant Digits (Significant Figures)
When using a calculator, it can be tempting to write down all 10 digits that the

calculator might display. However, engineering solutions should conform to the rules of
significant digits or significant figures. These rules may be reviewed in any basic
chemistry or physics textbook. The number of significant digits that a quantity is written
with indicates the precision to which that quantity is known. For example, reporting a
force of 34.32 N implies that the force is known to within 0.01 N; writing it as 34 N
implies that it is known to 1 N.

A calculated answer should contain no more significant digits than the number of
significant digits in the given data. For example, if a rectangle is measured to be 5.72 by
4.39 in. (three significant digits each), and the area is to be determined, a calculator will
display six digits: 25.1108 in.2. Since there are at most three significant digits in the given
data, the area should be given to three digits: 25.1 in2. Any more digits in the result would
imply that the calculated area is known to a better degree of precision than the actual
measurements. The six-digit answer implies a precision of 0.0001 per 25.1108 (0.0004%),
while the best measurement only has a precision of 0.01 per 4.39 (0.2%).

Care should be taken not to round intermediate answers too soon during a solution.
This will cause a loss of accuracy in the final answer. If the final answer is to have three
significant digits, intermediate steps should use at least four, if not more, significant digits.

Engineering Data, Estimates and Error Calculations

Most engineering data are only reliable to two or three significant digits, so practical
answers generally have no more than two or three significant digits. Typical textbook
problems are usually assumed to be good to three digits. 

Estimates, error calculations, and other rough calculations using approximate data, are
given to one, or at most two, significant digit(s).

Angles

Since angles are a measure of direction rather than of magnitude, they do not follow
the standard rules of significant digits. The final answers for angles should consistently be
given to the same number of digits beyond the decimal point; e.g., to one digit beyond the
decimal point, 21.3° and 221.3°, not to the same number of digits, 21.3° and 221°.
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To avoid round-off error when using trigonometric functions, angles in intermediate
calculations should generally be taken to at least two places beyond the decimal point.

Engineering Notation
When writing very large or very small numbers, it is convenient to use engineering

notation. Engineering notation is scientific notation except that the exponent must be
divisible by three. In scientific notation 23,500 is 2.35×104; in engineering notation it is
23.5×103. In engineering notation, the numerical value is generally written so that it is
between 0.1 and 1000.

Engineering notation coincides with the standard SI prefixes, which change every
three orders of magnitude (e.g., kilo = 103; mega = 106, etc.). Engineering notation is thus
preferable to scientific notation. Final results should be written using either engineering
notation or SI prefixes.

Finally, when writing a number less than 1.0, a zero should be placed before the
decimal point, e.g., one-fourth is “0.25,” not “.25.” Not including a zero may lead to the
decimal point being overlooked, or may leave the reader wondering if there should be a
non-zero number in front of the decimal point. Engineering communication should be
clear and without sources of possible confusion.

1.10  Analysis and Problem Solving

The first step in analyzing any problem is to define the problem as accurately as
possible. What is the intended function of the system? What is its overall geometry and
shape? What materials are to be used? What are the loads? How are they applied to the
system? How is the system supported? What is known? What is unknown? What are the
constraints? 

It is vital to make a sketch, no matter how simple, of the basic system geometry and
expected loads. A sketch or drawing helps in visualizing the problem, and in getting ideas
across to other engineers reviewing the problem, as well as to managers, customers, etc.
Free Body Diagrams showing the forces acting on part of the system or on the entire
system, are invaluable to the solution process. An error in the FBD will result in the
entire analysis being incorrect.

It is wise to stop and think about a problem before using an equation that happens to
have similar variables as the quantities listed in the problem statement. There are many
equations that solve for the quantity known as stress, but only one will fit a particular
situation. First understand what is physically going on in the problem, and then select the
appropriate solution method and equation(s) that model the physics.

While the correct content (the solution process) and the correct result are the goals,
presentation is important. Homework grades can sometimes be based on the neatness and
clarity of student work. There is little value in a solution that cannot be clearly presented
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to others. The care taken as a student to do presentable work that logically leads the reader
through the solution process will help develop those skills necessary to do acceptable and
presentable work as an engineering professional.

In this text, the examples follow a consistent format, already illustrated. The Given
information (i.e., the system and the knowns) and the Required result (i.e., what needs to
be solved) are first stated (Given, Required). A figure of the problem at hand is given,
followed by a free body diagram and other sketches. The problem solution is then
presented (Solution). The final answer, including appropriate units, is underlined. Your
instructor may ask for a similar format to be followed; your solution will then be a stand-
alone document, without need for the reader or yourself to refer back to the original text.

1.11  Modeling

Modeling
The process involved in deciding which college to attend, which career to follow or

which house to buy, is complicated. To make a good decision requires a good strategy
supported by information. The process of developing the strategy combined with
information is referred to as modeling. A model is used to predict what will happen in the
real situation.

Business models and economic models are used to help make financial decisions. In
the same way, an engineering model is needed to design, develop, and analyze a new
product. The modeling process is rarely clear cut, with advantages and disadvantages
associated with different types of models and levels of complexity. However, even simple
(but correct) models help to clarify understanding and guide a rational decision-making
process. A good model is one that can be used repeatedly in different circumstances.

A good drawing or sketch helps to formulate a good model. Many projects involve
people from different disciplines working together. Communication is most effective when
the objective is clear and the participants can explain their work to others, both in pictures
and in words. 

In the early stages of the design of a new product, it is most productive to use the
simplest model possible. Basic design decisions can then be made with little cost and
within a reasonable time. As the design evolves, more details can be introduced. In this
way, the progress of the design remains in the hands of the designer. It is easy to make
models and problems complicated. It is more difficult to keep them simple. 

Effective models are detailed enough to realistically describe the physical
phenomenon, but simple enough to keep the calculations cost-effective.
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An Example of a Simple Model
A simple model that leads to simple

calculations, and that is useful in practice, is
the two-bar model shown in Figure 1.14.
The model consists of two bars, Bars 1 and
2, each supported at one end by a solid
foundation which holds them in place, and at
the other end by a rigid boss that is
constrained to move in the same direction as
the axes of the bars. Force F is applied to the
boss, and the system elongates by distance δ.
The bars share in supporting the load, and
both elongate by the same amount.

Two examples for which the two-bar
model is useful are in modeling composite
materials and in modeling surface coatings
on metal components (Figure 1.15). 

A composite material is one in which
two discrete materials are combined to form
a new material with superior properties. One
of the most common is reinforced concrete,
where steel bars are strong in tension, and
the concrete matrix is less expensive,
formable, and strong in compression.
Modern aircraft and space vehicles are made
of composite materials in which strong
small-diameter fibers are set in a polymer
matrix. This combination makes for a strong
and light-weight structure. In 1986, Burt
Rutan’s Voyager, a plane with a structure
made entirely of composites, made the first-
ever non-stop, un-refueled flight around the
world. 

Turbine blades in aircraft engines
consist of a metal structure with a ceramic
coating. The metal provides the strength,
while the ceramic thermal barrier coating
protects the metal from exposure to high
temperatures.

The performance of both composite and
coated systems can be studied with the two-

Figure 1.15.  (a) Unidirectional 
composite. Using the two-bar model 
(shown in Figure 1.14), the fibers can be 
modeled as Bar 1 and the matrix as 
Bar 2. (b) Coated substrate. In a 1D 
analysis, the coating can be modeled as 
Bar 1 and the substrate as Bar 2.

Figure 1.14.  A two-bar model. The bars 
may have different cross-sectional areas 
and be made of different materials.
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bar model. For the composite, one bar represents the fibers and the other the matrix; for
the coated substrate, one bar represents the coating and the other the substrate. Once the
model has been set up, application of loads to these two different technical problems is
simple and computer design studies are relatively easy. Basic design decisions based on
these calculations can then be made before more expensive and time-consuming analyses
are performed.

1.12  Computer Tools

Provided that a model is sufficiently simple, it is possible to carry out the design and
analysis of an engineering system with a pencil, paper, and a hand-calculator. A design
notebook containing calculations, graphs, and hand-sketches tracks the history and
progress of the design and analysis. 

However, engineering systems can be very complex, requiring many design iterations,
each iteration possibly requiring many difficult and/or lengthy calculations. Computers are
very efficient in performing mathematical operations, and thus provide an invaluable tool
for the modern engineer in determining the reliability of a system. 

Software packages such as MATLAB and Mathcad have been developed to model the
pencil–paper–calculator approach to analyze a system. Spreadsheet programs such as
Microsoft Excel can be configured to automatically perform numerous calculations and
compare data. Many pages of the traditional design notebook have been replaced by
electronic files. However, there is still great value in being able to draw an appropriate
sketch, perform hand-calculations, and have a feeling for how the system will respond.

There are tremendous advantages in using computer software. Many basic and
complex calculations are easily carried out, and results and graphs are quickly generated.
MATLAB and Mathcad can be used to symbolically manipulate algebraic equations and to
perform calculus operations. The grunt work of traditional pencil-and-paper methods and
the time to analyze a system can both be greatly reduced. However, it takes time and
commitment to learn how to correctly and effectively use any software package, and to
understand its limitations.

Also available are finite element analysis (FEA) packages that are capable of
analyzing very complex systems in 2D and 3D, containing thousands of structural
members or elements. The use of these powerful tools should be delayed until the
step-by-step traditional practice of carefully solving and understanding problems is
complete and the results of a complex computer analysis can be properly understood
and appreciated. 

The engineer should have a rough idea from paper calculations what output to expect;
there should be no major surprises. An unexpected result may mean an error in
formulating the model (“garbage-in, garbage-out”), an analysis that is beyond the limits of
the software, or a misunderstanding of the physical principles that govern the problem. It
is very embarrassing to present the results of complex work using an expensive software
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package only for someone to notice a very simple error. Computer tools rarely come with
a guarantee of reliability. If a design fails because of error in the software, the
responsibility for failure rests with the engineer.

Software is also available on the Internet for specialized calculations. Calculations
required to rotate the 2D stresses that develop in a material occur commonly in practice.
Software to complete these repetitive Stress Transformation calculations is available in the
Online Notes. 

Another example of an online tool covering a specialized topic is at
www.fatiguecalculator.com. Software is available to determine the life of systems
subjected to cyclic loading. This site is a reliable source for material fatigue properties,
fatigue life predictions, and stress concentration factors.

In addition to printed references, each engineer should build a library of software
packages and Internet sites that fit his or her particular needs. These are the electronic
tools and resources that help in the design and analysis of new systems.
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Chapter 2 Statics

2.0  Introduction

A Statics analysis is generally the first step in determining how an engineering system
deforms under load, and how the system supports the load internally. For equilibrium, the
vector sum of all the forces Fi that act on a system must equal zero. Likewise, the vector
sum of all the moments Mi that act on a system must equal zero. However complex the
system, it must support the applied loads without accelerating.

In mathematical terms, equilibrium of forces and equilibrium of moments are
represented by the vector equations:

[Eq. 2.1]

[Eq. 2.2]

Free body diagrams (FBDs) of the
entire system, of individual
components, and of parts of individual
components, are vital to the solution of
any problem. In a FBD, the body of
interest is first isolated from its
surroundings. All of the forces and
moments that act on the body from its
surroundings are then represented with
force and moment vectors. The
coordinate system is also indicated.
The examples in this chapter, and
throughout the text, illustrate the
importance of FBDs. 

An example of a FBD is given in
Figure 2.1. A highway sign is acted on
by wind load FW; the weight of the
sign and support mast are presently
ignored. A FBD of the support mast is
shown in Figure 2.1b. The mast has

Fi∑ 0=

Mi∑ 0=

Figure 2.1. A free body diagram isolates a 
system or part of a system, and shows the 
forces acting on it. (a) A highway sign and 
support mast under a wind load. (b) FBD of 
the support mast.
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been removed from its surroundings, and all the forces and moments that act on it are
represented. Here, the wind load causes a force FW at the top of the mast, requiring a
reaction shear force at the base V. The wind causes torque TW, requiring reaction torque T.
In engineering systems, a torque is a moment that causes twisting of an axial member or
shaft. Finally, reaction moment M at the base keeps the mast from falling over due to the
wind load. All the reactions have been drawn in the positive directions of the axes, not
necessarily in the directions that they physically act. This problem is studied in more detail
in Example 2.9.

Carefully drawn FBDs make the loads acting on a structure easier to visualize, and
help to communicate to others how the system operates. The FBDs are the basis for the
equations of equilibrium. Every problem and solution should include an FBD.

2.1  Axial Members

An axial member is a straight component
that only supports a force P parallel to its
axis (Figure 2.2). This axial force must pass
through the centroid (center of area) of the
component’s cross-section so that the
response at any cross-section is uniform
(the same at every point). Loads that stretch
the component are tensile loads, and those
that shorten the component are compressive
loads. Figure 2.2a shows a tensile force P and
Figure 2.2b shows a compressive force. 

If axial force P is consistently drawn
assuming that it is a tensile force, as in
Figure 2.2a, then a calculated positive value for P (P > 0) means that it is tensile, while a
negative value for P (P < 0) means that it physically acts opposite drawn, i.e., the force is
compressive.

An axial member is typically a two-force member. The forces that act at each end of a
two-force member are equal, opposite, and co-linear. A straight two-force member
supports a constant force P normal to any cross-section along its entire length. An
assembly of straight two-force members appropriately pinned together is a truss.

The internal force that an axial member supports may vary along its length. These
changes may occur at discrete locations due to point loads, or continuously due to
distributed loads. The cross-sectional area may also change abruptly or continuously.

A few statics examples with axial members follow.

Figure 2.2. An axial member under 
(a) a tensile load and 
(b) a compressive load.
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Example 2.1  Flower Pots on Hanging Shelves

Given: Three shelves are hung from the
ceiling by means of four rope cords. Plants are
evenly distributed on each shelf as shown in
Figure 2.3a. The total weight of the plants,
pots, and earth on each shelf is W = 100 lb,
which is assumed to be uniformly distributed
over the shelf area (Figure 2.3b).

Required: Determine the force in each
segment of each cord.

Solution: Assuming that weight W is evenly
distributed on each shelf, that the cords are
symmetrically placed, and that the shelves are
level, then the four cords share equally in
supporting each shelf.

Step 1. A FBD of the entire system
(Figure 2.3b) is made by taking a cut at A,
replacing the physical ceiling supports with
reaction forces T ; the plants are replaced with
total weight W on each shelf. Equilibrium in
the vertical (y-) direction gives the reaction at
each ceiling support:

Answer:

Step 2. By taking a cut between levels A and B,
the same equation is used to show that each
cord segment AB carries tensile load
TAB = 75 lb. The FBD in 2D is shown in
Figure 2.3c. 

Step 3. By taking a cut through the cords below
the top shelf (Figure 2.3d), equilibrium gives
the tension in each cord between B and C:

Fy∑ 0:  4T 3W– 0= =

 T 3
4
---= W 75 lb=

Fy∑ 0:  4TBC 2W– 0= =

Figure 2.3. (a) Three hanging shelves. 
(b) 3D FBD of entire system. (c) 2D 
FBD of entire system. (d) 2D FBD cut 
at middle cords. (e) FBD of connector. 
Copyright ©2008 Dominic J. Dal Bello 
and licensors. All rights reserved.
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Answer:

Step 4. The reader should verify by cutting the cords between C and D that the tension in
each of the lowest cords is TCD = 25 lb.

A connector is necessary to transfer the load from each shelf to the cord (Figure 2.3e).
Each connector supports a load W/4 applied by the shelf, and the connector system must
be strong enough to transfer that load to the cord. The tension in the cord above the
connector TU equals its share of the weight of the shelf W/4 and the tension in the cord
below the connector TD .

Example 2.2  Tower Crane – Method of Joints

Given: The tower crane shown in Figure
2.4 consists of tower DCE fixed at the
ground, and two jibs AC and CB. The jibs
are supported by tie bars AD and DB, and
are assumed to be attached to the tower by
pinned connections. The counterweight WC
weighs 390 kips and the crane has a lifting
capacity of Wmax = 250 kips. Neglect the
weight of the crane itself.

Required: Determine (a) the reactions at
the base of the tower when the crane is
lifting its capacity, (b) the axial forces in tie
bars AD and DB, and jibs AC and CB, and
(c) the internal forces and moment in the
tower at point F, 40 ft below joint D.

Solution: Step 1. Reactions. The FBD of
the entire crane lifting load W is shown in
Figure 2.4b. Equilibrium requires:

In the moment calculation, moments that
cause counterclockwise rotation are taken
as positive.

Substituting the values of a, b, WC, and
W = Wmax into the above equations gives:

TBC
2
4
---= W 50 lb=

Fy∑ 0:  R WC– W– 0= =

Mz∑ 0:=

  M WC a×( ) W b×( )–+ 0=
Figure 2.4. (a) Tower crane lifting load W 
with the counterweight WC at its 
maximum distance, a. (b) FBD of entire 
crane.
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Answer: 

Answer: 

Note that the calculated moment is relatively
small. If the base of the crane is 25 ft wide,
then the forces of the equivalent couple are
20.0 kips (25×20=500), which is small
when compared with R = 640 kips. For any
general load W, the counterweight WC is
moved along AC to balance the moment
caused by the load. This action minimizes
the moment at the base, reducing the
tendency for the tower to overturn. Ideally,
the moment at the base is M = 0.

Step 2. Forces in members AC, AD, BD and
BC are solved using the Method of Joints by
isolating joints A and B, and considering
their FBDs (Figures 2.4c and d). The forces
in the tie bars and jibs are assumed to be in tension, so are drawn acting away from the
joint. If a calculation results in a negative force, then the force actually acts opposite that
drawn; i.e., the force is compressive.

From the geometry, angles θA and θB are found:

Applying force equilibrium at joint A:

Answer:

Answer:

The value of the force in jib AC, PAC , is negative, meaning that the force is compressive
(the jib pushes against joint A; if the jib was not there, the counterweight would swing
downward). Force PAD is positive, meaning the force acts in the direction drawn; the tie
bar force is tensile.

Step 3. Applying equilibrium at joint B:

R 640 kips=

M 500 kip-ft=

θAtan 80 ft
175 ft
-------------- 0.4571= = θA 0.4571( )tan 1– 24.57°= =⇒

θBtan 80 ft
275 ft
-------------- 0.2909 θB 0.2909( )tan 1– 16.22°= =⇒= =

Fy∑ 0:  WC– PAD θAsin+ 0= =

PAD
390 kips

24.57°( )sin
----------------------------- 937 940,  lb PAD 938 kips=⇒= =

Fx∑ 0:   PAC PAD+ θAcos 0= =

PAC 937.9 kips( ) 24.57°( )cos– PAC 853 kips–=⇒=

Figure 2.4. (c) FBD of joint A. (d) FBD of 
joint B. (e) FBD of DF ; point F is 40 ft 
below point D.
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Answer: 

Answer: 

At point F, 40 ft below joint D on member DC (Figure 2.4e), equilibrium requires that:

Answer: 

Answer: 

Answer: 

Note that PF = 640 kips is the vertical reaction force at the base. The downward forces of
weights W and WC are carried up through the tie bars to joint D, and the tower carries the
vertical load to ground. The negative result for HF indicates that it acts in the opposite
direction drawn.

Example based on the K10000 tower crane by Kroll Giant Towercranes, as cited at: 
http://www.towercrane.com/ Accessed May 2008. Values are approximate.

Example 2.3  Truss System – Method of Joints and Method of Sections

Background: Trusses are used in such applications as cranes, railway bridges,
supermarket roofs, ships, aircraft, and space structures. Axial members are pinned
together to form a beam-like structure. Trusses are a very effective means of spanning
large distances.

Given: A simple truss bridge is shown in Figure 2.5a. Two plane trusses are constructed
of 15 ft long axial members assembled with pins into equilateral triangles. Crossbeams
connected to the trusses at the pin (node) locations maintain the spacing between the
trusses, while diagonal bracing keeps them from moving laterally with respect to each
other. The lower crossbeams support a roadway (deck) 20 ft wide. For the design, the
roadway is to carry a uniformly distributed load of 80 lb per square foot (psf). Neglect the
weight of the bridge itself.

Fy∑ 0:  W– PBD θBsin+ 0= =

PBD
250 kips

16.22°( )sin
----------------------------- 895.0 kips PBD 895 kips=⇒= =

Fx∑ 0:  P– BC PBD– θBcos 0= =

PBC 895.0 kips( ) 16.22°( )cos–  kips PBC 859 kips–=⇒=

Fy∑ 0:  P– AD θAsin PBD– θBsin PF+ 0= =

PF 938( ) 24.57°( )sin 895( ) 16.22°( )sin+ PF 640 kips=⇒=

Fx∑ 0:  P– AD θAcos PBD+ θBcos HF+ 0= =

HF 938( ) 24.57°( )cos 895( )– 16.22°( )cos HF 6.3 kips–=⇒=

Mz F,∑ 0:  PAD θAcos( ) DF( ) PBD– θBcos( ) DF( ) MF+ 0= =

MF 252 kip-ft=
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Required: Considering only the roadway load, determine the forces (a) in members AB and
AC using the Method of Joints and (b) in DF, EF and EG using the Method of Sections.

Solution: Step 1. Load path. Each lower crossbeam supports a deck area of 15×20 ft – a
tributary area of 300 ft2 (Figure 2.5b). The force on each crossbeam is

Each end of the crossbeam is supported by a truss. Since the load is uniformly distributed
on the roadway, and the geometry is symmetric about the center of the roadway, both
trusses carry the same load; only one truss needs to be analyzed.

The force supported at any lower pin is half the value of the load on each crossbeam, or
12,000 lb = 12.0 kips. At the supports, the tributary area on the crossbeams is half the
standard tributary area, so the downward force at each support is 6.0 kips (Figure 2.5c).

300 ft2( ) 80 psf( ) 24 000 lb, 24.0 kips= =

Figure 2.5. (a) A truss-bridge. The roadway rests on crossbeams that are 
connected to the trusses at the lower joints (e.g., joints A, C, E, G, K, etc.). 
(b) Top view of roadway supported by the lower crossbeams, showing tributary 
area of each crossbeam and of each pin. (c) 2D view of front truss.
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Step 2. Reactions. From equilibrium and symmetry considerations, the vertical reaction
loads are:

    RAy = RKy = 30,000 lb = 30.0 kips 

Because one end of the truss is supported by a roller and no horizontal loads are applied to
the truss, the horizontal reactions are RAx = RKx = 0.

Step 3. Forces in members AB and AC (Figure 2.5d). Applying the method of joints at joint
A, the forces in members AB and AC are determined:

Answer: 

Answer: 

Since PAB is negative, member AB is in compression.

Step 4. Forces in DF, EF, and EG, (Figure 2.5e). The method of joints can be used to solve
for the forces in all of the members, one joint at a time. However, using the method of
sections, the force in any inner member can be determined directly. For example, take a
cut through members DF, EF and EG, as shown in Figure 2.5e.

Considering moment equilibrium about joint E to eliminate forces PEF and PEG :

Answer: 

To solve for PEG , take moments about joint F, eliminating PEF and PDF from the
calculation. Note that the horizontal distance from point A to point F is 2.5L = 37.5 ft.

Fy∑ 0:   30 kips PAB 60°( ) 6 kips– 0=sin+=

PAB  
6 30 kips–( )

60°( )sin
------------------------------- PAB 27.7–=  kips⇒=

Fx∑ 0:   PAC PAB 60°( )cos+ 0= =

PAC
1
2
---PAB PAC 13.86 kips=⇒–=

Mz E,∑ 0:   6 30 kips–( ) 30 ft( ) 12 kips( ) 15 ft( ) PDF– 15 ft( ) 60°sin+ 0= =

PDF  
540 kips-ft–

15 ft( ) 60°sin
--------------------------------- PDF 41.6–  kips (compression)=⇒=

Figure 2.5. (d) FBD of joint A. (e) FBD of truss cut through members DF, 
EF, and EG .
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Answer: 

Vertical equilibrium requires:

Answer: 

In general, the force in diagonal member EF is not zero; it is zero here because the shear
force goes to zero at the center of a symmetrically loaded simply-supported truss (beam).

As a check, consider horizontal equilibrium in Figure 2.5e:

OK

2.2  Torsion Members

A torsion member is a component that transmits torque T (Figure 2.6). The torque
twists the member about its axis, which passes through the centroid (center of area) of its
cross-section.

Example 2.4  Drive Shaft in a Machine Shop

Given: The individual machines of classical machine shops were powered by belts driven
by drive shafts. An example is shown in Figure 2.7, in which three machines, B, C, and D,
draw torque from the main shaft according to Table 2.1. Bearing E is assumed to be
frictionless, and therefore draws no torque.

Mz F,∑ 0: 6 30–( ) 37.5( ) 12( ) 22.5( ) 12( ) 7.5( ) PEG 15( ) 60°sin+ + + 0= =

PEG  540 kip-ft–
15 ft( ) 60°sin

---------------------------------– PEG 41.6 kips (tension)=⇒=

Fy∑ 0:   30 6– 12– 12–( ) PEF 60°sin( )+ 0= =

PEF 0 kips=

Fx∑ 0:   PEG PDF PEF 60°cos+ + 41.6– 41.6 0+ + 0= = =

Figure 2.6. Torsion members. (a) A positive torque represented alternatively by 
a double-headed vector or a curved arrow. A torque within a torsion member is 
termed positive if it points in the same direction as the outward-pointing normal 
vector of the cross-section on which it acts (e.g., on a positive face in a positive 
direction or on a negative face in a negative direction). If torque is consistently 
drawn positive, a negative value indicates that it physically acts as shown in (b).
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Required: (a) Determine the torque
anywhere along the drive shaft and (b) draw
the torque diagram, T(x) vs. x.

Solution: Step 1. The FBD of the entire drive
shaft is shown in Figure 2.7b. Torque TA is
the input torque. From equilibrium, the sum
of the torques about the x-axis must be zero:

Step 2. The internal torque supported at any
cross-section is found by taking a cut at that
section, and a FBD of the remaining
structure is considered. The torque carried
inside the shaft between A and B, TAB , is
found by taking a cut between A and B
(Figure 2.7c) and applying equilibrium to
the external and internal torques.

Answer: 

Step 3. Likewise, the internal torque
between B and C (Figure 2.7d) is:

Answer: 

Step 4. Verify for yourself that the torque in segment CD is TCD = 20 lb-ft. 

Note that cuts to determine the torque in a torsion member should never be taken at the
point of application of a point torque; always take cuts between the point loads.

Tx∑ 0:   TA– TB TC TD+ + + 0= =

T⇒ A 15 30 20+ +( )lb-ft 65 lb-ft= =

Tx∑ 0:   T– A TAB+ 0= =

TAB TA 65 lb-ft= =

Tx∑ 0:   T– A TB TBC+ + 0= =

TBC⇒ 65 15–( ) lb-ft=

TBC 50 lb-ft=

Figure 2.7. (a) Rotating shaft powering 
three machines. (b) FBD of the entire 
shaft. (c) FBD of shaft cut between 
points A and B. Internal torque TAB is 
drawn in its positive sense – 
counterclockwise about the positive x-
axis. (d) FBD of shaft cut between points 
B and C; torques represented with 
double-headed vectors. (e) Torque 
diagram.

Table 2.1.  Torque drawn by 
each machine.

Machine Torque (lb-ft)
B 15
C 30
D 20
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Step 5. The torque diagram in Figure 2.7e is used to display the internal torque carried by
the shaft. The torque diagram is analogous to the shear force and moment diagrams for
beams.

Example 2.5  Classic Lug Wrench

Given: A lug nut is tightened by applying a
downward force F on the lug wrench’s right
arm and an upward force F on the wrench’s
left arm (Figure 2.8a). Linear motion is
converted into angular motion; force is
converted into torque. The forces are
assumed to be of equal magnitude.

Required: Determine the magnitude of the
torque applied to the lug nut.

Solution: The torque, or couple, applied to
the wrench stem at point A is:

and is clockwise with respect to the +x-axis.
The reaction torque TB applied by the lug nut
against the wrench’s stem is shown in
Figure 2.8b. The torque applied to the lug
nut by the stem is equal and opposite to the
reaction torque TB.

The torque applied by the wrench to the nut
is the same as that applied by the user to the
wrench. The magnitude of this torque is:

Answer: 

Note that since the applied forces are equal and opposite, there is no shear force acting in
the lug wrench stem; the two forces form a couple. 

2.3  Beams

Beams are components that support loads transverse to their main structural axis.
Examples include aircraft wings, floor, and ceiling joists in buildings, bridges, atomic
force microscopes, robotic arms in space structures, tree branches, etc. (Figure 2.9). The
internal loads in beams are bending moments and shear forces (Figure 2.10). 

TA 2 F( ) d
2
--- ⎝ ⎠

⎛ ⎞ Fd= =

Tnut Fd=

Figure 2.8. (a) Tightening a lug nut with 
a classic lug wrench. (b) Torque T = Fd 
is applied at point A. The curved arrow at 
point A represents the direction that the 
applied torque physically acts, so its 
value is written as positive. Copyright 
©2008 Dominic J. Dal Bello and 
licensors. All rights reserved.
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In general, the internal bending
moment M and shear force V vary with
distance x along the beam. In
Figure 2.10b, they are drawn in their
positive senses as defined by the
convention of this text, and described in
the following paragraphs.

The internal bending moment is
positive if it causes compression on the
top of the beam; the moment is negative
if it causes compression at the bottom of
the beam. 

The shear force is positive if it acts
on a positive face in a positive direction,
or on a negative face in a negative
direction. Otherwise, the shear force is
negative.

Figure 2.10b is a FBD of a length of
the beam exposing a cross-section that
faces in the +x-direction – a positive
face. At the cut, a positive moment M is
drawn acting about the +z-axis, out of
the paper (check this with the right-hand
rule), and a positive shear force V is
drawn acting in the +y-direction. Drawn
in their positive senses, moment and
shear force both act on a positive face in
a positive direction. 

Figure 2.10c is the complementary
FBD of Figure 2.10b. The FBD of L–x
exposes a cross-section that faces in the
negative x-direction. Drawn in their
positive senses, moment and shear force
both act on a negative face in a negative
direction: the moment about the −z-axis
and the shear force in the −y-direction. 

Calculations that determine the sign
of the internal moment and shear force
thus determine the directions in which
they act. Internal axial forces and
torques follow the same convention.

Figure 2.10. (a) A simply-supported beam 
(supported by a pin and a roller) loaded by 
central force W. (b) A FBD of length x of the 
beam, and (c) a FBD of complementary 
length L–x. Internal moment M and shear 
force V are drawn in their positive senses 
per the convention of this text: (b) positive 
face–positive direction and (c) negative 
face–negative direction.

Figure 2.9. (a) Airplane wings act as beams 
loaded by air pressure to keep the plane 
aloft. (b) An atomic force microscope is a 
cantilever beam (built-in at one end, free at 
the other) loaded at its tip.
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Example 2.6  Park Bench: Modeled as a Simply-Supported Beam under a
Point Load

Given: A person sits in the middle of a park
bench (Figure 2.11). The slats of the bench
are supported at each end by a set of legs.
The bench is modeled as a beam supported
by a pin at the left end and a roller at the
right end, with a point load applied at the
center (Figure 2.11b). Pinned supports allow
rotation and cannot support or resist a
moment. A beam with pinned supports (e.g.,
a pin and a roller) is called a simply-
supported beam. 

Required: (a) Determine the shear force and
the bending moment as functions of x along
the length of the beam. (b) Draw the shear
force and bending moment diagrams.

Solution: Step 1. The FBD of the entire
beam is shown in Figure 2.11c. Since the
loading and geometry are both symmetric,
then the vertical reactions are equal:

Since there is no load applied horizontally,
the horizontal reaction at point A is zero.

Step 2. Shear force and bending moment for
0 < x < L/2.

The shear force and bending moment at any
section D to the left of the load are found
from the FBD in Figure 2.11d. From
equilibrium of segment AD (taking moments
about point D):

RAy RBy R W
2
-----= = =

Fy∑ 0:   W
2
----- VD+ 0= =

VD
W
2
----- –=⇒

Figure 2.11. (a) A person sitting on a 
park bench. (b) The system modeled as 
a simply-supported beam under a 
central point load W. (c) FBD of entire 
beam. (d) FBD for x < L/2. (e) FBD for 
x > L/2. (f) Shear force diagram V(x)
 and bending moment diagram M(x).
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If equilibrium of the right-hand FBD (a FBD from point D to point B) is considered, then
the same results are obtained. Check this statement.

Step 3. Shear force and bending moment for L/2 < x < L.

The shear force and bending moment on any cross-section E to the right of the load are
found from the FBD in Figure 2.11e. From equilibrium of segment AE:

In summary:

Answer: 

Note that cuts to determine the shear and moment in a beam should never be taken at the
point of application of a point load (force or moment); always take cuts between point
loads.

Step 4. The variations of shear force and bending moment along the beam are shown in
Figure 2.11f. These plots are the shear force and bending moment diagrams.

A simply-supported beam under a central point load is referred to as three-point
bending. This form of loading is often used in experiments to determine the strength of a
material.

Example 2.7  Park Bench: Modeled as a Simply-Supported Beam; Uniformly
Distributed Load

Given: The park bench in the previous example is now completely full (Figure 2.12). The
beam is assumed to have the same geometric boundary conditions (simple supports). Since
the beam is full, the load is modeled as a uniformly distributed load (force per unit length).
The distributed load is:

Mz D,∑ 0:  W
2
-----x– MD+ 0= =

MD
W
2
-----x =⇒

Fy∑ 0:   W
2
----- W– VE+ 0= =

VE⇒ W
2
----- =

Mz E,∑ 0:   W
2
-----x– W x L

2
---–⎝ ⎠

⎛ ⎞ ME+ + 0= =

ME⇒ W
2
----- L x–( )=

 • For 0 x L
2
---< < :    V x( ) W

2
-----    M x( );– W

2
-----x= =

 • For L
2
--- x L< < :    V x( ) W

2
-----      M x( ); W

2
----- L x–( )= =
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where n is the number of people on the
bench, W is the weight of each person
(assumed to be the same), and L is the
distance between supports. The beam model
is shown in Figure 2.12b.

Required: (a) Determine the shear force and
the bending moment along the length of the
beam. (b) Draw the shear force and bending
moment diagrams.

Solution: Step 1. The FBD of the entire
beam is shown in Figure 2.12c. Since the
loading and geometry are both symmetric,
RAy = RBy = R. From vertical equilibrium:

Step 2. The internal shear force and bending
moment at any section D distance x from the
origin may be found from the FBD shown in
Figure 2.12d. From vertical equilibrium:

Answer: 

Moment equilibrium about point D gives:

Answer: 

Note that the second term in the moment
equilibrium equation is the product of the
equivalent force wx due to the distributed

w nW
L

--------=

Fy∑ 0:  wL R+– Ay RBy+ 0= =

R⇒ Ay RBy R wL
2

-------= = =

Fy∑ 0:   wL
2

------- wx– VD+ 0= =

VD V x( ) w x L
2
---–⎝ ⎠

⎛ ⎞= =

Mz D,∑ 0=

wL
2

-------–⎝ ⎠
⎛ ⎞ x wx( )

x
2
---

⎝ ⎠
⎛ ⎞ MD++ 0=

MD M x( ) w
2
----= Lx x2–( )=

Figure 2.12. (a) A fully-loaded park 
bench. (b) The bench modeled as a 
simply-supported beam under uniformly 
distributed load w (force per unit length). 
(c) FBD of entire beam. (d) FBD at any 
distance x from the left end. (e) Shear 
force diagram V(x) and bending moment 
diagram M(x).
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load and its lever arm (x/2) with respect to the cut at point D. 

Step 3. The shear force and bending moment diagrams are shown in Figure 2.12e.

For this problem, the shear force is linear, with a maximum magnitude of wL/2 that occurs
at each support. The bending moment is parabolic, with a maximum value of wL2/8 at the
center of the beam. The maximum bending moment occurs when the shear force is equal
to zero. Because of the symmetry of the geometry and applied load, the response (shear
force and moment) are symmetric.

Note that only one equation each for the shear and moment was required. In the previous
example (Example 2.6), two equations for each load type were required. The difference is
that the loading in this example is constant over the entire length of the beam. Whenever
there is a sudden change in the beam’s loading (e.g., at the point load in Example 2.6), an
additional set of shear and moment equations must be considered. 

Example 2.8  Atomic Force Microscope: A Cantilever with a Point Load

Background: The principal component of
the atomic force microscope (AFM), used to
measure the micro-geometry of surfaces and
the forces in biological systems, consists of
a cantilever beam. A cantilever beam is
built-in (fixed against displacement and
rotation) at one end and free at the other end
(Figure 2.13). 

Given: Force P is applied at the free end of
the AFM cantilever. A representative load at
this scale is P = 20 nN (20×10–9 N) and the
beam length is L = 60 μm (60×10–6 m). 

Required: (a) Determine the shear force
and the bending moment along the length of
the beam. (b) Draw the shear force and
moment diagrams.

Solution: Step 1. The FBD of the entire
beam is shown in Figure 2.13c. 

From force equilibrium in the y-direction
and moment equilibrium about the z-axis,
the reaction force and reaction moment are:

Fy∑ 0:   R P+ 0= =

R⇒ P–=

Figure 2.13.  (a) An atomic force 
microscope scans a material surface. 
(b) The AFM modeled as a cantilever 
beam under tip load P. (c) FBD of entire 
beam. (d) Left-hand FBD at any distance 
x from the left end. (e) Right-hand FBD 
at any distance x from the left end.
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Step 2. To investigate how the shear force
and moment vary with distance x along the
beam, a cut is taken at an arbitrary cross-
section D. Since the load on the beam does
not change over its length, only one cut
needs to be taken.

Taking equilibrium of the right-hand FBD,
segment DB (Figure 2.13e):

Answer: 

The shear force is constant throughout the beam. 

The moment along the beam is given by:

Answer: 

Note that the moment equation checks with the expected values at each end of the beam: at
the clamped end M(x = 0) = PL and at the free end M(x = L) = 0. The general FBD of
Figure 2.13e reduces to Figure 2.13c for x = 0. 

If equilibrium of the left-hand side of the beam AD was considered (Figure 2.13d), then
the same results for the shear force and moment would be obtained. 

Step 3. The shear force and moment diagrams are shown in Figure 2.13f. Using the given
representative values, the maximum bending moment is Mmax = PL = (20 nN)(60 μm) =
1.2×10–12 N·m. Shear force VD is plotted as positive since it acts upward on a +x-face (or
downward on a −x-face). Moment MD is plotted positive as it causes compression on the
top of the beam (it is a +z-moment on the +x-face or a −z-moment on a −x-face).

2.4  Combined Loading

Components are frequently subjected to several types of loading at the same time. Two
examples of combined loading follow.

Mz A,∑ 0:   Mo– PL+ 0= =

Mo⇒ PL=

Fy∑ VD– P+ 0= =

VD V x( ) P= =

Mz D,∑ MD– P L x–( )+ 0= =

MD M x( ) P= = L x–( )

Figure 2.13. (f) shear force diagram 
V(x), and bending moment diagram 
M(x).
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Example 2.9  Highway Sign with Wind Load

Given: Signs overhanging highways are
often supported by steel masts as shown
in Figure 2.14. The sign is b = 4.0 ft
high and a = 12 ft wide, and its center is
L = 16 ft above the road. Wind blows
against the sign at V = 100 mph. The
sign weighs WS = 400 lb and the mast
weighs WM = 1000 lb.

Required: Determine the reactions at
the base of the mast.

Solution: Step 1. Loading. For wind, the
equivalent static pressure is
(Equation 1.1): 

where p is in pounds per square foot
(psf) and wind velocity V is in miles per
hour (mph). For a wind speed of
100 mph, the static pressure is:

Assuming the entire static pressure acts against the sign, the wind load is:

and acts at the centroid of the sign. The x-axis is taken to coincide with the axis of the mast
and the wind force is taken to act in the positive y-direction. 

The wind force FW  and weight of the sign WS, both act distance a/2 from the x-axis of the
mast (Figure 2.14b). The wind force causes a shear force FW and a torque TW =   FW[a/2]
(clockwise about the +x-axis) on the mast. The weight of the sign causes an axial force WS
in the mast and a moment MS = WS[a/2] (clockwise about the +y-axis) applied at the top of
the mast.

Step 2. Reactions. The FBD of the entire mast is shown in Figure 2.14c. The reactions at
the ground due to the wind load are: shear force V, bending moment M2, and torque T. The
reactions due to the weight of the sign are: part of the axial reaction force R, and bending
moment M1. The reaction due to the weight of the mast also makes up part of the axial
reaction R.

Applying equilibrium to the FBD of the entire structure (Figure 2.14c):

p 0.00256V2=

p 0.00256 100( )2 25.6 psf= =

FW pA 25.6 psf( ) 48 ft2( ) 1229 lb 1.23 kips= = = =

Fx∑ 0:   WS– WM– R+ 0= =

Figure 2.14. (a) Highway sign under wind 
load FW . (b) Sketch of the wind load and 
weight of the sign acting at distance a/2 from 
the axis of the mast. Note that this is not a 
FBD.
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Answer: 

Answer: 

A negative sign indicates that force V acts
opposite drawn.

Taking moments about the x-axis:

Answer: 

Taking moments about the base, first about the y-
axis, and then about the z-axis:

Answer: 

Answer: 

Moment M2 acts opposite drawn. Note that the shear force, torque, and bending moment
about the y-axis are constant along the length of the mast. The bending moment about the
z-axis increases from zero at the top of the mast to its maximum at ground level.

Example 2.10  Single-Arm Lug Wrench

Given: The loading on the compact lug wrenches that come in modern automobiles is
similar to the wind loading on the sign of the previous example (Figure 2.15). In these lug
wrenches, the lug nut is tightened by applying a downward force F at point C when the
wrench arm is on the right side of the stem AB. 

Required: Determine the reactions at the lug nut.

R 400 1000+ R 1.40 kips=⇒=

Fy∑ 0:   FW V+ 0= =

V FW– V 1.23–  kips=⇒=

Mx∑ 0:   FW
a
2
--- ⎝ ⎠

⎛ ⎞– T+ 0= =

T 1.23 kips( ) 6 ft( )=⇒

T 7.38 kip-ft=

My∑ 0:   WS
a
2
--- ⎝ ⎠

⎛ ⎞– M1 0=+=

M1⇒ 400 lb( ) 6 ft( )=

M1 2.40 kip-ft=

Mz∑ 0:   FWL M2 0=+=

M2⇒ 1.23kips( )– 16 ft( )=

M2 19.7 kip-ft–=

Figure 2.14. (c) FBD of the mast. 
Although the weight of the mast WM 
is distributed along its length, its 
equivalent force acts at the center of 
gravity. At the ground, all the 
reactions are drawn acting in the 
positive direction of the appropriate 
axis, not necessarily in the directions 
that they physically act.
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Solution: To support force F, the nut–
wrench interface must have the
following shear force, torque, and
moment reactions (Figure 2.15c):

Answer: 

Answer: ; 

Answer: 

A negative sign indicates that the
reaction load acts opposite drawn.

In classic lug wrenches (Example 2.5),
essentially a pure torque is applied to the
lug nut; the bending moment and shear
force at the nut are zero. The new lug
wrenches cause extra loads on the nut–
wrench interface. The bending moment
tends to cause the single-arm lug wrench
to slip off the nut. Additionally, the force
applied to the single-arm lug wrench
must be about twice that applied to the
classic lug wrench to obtain the same
torque. This leads too often to the unsafe
practice of standing on the lug wrench to
get a large enough torque to loosen or
tighten the nut.

RB F=

TB  – Fd
2

-------=

MB F– l=

Figure 2.15. (a) The single-arm lug wrench 
as supplied in modern automobiles. (b) Top 
view of lug wrench. (c) Side view of single-
arm wrench with reaction loads at lug nut. 
Unlike the classic lug wrench of 
Example 2.5, the nut–wrench interface must 
now transfer a shear force and a moment. 
Copyright ©2008 Dominic J. Dal Bello and 
licensors. All rights reserved.
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Chapter 3 Strain and Stress

3.0  Introduction

The concepts of strain and stress are
introduced in this chapter. Strain and stress
allow the engineer to judge if a component is
stiff enough or strong enough for its intended
application. The component must not deflect
too much, permanently deform, or break into
two parts. 

Two basic tests help to define strain and
stress, and to determine the material
properties that relate them: 

• the tension test: a straight uniform bar is subjected to a force along its axis 
(Figure 3.1a), and

• the torsion test: a straight thin-walled circular shaft is subjected to a torque about its 
axis (Figure 3.1b).

3.1  The Tension Test – Axial Properties

In the tension test, a straight uniform bar
of length L and constant cross-sectional area
A is subjected to an axial force P applied
through the centroid of its cross-section
(Figure 3.2). The load causes the axial
member to elongate by distance Δ. Such a
response is readily seen when stretching a
rubber band. Elongation is not so easy to
observe when stretching a steel bar, but it
does occur.

When force P is proportional to
elongation or extension Δ (the relative
displacement of the ends of the bar), then the
response is linear. If the bar returns to its

Figure 3.1. (a) Bar under tension.      
(b) Thin-walled shaft under torsion.

Figure 3.2. Bar of length L and cross-
sectional area A. Under axial load P, the 
bar elongates (extends) by Δ.



www.manaraa.com

44 Ch. 3 Strain and Stress

original length when the load is completely removed, the response is elastic. A linear–
elastic response is observed in most materials for small loads and elongations.

The results of a tensile test are used to determine the mechanical properties of a
material. The force–elongation (P–Δ) response of the test is generalized by defining the
terms strain and stress.

Strain
The axial strain ε (Greek “epsilon”) – the strain parallel

to the axial load – is the ratio of the bar’s extension Δ to its
original length L. Hence, the strain of the axial bar is:

[Eq. 3.1]

This strain is also called the normal strain since it describes
movement perpendicular (normal) to the bar’s cross-section.

This definition of strain – based on the original length of
the bar – is called engineering strain. Engineering strain is
used when the system remains elastic, or when strain is
otherwise small, as it is in most practical applications. When
strains become large, a different definition – based on the
bar’s length at any instant – must be used for detailed
calculations (see Chapter 12). For now, engineering strain
will be used as the measure of strain.

Strain is dimensionless since it is the ratio of two
quantities whose dimensions are both length. A typical value in practice is on the order of
ε = 0.0005. Strain is generally expressed as a percentage, e.g., 0.05%. Another form is
ε = 500×10–6 or 500 micro-strain. 

If the length of the bar is doubled, the same load P will elongate the bar by 2Δ
(Figure 3.3); the 2L-long bar is essentially two L-long bars in series. Applying the
definition of strain gives:

[Eq. 3.1b]

For the same load P, cross-sectional area A and material properties, strain is independent
of length.

If the bar elongates (Δ > 0), the strain is positive (ε > 0). The bar is said to be in
tension and the force is a tensile force (P > 0). When the force is in the opposite direction,
pushing against the bar, the bar is in compression, and the elongation Δ is negative. The
bar shortens (Δ < 0), so the strain is also negative (ε < 0). The force is a compressive force
(P < 0 with the force drawn in tension, as in Figure 3.3).

ε Δ
L
---=

ε 2Δ
2L
------- Δ

L
---= =

Figure 3.3. Two 
otherwise identical bars 
of different lengths 
having the same strain.
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Example 3.1  Strain in a Pipe

Given: The Trans-Alaska Pipeline, diameter D = 1.22 m,
transports oil under pressure. The pressure causes an
increase in pipe diameter (Figure 3.4). Field
measurements at a certain location show that the
circumferential strain – the strain around the pipe
circumference – is ε = 0.050%.

Required: Determine the change in pipe diameter ΔD.

Solution: The strain ε is change in length divided by
original length. Take L as the original pipe
circumference: L = πD. Due to pressure, the new
circumference is (L+ΔL) = π(D+ΔD). The
circumferential strain is then:

The measured strain is ε = 0.0005, so the increase in diameter is:

Answer: 

Stress
The bar in Figure 3.5 has constant cross-

sectional area A, and is subjected to axial
force P. The cross-section need not be
square, but the load must act through the
centroid of the cross-section so that the
response at any cross-section is uniform (the
same over the entire cross-sectional area). 

The axial stress or normal stress σ
(“sigma”) in a bar is the axial force divided
by the cross-sectional area over which the
force acts. Thus, the stress normal to the
cross-section is:

[Eq. 3.2]

The normal stress acts perpendicular
(normal) to an interior cross-section of the
bar (Figure 3.5b). The units of stress are
force per area.

ε ΔL
L

------- π D ΔD+( ) πD–
πD

----------------------------------------- ΔD
D

--------= = =

ΔD εD 0.0005( ) 1.22 m( )= =

ΔD 0.61 mm=

σ P
A
---=

Figure 3.5.  (a) Axial bar in tension with 
plane cutting the bar normal to its axis.
(b) The axial stress on an interior cross-
section is uniform if the axial load is 
applied through its centroid. (c) A stress 
element: a material point represented by 
an infinitessimal cube under stress.

Figure 3.4. Under internal 
pressure, the diameter of a 
pipe increases (not to 
scale).
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This definition of stress – based on the original cross-sectional area of the bar – is
called engineering stress, and is used when the system remains elastic, or when strain is
otherwise small. Here, engineering stress is simply called stress. When strain is large, a
different definition for stress – based on the area at any instant – must be used for detailed
calculations (see Chapter 12).

If the cross-sectional area is doubled from A to 2A, then the stress due to load P is:

[Eq. 3.2b]

The intensity of the force per area has been reduced by a factor of 2.

Tension describes the condition when the bar is stretched. In tension, force and stress
are both positive (P > 0, σ > 0), and act as drawn in Figure 3.5. In compression, force P
physically presses against the bar, shortening it. In compression, the force and stress are
both negative (P < 0, σ < 0), and act opposite to those drawn in Figure 3.5. If the force and
stress are consistently drawn assuming that the bar is in tension, then a positive stress is a
tensile stress and a negative stress is a compressive stress.

The dimensions of stress are force per unit area. In SI units, the unit of force is the
newton, N, and the unit of length is the meter, m. Thus, the unit of stress is newtons per
square meter, called a pascal (Pa):

In practical situations, stresses are typically on the order of 100×106 Pa. For convenience,
stress is generally given in megapascals, MPa, where 1.0 MPa = 106 Pa. A common
convention is to keep the numerical value between 0.1 and 1000 and use SI prefixes to
indicate the magnitude.

In US units, the unit of force is the pound, lb, and the unit of length is the foot, ft. A
distributed load that acts over a large area (e.g., a snow load on a roof) is given in pounds
per square foot, psf. Stress acts over an area having dimensions of inches (e.g., a bar’s
cross-section), so stress is given in pounds per square inch:

In practice, the magnitude of stress is large and is given in kilopounds per square inch, ksi,
where 1.0 ksi = 1000 psi (1.0 kilopound = 1.0 kip = 1000 lb).

To convert between the US and SI systems, 1.0 ksi is equal to 6.895 MPa. For a rough
conversion from ksi to MPa (or psi to kPa, etc.), multiply by 7 and increase the metric
prefix by a factor of 3; e.g., 10 ksi ~ 70 MPa. The error in simply using 7 is less than 2%,
sufficient for an approximation. 

Typical design values of stress in engineering applications are on the order of
σ ~ 10 ksi ~ 100 MPa.

σ P
2A
-------=

Stress Force
Area
------------- N

m2
------- Pa= = =

Stress Force
Area
------------- lb

in.2
-------- psi= = =
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Example 3.2  Hanging Lamp

Given: A lamp weighing W = 10.0 lb hangs from
the ceiling by a steel wire of diameter
D = 0.100 in. (Figure 3.6).

Required: Determine the stress in the wire.

Solution: The normal stress σ in an axial member
is the applied force divided by the cross-sectional
area over which it acts. Using statics, the force
everywhere in the wire is P = W. Thus:

Answer: 

The answer has been rounded to three significant
digits, since the data were given to three digits.

Example 3.3  Lamp Hanging by Two Wires

Given: A lamp of weight W hangs by two wires,
each of length L (Figure 3.7). Each wire has a
cross-sectional area A and makes an angle of θ
with the horizontal.

Required: Determine the stress σ in each wire.

Solution: Step 1. The FBD of point B is given in
Figure 3.7b. Since the geometry and loading are
both symmetric:

TAB = TBC = T 

In Figure 3.7c, TBC is decomposed into its x- and
y-components. Vertical equilibrium of point B
requires that:

so:        

Step 2. The stress in each wire is then:

Answer: 

σ P
A
--- 10.0 lb

π 0.100 in.( )2 4⁄
--------------------------------------- 1273 

lb

in.2
--------= = =

σ 1.27 ksi=

W TABy TBCy+ 2T θsin= =

T W
2 θsin
----------------=

σAB σBC
T
A
---= =

σ W
2A θsin
--------------------=

Figure 3.7. (a) Lamp supported by 
two wires. (b) FBD of point B.
(c) Decomposition of tensile force 
TBC into its x- and y-components.

Figure 3.6. (a) Lamp of weight 
W supported by a single wire 
of cross-sectional area A. 
(b) FBD of the wire.
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Young’s Modulus
Stiffness is a measure of a system’s

resistance to deformation. A rubber band is
easily deformed by hand; but a steel wire or
rod of the same cross-sectional area is not.
The stiffness of steel is greater than that of
rubber. 

Tensile force P applied to a linear spring
causes it to elongate by Δ (Figure 3.8a).
When the measured values of force and
elongation are plotted on a graph, the result
is a straight line (Figure 3.8b). The line is
defined by Hooke’s Law for Springs:

P = KΔ [Eq. 3.3]

where K is the spring constant or spring
stiffness. If the elongation (displacement) is
too large, this linear relationship is no longer
valid, which can be demonstrated by
stretching a spring so much that it does not
return to its original shape.

Tensile force P applied to a bar of initial
cross–sectional area A and initial length L
causes it to elongate by Δ (Figure 3.8c). For
small displacements, the bar behaves like a
linear spring, i.e., P = KΔ. Dividing force by
area and elongation by length gives the stress
and strain: σ = P/A and ε = Δ/L.

A plot of stress versus strain is known as
a stress–strain curve (Figure 3.8d). Since A
and L are constants, the stress–strain curve is
also linear for small displacements.

By normalizing (dividing) force by area,
and elongation by length, the force–
displacement (force–elongation, P–Δ) curve
becomes a stress–strain curve (σ–ε). Since
the bar’s volume is AL, the stress–strain
response is independent of bar size and
depends only on the material.

The slope E of the stress–strain curve is the stiffness of the material. The material
stiffness is called Young’s modulus, the elastic modulus, or the modulus of elasticity.

Figure 3.8. (a) A spring of stiffness K, 
under force P, deflects Δ = P/K. 
(b) Force–displacement curve for a linear 
spring. (c) A bar in tension acts like a 
spring. (d) Initial stress–strain response 
of a bar in tension or compression.
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Hooke’s Law for Stress–Strain
is:

σ = Eε [Eq. 3.4]

Since strain ε is dimensionless,
Young’s modulus has the same units
as stress (Pa, lb/in.2). 

Representative moduli are given
in Table 3.1. The modulus is
generally large and expressed in SI
units as GPa (gigapascals, 1 GPa =
109 Pa), and in US units as ksi or
Msi (megapounds per square inch,
1 Msi = 103 ksi = 106 psi). 

In compression (σ < 0), the initial
material response is generally linear
with a slope of E (Figure 3.8d).

Young’s modulus depends on the
nature of the atomic bonds of the
material. Although there are many
types of steels, all have a modulus of
about E = 190–215 GPa (28–31 Msi);
steel is primarily iron with a small amount of carbon and a few additional elements. The
amorphous nature of rubbers and polymers, and their various degrees of atomic bonding,
results in the low and relatively widespread values of their moduli. Engineering ceramics
have covalent and ionic bonds – the strongest atomic bonds – so their moduli are high.

Because steel has a large modulus, it is used in buildings and other structures where
deflections must be small. The modulus of aluminum (70 GPa, 10 Msi = 10,000 ksi) is
one-third that of steel. If aluminum is used in place of steel with the same geometry, the
resulting strains and deflections would be three times greater for the same loads. The
designer must be aware of this response. 

The values of E for rubbers and polymers are very small; these materials are seldom
used to support large loads as they would have large deflections. Rubber is often used as a
cushion. Polymers are used to cover automobile panels and to provide protective
enclosures for electronic components. 

In high-tech aerospace applications, polymers are used to keep high-strength/high-
stiffness fibers in alignment and to protect them. Such a combination of materials is called
a composite. One class of composites is carbon fiber reinforced polymers (CFRP), which
have high elastic moduli but low density. This combination of properties is very attractive
in aerospace applications, but composite materials are generally expensive due to the cost
of manufacture. 

Table 3.1.  Representative values of
Young’s Modulus (SI and US units). 

Material
E (SI)
GPa

= 109 Pa

E (US)
Msi

= 106 psi
Steels 207 30*

Titanium alloys 115 17

Aluminum alloys 70 10

Nickel alloys 215 31

Cast irons 180 26

Douglas fir (parallel 
to grain)

12.4 1.8

Glass 70 10

Rubbers 0.01–0.1 0.0015–0.015

Polymers 0.1–5 0.015–0.75

Engineering ceramics 300–450 44–65

Carbon fiber/polymer
matrix composite

70–200 10–30

* The American Institute of Steel Construction 
(AISC) recommends 29 Msi = 29,000 ksi 
(200 GPa) for structural steel.



www.manaraa.com

50 Ch. 3 Strain and Stress

Example 3.4  Displacement of Hanging Lamp Due to Weight

Given: The wire supporting the lamp in Example 3.2 is
L = 5.00 ft long (Figure 3.9). The wire is steel with elastic
modulus E = 30,000 ksi = 30 × 106 lb/in2. .

Required: Determine the elongation Δ of the wire due to the
lamp’s weight.

Solution: Step 1. From Example 3.2, the stress is σ = 1.273
ksi. The strain ε is calculated using Hooke’s Law: 

Step 2. The elongation is:

Answer: 

As expected, the displacement is small. If, instead of steel, nylon string of the same
diameter and having modulus E ~ 106 psi is used, then the displacement would be 30 times
greater than that of the steel wire, or Δ = 76.4 × 10–3 in.

Stiffness and Flexibility of an Axial Member
Since Young’s modulus E for many materials is tabulated, it may be used to calculate

the stiffness and flexibility of any axial bar. Consider a bar of constant cross-sectional area
A, length L, and modulus E, subjected to load P applied at each end through the centroid of
the cross-section. The bar’s stiffness K is found using the definitions of stress and strain:

[Eq. 3.5]

The stiffness of an axial bar is therefore:

[Eq. 3.6]

Equation 3.5 can be rearranged to solve for displacement in terms of the applied load.
The inverse of stiffness K is the flexibility F, defined by:

[Eq. 3.7]

[Eq. 3.8]

ε σ
E
--- 1273 psi

30 10
6×  psi

----------------------------- 42.43 10
6–×= = =

Δ εL 42.43 10
6–×

⎝ ⎠
⎛ ⎞ 5.00 ft( ) 12 in./ft( )[ ]= =

Δ 2.55 10
3–×= in.

P σA Eε( )A EΔ
L
---A EA

L
-------Δ KΔ= = = = =

K EA
L

-------=

Δ 1
K
----P FP= =

F L
AE
-------=

Figure 3.9. Lamp of 
weight W supported by 
a single wire.
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Thus, the elongation of a bar due to axial load P is given by this very useful equation:

[Eq. 3.9]

 The terms stiffness and flexibility are commonly used in practice. In racing car
suspensions, stiffness is high to avoid excessive sway in tight turns at high speed. By
contrast, highway riding requires comfort and a more flexible suspension, meaning a
lower stiffness or higher flexibility.

Example 3.5  Stiffness and Flexibility of an Axial Member

Given: The lamp from Examples 3.2 and 3.4 (Figure 3.10).

Required: Determine the stiffness K and flexibility F of the
5.0 ft long steel wire.

Solution: The cross-sectional area of the wire is A =
7.854×10–3 in 2. ,  the length is L = 60.0 in., and the modulus is
E = 30,000 ksi. Thus, the stiffness and flexibility are:

Answer: 

Answer: 

As an example, to achieve a displacement of Δ = 50 × 10–3 in., the required force is:

P = KΔ = (3927 lb/in.)(50 × 10–3 in.) = 196.4 lb

Due to a force of 10.0 lb (the weight of the lamp), the displacement is:

Δ = FP = (0.255 × 10–3 in./lb)(10 lb) = 2.55 × 10–3 in.

in agreement with Example 3.4.

Stress–Strain Curves for Ductile Materials
Stress–strain curves are determined from experiments on axial bars (Figure 3.11). A

bar with cross-sectional area A is clamped into a set of grips of a testing machine. One grip
is fixed and the other moves by known displacement δ ; the force P required to cause the
displacement is measured. Such an experiment is known as a displacement- or strain-
controlled experiment. 

Ideally, the bar is in a pure state of tension (or compression). Since the grips of a
testing machine cause a complex state of stress in the nearby material, a length of the bar
of constant cross-section is identified over which the load is considered to be purely axial.

Δ PL
AE
-------=

K EA
L

------- 30 10
6×  psi( ) 7.854 10

3–
in.

2×( )
60.0 in.( )

--------------------------------------------------------------------------------= =

K 3927 lb/in.=

F K 1–=

F 0.255 10
3–×= in./lb

Figure 3.10.  Lamp.
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This length is the gage length L. The change in length Δ
of the gage section is often measured with a device called
an extensometer, which has a typical gage length of 1.0
in.

Measurements are taken of the change in length Δ
and the associated force P. By dividing the applied force
P by area A and the elongation Δ by gage length L, the
stress required to cause a certain strain is found:

[Eq. 3.10]

Strain can also be measured with strain gages, which
are typically about 10 mm in length (see Chapter 8, Page
269). A strain gage is epoxied to the specimen, and is
part of an electronic circuit. As the specimen – and thus
the strain gage – changes length, the resistance of the
strain gage changes, providing an electric signal that
indicates the strain of the specimen.

Plotting stress against strain gives the stress–strain
curve. A representative stress–strain curve for a ductile
material (most metals) is given in Figure 3.12.

Linear–Elastic Loading and Unloading

As the bar is initially loaded (line OAB, Figure 3.12), experimental observations
indicate that stress is linearly proportional to strain – Hooke’s Law – with slope equal to
the material’s Young’s Modulus E:

[Eq. 3.11]

When the load on the bar is removed, the bar returns to its original length; i.e., the strain
returns to zero. The ability for a material to recover its original shape when it is unloaded
is known as elasticity. Most engineering components are designed to remain elastic in
service. When an elastic material obeys Hooke’s Law (Equation 3.11), the behavior is
linear–elastic.

Yielding
Linear–elastic behavior is observed up to a certain value of stress called the

proportional limit (point B). Above this point, the stress–strain curve becomes non-linear
and the slope reduces (line CD). 

The value of stress where the curve transitions from linear to non-linear behavior is
the proportional limit Sp . It is difficult to determine the exact value of Sp from the
experimental data, so an engineering approximation – which gives the yield strength – is
used.

σ P
A
---      ε; Δ

L
---= =

σ Eε=

Figure 3.11. A tensile 
specimen placed in the grips 
of a testing machine.
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By convention, the yield strength is determined by constructing a line parallel to the
linear portion of the curve, but displaced by 0.2% on the strain axis – the dotted line in
Figure 3.12. The intersection of this line with the experimental stress–strain curve is
defined as the yield strength Sy (sometimes σy) of the material (point C). The yield
strength is used as the proportional limit; Hooke’s Law is considered valid for stresses up
to Sy . Representative values of Sy are given in Table 3.2 on Page 55.

The strain at yielding is εy = Sy/E, and is taken to be the maximum elastic strain.
Typical values of yield strain εy are also given in Table 3.2. The values of εy can have
design implications as noted below.

Plastic Deformation, Necking, and Failure

As strain is further increased (from point C towards point G, Figure 3.12), the slope of
the stress–strain curve – the tangent modulus Et – decreases. For each additional increment
of strain dε, a smaller increment of stress dσ is required (Et = dσ/dε). The slope eventually
becomes zero when the stress reaches a maximum. This stress is the ultimate strength Su (or
ultimate tensile strength), the maximum stress that the material can support. 

After reaching the ultimate strength, stress decreases with increasing strain (from
point G to point H), meaning that the applied force (P = σA) needed to cause further
extension decreases. Force P decreases because somewhere along the bar, its cross-
sectional area begins to decrease significantly. This localized reduction in area is called

Figure 3.12. Typical stress–strain curve of a ductile material (not to scale). A material 
is classified as ductile if the strain-to-failure εf is much greater than the yield strain εy 
(e.g., εy ~ 0.4%, εf  ~ 15%+).
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necking (Figure 3.13). At the neck, the
stress is higher than the nominal stress,
so the strain and elongation are
concentrated there. Failure (fracture into
two pieces) finally occurs in the neck at
the failure strain εf. 

A material is generally classified
as ductile if the strain to failure εf is
much greater than its yield strain εy
(more than an order of magnitude).
Ductile materials typically have failure
strains on the order of 15% or more.
The ductility of metals allows them to
be bent into various shapes without
breaking.

Unloading After Plastic Deformation and Reloading

If the load is removed after the specimen has yielded, but before it necks (i.e., between
points C and G in Figure 3.12), the stress–strain response follows an elastic unloading line
(line DF). The unloading response has the same slope as the linear–elastic loading line
(line OAB). When the stress is completely removed, the bar does not return to its original
length, but suffers a permanent strain or plastic strain εp.

When the load is reapplied, the stress–strain response begins at point F and is linear up
to point D, where it rejoins the overall curve and moves towards point G. The material
remains linear up to a greater stress than the original yield strength Sy. This phenomenon
is known as strain-hardening or work-hardening. By mechanically processing a ductile
material, its yield strength can be increased. However, there is always a price to pay. A bar
that has been strain-hardened is less ductile – the strain to failure is reduced from its
original value of εf to εf – εp (although in most cases, there is still sufficient strain to
failure). Once necking occurs, the bar can no longer be strain-hardened.

General Comments

In stress–strain experiments, it is standard practice to apply a displacement (strain)
and measure the required force (stress) – the displacement-controlled (strain-controlled)
test just discussed. The alternative is to apply a force (stress) and measure the resulting
strain – a force-controlled test. Data collection in the force-controlled test is difficult
because beyond the proportional limit, the slope of the stress–strain curve decreases; small
increments of stress cause large changes in strain. Better results during yielding are
achieved using the strain-controlled test; small increments of strain require very small
changes in stress. Additionally, since force continuously increases in the force-controlled
test, the decrease in stress at necking is not captured.

Unlike the modulus, the yield strength of a metal can be significantly increased by the
addition of atoms of another element (alloying), by mechanical processing, or by heat

Figure 3.13. Failed tensile specimens 
(0.5 in. diameter), all originally the same 
length. (a) Cast Iron is brittle and shows little 
plastic deformation. The fracture surface is 
flat. (b) C1045 Hot-Rolled Steel; broken 
specimen pieced together to illustrate 
necking of a ductile material. (c) A36 Steel 
typically fails at εf ~ 24%.
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treatment. Metals can,
therefore, have a wide range
of yield strengths, as shown
in Table 3.2. By
understanding processing
techniques (beyond the scope
of this text), a metal alloy can
be engineered to have a
specific yield strength Sy .
Increasing the yield strength
does not generally influence
the value of Young’s
modulus E.

Of course, the more
complex the processing route,
the more expensive the
material. High strength
metals are expensive and are
generally only used in
specialized applications
where the cost is justified.
The yield strength of steel
used in buildings and bridges
is at the low end of the range
with a value of 250 MPa
(36 ksi). The selection of low
strength steel is based on
cost. By contrast, modern
pressure vessel technology is
possible using high-strength
steels with yield strengths
nearing 1900 MPa (275 ksi). 

High-strength, high-temperature nickel-based
alloys are used in the manufacture of jet engines. The
forces acting on the rotating engine discs are large
and a design with compact dimensions is only
possible using strong nickel alloys. If only yield
strength were considered in the design, the system
could be made strong enough. However, larger
allowable stress levels mean larger elastic
deflections. An elastic extension is not necessarily
negligible. For example, a strain of ε = 0.6% is

*  Values of yield strength in metals depend on
chemical composition, mechanical processing,
thermal processing, etc.

** Ceramics and glasses are brittle and exhibit little, if
any, plastic strain.

Table 3.2.  Representative values of Modulus,
Yield Strength, Yield Strain and Failure Strain.

Material
E

GPa (Msi)
Sy*

MPa (ksi)
εy (%) εf (%)

Steels
207 
(30)

250–1900
(36–270)

0.12–0.95 25+

Titanium and
alloys

115 
(17)

200–1300
(29–185)

0.17–1.2 20

Aluminum 
and alloys

70 
(10)

100–600
(15–90)

0.14–0.86 15

Nickel
alloys

215
(31)

200–1600
(30–40)

0.1–0.74 30

Cast irons
180
(26)

220–1000
(31–145)

0.12–0.55
0 (gray)

15 (ductile)

Douglas fir
12.4
(1.8)

100 (Su)
(15)

N/A –

Glass**
70

(10)
N/A Very small ~0

Rubbers 0.01–0.1
(0.0015–0.015)

30 (Su)
(4)

>10 500+

Polymers
0.1–5

(0.015–0.75)
20–30
(3–4)

0.5–2 –

Engineering
ceramics**

300–450
(44–65)

N/A Very small ~0

Carbon fiber
polymer 
matrix 
composite

70–200
(10–30)

1800
(260)

(Su , in fiber 
direction)

N/A N/A

Figure 3.14. The turbine blades 
in a jet engine must not expand 
and hit the housing. Copyright 
©2008 Dominic J. Dal Bello and 
licensors. All rights reserved.
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within the elastic region for high-strength nickel alloys (εy = 0.75% for Sy = 1600 MPa,
E = 215 GPa). If the radius of the engine’s compressor disc is R = 1.0 m and the dynamic
loading causes a strain of , then the increase in radius is ΔR = 6 mm.
The gap between the blades and the outer shroud (which itself may deform) must be large
enough to accommodate this expansion (Figure 3.14). Elastic deformation must be
considered.

The majority of materials used in practice are ductile. Design methods are often based
on the assumption that the stress in a material is limited by its yield strength Sy so that the
material remains elastic. The ability of a metal to yield before it breaks is a useful
property, since plastic deformation provides a visible warning of impending failure.

Stress–Strain Curves for Brittle Materials
When a ceramic or glass component

is subjected to tensile stress, it breaks by
snapping suddenly (with a bang! so be
careful when testing these materials; they
can shatter into dangerous flying pieces).
Materials that show little, if any, plastic
deformation are classified as brittle,
such as the cast iron specimen in
Figure 3.13a. The stress–strain curve of
a brittle material is essentially limited
to the elastic region, as shown in
Figure 3.15. The strength is usually
defined by the ultimate strength Su , i.e.,
the stress at failure (fracture into two
pieces).

It is generally difficult to specify a
single value of Su for a brittle material
because there is so much scatter in tests.
The measured strength depends on the size of the specimen being tested, and the
probability distribution of pre-existing flaws or cracks in the material. Consequently,
values of Su for brittle materials are often not tabulated, are given with conservative values,
or are given with a broad range. Special methods are necessary to design components
made of brittle materials, requiring an understanding of Fracture Mechanics and Statistics
(introduced in Chapter 13).

Gray cast iron is used extensively in castings of engine blocks for automobiles and
diesel engines. When tested in tension, gray cast iron breaks into two with little warning.
Gray cast iron does, however, exhibit some of the characteristics of ductile materials with
a failure strain εf typically between [2Sy /E] and [5Sy /E]. Nevertheless, because the failure
strain is small by comparison with ductile materials, gray cast iron is sometimes described
as semi-brittle, and this word sends a signal to the designer to proceed with caution.

ε ΔR R⁄ 0.006= =

Figure 3.15. Representative stress–strain 
curve of a brittle material. There is little, if 
any, plastic deformation.
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Example 3.6  Factor of Safety of Hanging Lamp

Given: The wire holding up the lamp of Example 3.2 has a yield strength of Sy = 60 ksi.
The factor of safety against yielding is to be 2.5 (just in case someone pulls down on it,
etc. The diameter of the wire is D = 0.10 in. (Figure 3.16).

Required: Determine the allowable (design) load PD .

Solution: Step 1. The factor of safety against yielding is:

where Py is the load at yielding:

Step 2. The allowable load on the lamp is then:

Answer: 

PD must include the weight of the lamp and any additional loads expected.

Note: Allowable loads are not rounded up; 189 lb would technically exceed the calculated
allowable load of 188.5 lb.

Example 3.7  Elongation of Tower Crane Tie Bar

Given: Tie bar DB supports the main jib (CB) of
the tower crane discussed in Example 2.2. The
crane is shown in Figure 3.17. When the crane is
operating at its maximum working load, the force
in the tie bar is 895 kips. The tie bar is made of a
high-strength steel with yield strength Sy = 60 ksi
and modulus E = 30 Msi.

Required: (a) If the factor of safety against
yielding is 2.0, determine the minimum cross-
sectional area A of tie bar DB. (b) Using the area
calculated in Part (a), determine the change in
length Δ of DB.

Solution: Step 1. From the definition of stress:

FS Load at yield
Allowable load
------------------------------------

Py

PD
------- 2.5= = =

Py ASy
π 0.10 in.( )2

4
----------------------------- 60 ksi( ) 471.2 lb= = =

PD

Py

FS
------- 471.2 lb

2.5
-------------------- 188.5= = =

PD 188 lb=

σ P
A
--- A→ P

σ
---= =

Figure 3.16. Lamp.

Figure 3.17. Schematic of crane.
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The maximum service (working) load in DB is 895 kips. Applying the factor of safety, the
required strength of the tie bar – in this case, the force at yielding – is:

Hence, the minimum required area is:

Answer: 

Design the tie bar cross-section to be a full 30.0 in2. 

An alternative method that is commonly used is allowable stress design (ASD). The factor
of safety is applied to the yield strength. The allowable or design stress σD is then:

so:

Step 2. The elongation of the tie bar Δ at the maximum operating load PD is:

From the crane geometry, the length of the tie bar LDB is:

Then:

Answer: 

The elongation is small in relation to the length of the tie bar (3.41 in. to 286 ft); the strain
is 0.00099, or approximately 0.1%.

Poisson’s Ratio
When a rubber band is stretched, it not only elongates in the direction of the load but

also becomes thinner. Such behavior occurs in most materials, although it is difficult to see
with the naked eye. This behavior is referred to as the Poisson effect.

In Figure 3.18, the tensile bar of length L and square cross-section of side b elongates
by Δ. The cross-section need not be square, but is used here to ease the calculations. The
longitudinal strain ε (or direct strain) is the strain in the direction of the load:

[Eq. 3.12]

Py PD FS( ) 895 kips( ) 2.0( )= 1790 kips= =

A
Py

Sy
------ 1790 10

3×  lb

60 10
3×  psi

---------------------------------= =

A 29.8 in.2=

σD

Sy

FS
------- 60 ksi

2.0
-------------- 30 ksi= = =

A
PD

σD
------- 895 kips

30 ksi
-------------------- 29.8 in.2= = =

Δ
PDLDB

AE
------------------=

LDB LCD( )2 LCB( )2+ 802 2752+= 286 ft= =

Δ 895 kips( ) 286 ft 12 in./ft×( )
30 in.2( ) 30 000 ksi,( )

-----------------------------------------------------------------------=

Δ 3.41 in.=

ε Δ
L
---=
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The transverse strain εT is normal to the
load direction. The transverse strain is the
change in bar width Δb divided by the
original width b (or the change in length
divided by the original length of any line
perpendicular to the load direction):

[Eq. 3.13]

Poisson’s ratio ν (“nu”) is defined as the
negative ratio of the transverse strain to the
longitudinal strain:

[Eq. 3.14]

Poisson’s ratio is an elastic property of a
material; selected values are given in
Table 3.3. In general, when a material is
stretched (ε > 0), it contracts in the
transverse direction (εT < 0), hence
Poisson’s ratio is typically positive.

For homogeneous, isotropic materials
such as metals, the range of Poisson’s ratio
is 0.0 < ν < 0.5. Homogeneous means the
material is the same at every point; isotropic means the material responds the same in
every direction. For some materials such as composites and other very non-isotropic
materials, where the response is different in different directions, the value of ν may be less
than zero, or greater than 0.5. Metals undergoing plastic deformation (yielding) have a
Poisson’s ratio of 0.5.

Area and Volume Change Due to the Poisson Effect
A homogeneous, isotropic elastic bar loaded in tension increases in length and reduces

in cross-sectional area (Figure 3.19). The original area and volume are A = b2 and
V = AL = b2L. Under load, the longitudinal strain is ε and the transverse strain is εT = –νε.
The new width is b(1+εT), so the new cross-sectional area Anew is:

[Eq. 3.15]

Since ε is small compared with 1.0 (e.g., ε ~ 0.005 and ε2 ~ 0.000025), the higher order
term ε2 can be neglected. The new area is then:

[Eq. 3.16]

εT
Δb
b

-------=

ν  
εT

ε
-----–=

Anew b 1 εT+( )[ ] b 1 εT+( )[ ] b2 1 νε–( )2= =

A= 1 2νε– ν2ε2+( )

Anew A 1 2νε–( )=

Figure 3.18. As a bar is stretched, its 
width is reduced – the Poisson effect.

Table 3.3.  Poisson’s Ratio, 
Elastic Deformation.

Materials ν
 Cork ~ 0

 Concrete 0.1

 Ceramics 0.2

 Steel 0.3

 Aluminum 0.33

 Rubber ~ 0.5
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As mentioned earlier, the cross-section of
the bar need not be square, and the result
just derived is valid for any axial member
with any cross-sectional shape. 

A similar calculation gives the new
volume Vnew . Neglecting higher order terms
(i.e., ε2 and ε3):

[Eq. 3.17]

The dilation, or change in volume, is:

[Eq. 3.18]

The volumetric strain, or dilational strain,
is defined as:

[Eq. 3.19]

The range of ν for homogeneous, isotopic materials is governed by Equations 3.16
and 3.18. From Equation 3.16, if ν < 0, then the bar would fatten as it is stretched (ε > 0),
or become thinner as it is compressed, which makes little physical sense; ν must be non-
negative. The upper bound, ν = 0.5, is deduced from Equation 3.18 by noting that if the
applied strain is tensile (ε > 0), then the volume should increase since the atomic bonds are
being stretched.

Example 3.8  Poisson’s Ratio

Given: A 1.2 m long aluminum bar has a circular cross-section of diameter 20.0 mm
(A = 314.2×10–6 m2), and is subjected to an axial tensile load P = 30.0 kN. For aluminum,
the modulus is 70 GPa and Poisson’s ratio is 0.33.

Required: Determine (a) the longitudinal and transverse strains and (b) the new cross-
sectional area.

Solution: Step 1. Due to the load, the longitudinal strain is:

Answer: 

Step 2. The transverse strain is:

Vnew V 1 ε 1 2ν–( )+[ ]=

ΔV ε 1 2ν–( )V=

εV
ΔV
V

------- ε 1 2ν–( )= =

ε σ
E
--- P

AE
------- 30 10

3×  N

314.2 10
6–×  m2( ) 70 10

9×  Pa( )
------------------------------------------------------------------------------- 1.364 10

3–×= = = =

ε 1364 10
6–× 0.136%= =

εT νε– 0.33( )– 1364 10
6–×( ) 450 10

6–×–= = =

Figure 3.19. The Poisson effect.
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Answer: 

Step 3. The new area is:

Answer: 

The reduction of area is small, approximately 0.03%.

Elastic Strain Energy of a Tensile Bar
The relationship between axial force P and

elongation Δ for an elastic bar is:

[Eq. 3.20]

The bar behaves like a spring of stiffness K
(Figure 3.20). The increment of work dW done
by force P in deflecting the spring by an
additional increment of displacement dΔ is:

[Eq. 3.21]

as shown in Figure 3.20b. The total work done to
elastically deform the bar is determined by
performing the integral:

[Eq. 3.22]

Using Equation 3.20, the total work done can
also be expressed as:

[Eq. 3.23]

The work done W is stored internally as elastic
strain energy U:

[Eq. 3.24]

Using the relationships for stress and strain:

[Eq. 3.25]

εT 450– 10
6–×= 0.045%–=

Anew A 1 2νε–( ) 314.2 10
6–×  m2( ) 1 2 0.33( ) 1364 10

6–×( )–[ ]= =

Anew 313.9 10
6–×  m2=

P
EA
L

-------Δ KΔ= =

dW PdΔ KΔ( )dΔ= =

W KΔ( ) Δd
 0

 Δ

∫ 1
2
---KΔ2 1

2
---EA

L
-------Δ2= = =

W 1
2
---P2L

EA
---------- 1

2
---P2

K
------= =

W U=

σ P
A
---      ε Δ

L
---=;=

Figure 3.20. (a) Spring and axial 
member, both subjected to axial 
force P. (b) Energy stored in spring 
or axial member. (c) Elastic strain 
energy density in an axial member.
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the expression for the internal energy is:

[Eq. 3.26]

Since the bar volume is V = AL, the elastic strain energy density – the elastic strain
energy per unit volume – UD , is:

[Eq. 3.27]

The elastic strain energy density is the area under the linear–elastic region of the stress–
strain curve (Figure 3.20c). 

The maximum value of the elastic strain energy density is when the stress reaches the
yield strength. The maximum elastic strain energy density is known as the modulus of
resilience UR :

[Eq. 3.28]

The resilience is the maximum energy per unit volume that can be applied to the material
without plastic deformation occurring. 

Example 3.9  Car Bumper Design

Given: Car bumpers are often protected with a strip or pad of rubber approximately
2.0 m long, 5 mm thick, and 100 mm high (Figure 3.21). The practical purpose of the strip
is to absorb energy in low-speed accidental crashes such as in parking lots or when parallel
parking. Assume the strip supports the entire load uniformly.

Required: (a) From an elastic energy
standpoint, why might rubber be a good choice
of material compared to steel and aluminum?
(b) If a 1100 kg (2430 lb) car traveling at 2.2 m/s
(5 mph) in a parking lot hits a wall, and comes to
a complete stop, can the rubber pad (2.0 m long,
5 mm thick, and 100 mm wide) absorb the energy
without exceeding the elastic limit?

Solution: Step 1. While remaining linear–
elastic, the maximum energy that a material can
store per unit volume is the resilience:

Thus, for a given volume, to maximize the
elastic energy stored, it is desirable to choose a

U W 1
2
---Eε2 AL( ) 1

2
---σ2

E
------ AL( )= = =

UD
1
2
---Eε2 1

2
---σ2

E
------ 1

2
---σε= = =

UR
1
2
---

Sy
2

E
-----=

UR
1
2
---

Sy
2

E
-----=

Figure 3.21. (a) Car with rubber pad 
on bumper. (b) Uniformly applied 
stress on pad. Copyright ©2008 
Dominic J. Dal Bello and licensors. 
All rights reserved.
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material that maximizes the resilience. Consider representative values for steel, aluminum,
and rubber, and assume each material remains linear–elastic up to the listed yield point:

For the same volume, rubber absorbs more elastic energy than steel or aluminum (without
yielding).

Step 2. The kinetic energy of the car is:

The total elastic energy that the rubber pad can absorb is:

The maximum elastic strain energy is greater than the energy of the car moving at 2.2 m/s.
The rubber strip can absorb the energy elastically; the bumper should theoretically suffer
no damage. Please do not try this on your own!

In this example, the ratio of the maximum energy density for steel to that of rubber is 25
(= 4.0/0.16). A volume of steel that is 25 times as great as rubber is required to absorb the
same energy without plastically deforming. A large piece of steel is reminiscent of the
heavy bumpers on classic automobiles.

Cyclic Loading
Engineering systems are often subjected

to cyclic loading. This is especially true in
automobiles and other machines that have
continuous rotary motion. Automobile parts
are commonly subjected to millions of load
cycles. In electronic components, cyclic
stresses are caused by fluctuating
temperatures.

Cyclic loading can cause a material to
degrade with time, a phenomenon known as
fatigue. Fatigue can cause materials to fail –
break into two – at stress levels well below
their uniaxial strength. In many steels, the
fatigue strength is less than half of the
ultimate strength of the material. 

Material Sy (MPa) E (GPa) UR (MN·m/m3)

 Steel 250 200 0.16
 Aluminum 240 70 0.41
 Rubber 20 0.05 4.0

KE
1
2
---mv2 1

2
--- 1100 kg( ) 2.2 m/s( )2 2662 N·m= = =

U UR Volume[ ] 4.0
 MN·m

m3
------------------⎝ ⎠

⎛ ⎞ 2.0 0.005 0.1 m3××[ ] 4000 N·m= = =

Figure 3.22. Typical stress–time graph 
for cyclic loading.
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To understand fatigue, a few definitions must be given to describe the nature of cyclic
loading. A sample cyclic loading history is shown in Figure 3.22. The maximum stress and
minimum stress are σmax and σmin, respectively. The mean stress is:

[Eq. 3.29]

and the stress amplitude is:

[Eq. 3.30]

The ratio of the minimum to maximum stresses is the R-ratio:

[Eq. 3.31]

S–N Curves

The standard baseline fatigue test is
shown in Figure 3.23. The mean stress is
zero, σm = 0, the amplitude is σa = σmax ,
and the R-ratio is R = –1.0. A specimen is
fatigued at a specific stress amplitude σa
until it breaks into two parts. The number of
cycles to failure is Nf , also known as the
fatigue life. The test is repeated for various
stress amplitudes σa. 

When the stress amplitude is plotted
against the number of cycles to failure on a
log–log set of axes (or on a semi-log set of
axes), the graph is known as the S–N curve
(Figure 3.24).

The fatigue strength is the stress
amplitude σa = σmax corresponding to a
specified number of cycles to failure. 

When the data are plotted, the
relationship between stress amplitude σa and
cycles to failure Nf can be expressed in the
following form:

[Eq. 3.32]

where  and b depend on the material, and
are determined from a best-fit line of the
material’s S–N curve since:

σm

σmax σmin+

2
------------------------------=

σa

σmax σmin–

2
------------------------------=

R
σmin

σmax
------------=

σa Sf′ Nf( )b=

Sf′

Figure 3.23. Stress–time graph for 
standard fatigue test: σa = σmax = |σmin|, 
σm = 0, R = –1.0.

Figure 3.24. S–N curve. The curve is 
plotted on a set of log–log axes.
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[Eq. 3.33]

Quantity  corresponds to the curve fit’s
intercept at Nf = 1 cycle, and b is the slope of
the curve in the log–log axes. Values for
structural aluminum and steel are given in
Table 3.4.

A very useful reference and set of tools
for fatigue analysis is Dr. Darrell F. Socie’s
web site, www.fatiguecalculator.com (accessed
May 2008).

Example 3.10  Fatigue Strength of Structural Aluminum and Steel

Given: A tensile bar is subjected to cyclic loading, with zero mean stress (Figure 3.23).

Required: Determine the fatigue strength, σa = σmax , (a) for an aluminum bar (Al 6061-
T6) at 107 cycles and (b) for a steel bar (A36) at 106 cycles.

Solution: Step 1. For aluminum, the fatigue strength corresponds to 107 cycles. The
fatigue variables are given in Table 3.4:  and b = –0.082. Therefore:

Answer: 

For aluminum 6061-T6, Sy = 240 MPa and Su = 314 MPa. Here, the fatigue strength σa is
56% of the yield strength Sy  and 43% of the ultimate strength Su.

Step 2. For steel, the fatigue strength corresponds to 106 cycles, therefore:

Answer: 

For A36 steel, Sy = 250 MPa and Su = 540 MPa. The fatigue strength σa is 90% of Sy and
42% of Su. 

The values of fatigue strength just calculated for the aluminum (with Nf = 107) and steel
(with Nf = 106) are also known as their fatigue limit SFL , as discussed below. The fatigue
limit for many steels is typically on the order of 35 - 50% of the ultimate strength.

σa( )log Sf′( )log b Nf( )log+=

Sf′

Sf′ 505 MPa=

σa al, Sf′ Nf( )b 505 MPa( ) 107( ) 0.082–= =

σa al, 134 MPa=

σa st, 1035 MPa( ) 106( ) 0.11–=

σa st, 226 MPa=

Table 3.4.  Fatigue properties for 
structural aluminum and steel.

Property Al 6061-T6 Steel A36

240 MPa 250 MPa

314 MPa 540 MPa

505 MPa 1035 MPa

–0.082 –0.11

70 GPa 200 GPa

Sy

Su

Sf′

b

E

Source: www.fatiguecalculator.com/ 
Accessed May 2008.
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Fatigue Limit

The S–N curve for most steels does not
decrease to zero (Figure 3.25). Below a
certain value of σa , steel has essentially an
infinite fatigue life. The stress amplitude
below which fatigue failure does not occur is
the fatigue limit SFL , also known as the
endurance limit.

For steels, the fatigue limit typically
corresponds to a fatigue life of about 106

cycles. The S–N curve exhibits no further
reduction and becomes horizontal
(Figure 3.25).

Aluminum does not exhibit such limiting
behavior. No matter how small the stress
amplitude σa , aluminum will eventually fail
by fatigue. Accordingly, when designing
with aluminum, the fatigue limit SFL is
generally taken to be the stress amplitude for
Nf = 107 cycles. 

The fatigue limits SFL for structural steel
(Nf = 106) and aluminum (Nf = 107) were
(conveniently) calculated in Example 3.10.

Effect of Mean Stress on Fatigue
Strength

In general, cyclic stresses are applied
with a non-zero mean stress σm
(Figure 3.26). When this is the case, the
fatigue strength for a given number of cycles
to failure Nf is determined using the
Goodman Diagram (Figure 3.27). For a
specified number of cycles to failure Nf , the
fatigue strength is given by:

[Eq. 3.34]

which defines a line on the Goodman
diagram. All points on a line have the same
fatigue life. The ultimate strength of the
material Su is plotted on the abscissa, and the
fatigue limit SFL (for a specified Nf  cycles to

σa

SFL
---------

σm

Su
-------+ 1=

Figure 3.27. Goodman Diagram.

Figure 3.26. Typical stress–time graph.

Figure 3.25. S–N curves for steel (solid) 
and aluminum (dashed). Steel has a 
certain stress level below which no 
fatigue failure occurs. This is the fatigue 
limit SFL. Aluminum eventually fails by 
fatigue no matter how small the stress 
amplitude.
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failure with no mean stress) is plotted on the ordinate, and a line drawn between them. The
greater the specified cycles to failure Nf , the lower the value of SFL (Equation 3.32).

The new fatigue strength σa – the amplitude of the cyclic loading with mean stress σm
for the specified cycles to failure Nf – is then:

[Eq. 3.35]

When σm = Su , the materials breaks into two upon first loading; there can be no alternative
stress σa (σa = 0). The effect of the non-zero mean stress is to reduce the amplitude of the
cyclic stress, as shown in the following example. If the mean stress is zero, then the stress
amplitude is the fatigue limit SFL for the specified number of cycles to failure.

Example 3.11  Fatigue Strength With Non-Zero Mean Stress

Given: A tensile bar is subjected to cyclic loading with a mean stress of σm = 100 MPa.

Required: With the mean stress applied, determine the fatigue strength (a) for an Al 6061-
T6 bar at 107 cycles and (b) for an A36 steel bar at 106 cycles.

Solution: For the aluminum bar, the fatigue limit (fatigue strength) corresponding to 107

cycles with σm = 0 is SFL = 134 MPa (Example 3.10). The ultimate strength is
Su = 314 MPa (Table 3.4). So, the fatigue strength with σm = 100 MPa is:

Answer: 

Due to the mean stress of 100 MPa, the fatigue strength of aluminum – the amplitude of
the cyclic stress for failure at 107 cycles – is reduced by 32%, from 134 to 91 MPa.

For the steel bar, the fatigue limit (fatigue strength) corresponding to 106 cycles with
σm = 0 is SFL = 226 MPa (Example 3.10). The ultimate strength is Su = 540 MPa, so:

Answer: 

Due to the mean stress of 100 MPa, the fatigue strength of steel – the amplitude of the
cyclic stress for failure at 106 cycles – is reduced by 19%, from 226 to 184 MPa.

The results of Examples 3.10 and 3.11 illustrate that aluminum is more susceptible to
fatigue than is steel.

σa SFL 1
σm

Su
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

σa al, SFL 1
σm

Su
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

134 MPa( ) 1 100
314
---------–⎝ ⎠

⎛ ⎞= =

σa Al, 91 MPa=

σa st, SFL 1
σm

Su
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

226 MPa( ) 1 100
540
---------–⎝ ⎠

⎛ ⎞= =

σa st, 184 MPa=
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3.2  The Torsion Test – Shear Properties

Thin-walled circular shaft AB, of average radius R,
thickness t and length L, is shown in Figure 3.28. A shaft
is considered thin-walled if t << R, e.g., . For the
thin-walled shaft, the inner, outer, and average radii are
taken to be equal and the material response is constant
across the thickness.

Consider the left end (section A) of the shaft to be
fixed. When torque T is applied to the shaft, the right end
(section B) rotates with respect to the left-end by angle θ.
point B moves to point B'. The relative rotation between
sections A and B is the angle of twist θ of the shaft.

Experiments show that torque increases linearly with θ for small (elastic) rotations.
The shaft behaves as a torsional spring:

[Eq. 3.36]

where KT is the torsional spring stiffness (Figure 3.29). 

The results of the torsion test are used to determine the shear properties of a material.
With the shear properties known, the torsional strength and stiffness of a thin-walled
circular shaft of any R, t, and L can be determined. The torque-angle of twist response is
investigated using shear strain and shear stress.

Shear Strain
The shear strain γ (“gamma”, Figure 3.28b) is the ratio of the displacement

(movement) of point B to the shaft length L, with section A taken as fixed. The distance
point B moves is:

t 0.1R≤

T KTθ=

Figure 3.28. (a) Thin-walled circular shaft of radius R, thickness t (t << R), length L. 
(b) Shaft under torque T. With the left-end fixed, line AB rotates by angle γ  to AB' ; 
cross-section B displaces through angle θ, the angle of twist.

Figure 3.29. Torque-Angle 
of Twist response for small 
angles.



www.manaraa.com

3.2 The Torsion Test – Shear Properties 69

[Eq. 3.37]

Hence the relationship between the shear
strain γ and the angle of twist θ is

[Eq. 3.38]

Displacement BB' is perpendicular to
the axis of the shaft, length L. Since section
A is fixed, BB' is also the relative
displacement between the two ends. Recall
that the analogous definition for the normal
(axial) strain is the relative displacement of
the two ends, parallel to the axis of the
component, over length L: .

Both γ and θ are measured in radians.

Now consider a square material element
on the surface of the shaft originally bound
by two dashed axial lines and two solid
circumferential lines (Figure 3.30). The
torque causes the dashed lines to deform to
the position of the solid angled lines. The
square is transformed into a rhombus.

The shear strain γ is the change in right
angle of the square element as it deforms
into a rhombus, measured in radians. In
Figure 3.31, the rhombus has been rotated so
that one side is aligned with the horizontal x-
axis; the top of the rhombus is shifted to the
right by distance w (exaggerated). Like
normal strain ε, the shear strain γ is generally
small (~0.001). Thus, sin γ ~ tan γ ~ γ, and
the change in right angle – the shear strain – is:

[Eq. 3.39]

In axial members, the Poisson effect causes a change in volume. There is no change in
volume due to shear. To model and illustrate this, consider a square drawn on the side of a
phone book (Figure 3.32). Displacing the cover parallel to the pages (applying a shear
force) turns the square into a rhombus. Like planes of atoms, each page is slightly shifted
to the right with respect to the one below it, but its height and width do not change. Hence,
material volume is unchanged by shear.

BB′ Rθ γL= =

γ BB′
L

--------- Rθ
L

-------= =

ε Δ L⁄=

γ w
h
----=

Figure 3.30. A square element on the 
surface of a shaft in torsion is deformed 
into a rhombus.

Figure 3.31. The square has 
been deformed into a rhombus.

Figure 3.32. The square on the side of a 
telephone book becomes a rhombus 
when the top cover is displaced.
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Example 3.12  Shear Strain

Given: A rectangular piece of JelloTM, h = 100 mm
tall by b = 200 mm wide, sits on a plate with a piece
of aluminum foil on top (Figure 3.33). The foil is
moved to the right by w = 4 mm, pulling the top of
the JelloTM along with it.

Required: Assume the small angle approximation
holds. Determine the shear strain in the JelloTM.

Solution: The shear strain is the reduction in
right angle (in radians): 

Answer: 

Shear Stress
Consider again the thin-walled shaft of

thickness t and average radius R (t << R),
subjected to torque T (Figure 3.34). Take a cut
perpendicular to its axis, exposing an interior
cross-section. The torque carried by the cross-
section is T. The torque is not carried at a single
point, but is supported uniformly over cross-
sectional area A at distance R from the axis. The
torque is thus T = RF, where F is an equivalent
force distributed evenly around the cross-section,
and continually changing direction. A good
approximation for the cross-sectional area of a
thin-walled shaft is A = 2πRt.

The shear stress τ (“tau”) in the thin-walled
shaft is then:

[Eq. 3.40]

Shear stress has units of force per unit area (ksi,
MPa, etc. Unlike the normal stress, the shear
stress acts across, or parallel to, the interior
material surface.

γ w
h
---- 4 mm

100 mm
--------------------= =

γ 0.04 4%= =

τ F
A
--- T R⁄

A
----------- T

R 2πRt( )
--------------------- T

2πR2t
---------------= = = =

Figure 3.34. (a) Thin-walled circular 
shaft of average radius R and 
thickness t, subjected to torque T. 
(b) Shear stress τ is carried on the 
cross-section of the shaft.

Figure 3.33. The top of the Jello is 
shifted to the right.
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Note that the shear stress due to a torque constantly changes direction as it moves
around the cross-sectional area (Figure 3.34b). Also, the thin-wall assumption means that
the thickness is so small that the shear stress can be considered constant through the wall
thickness.

Example 3.13  Thin-walled Pipe Tightened with a Wrench

Given: A pipe of diameter D = 1.0 in. and
thickness t = 0.10 in. is twisted by a wrench with
torque T = Pd = 200 lb-in., as shown in
Figure 3.35a.

Required: Use the thin-wall formula to estimate
the shear stress in the thin-walled pipe due only
to torque T.

Solution: The shear stress for a thin-walled pipe is:

Answer: 

Complementary Shear Stress
The shear stress on a cross-section of the thin-walled circular shaft in torsion is:

[Eq. 3.41]

However, the shear stress on the cross-section is not the only shear stress that is active.
Consider a 3D element with sides dx, dy, and t removed from the shaft, showing only the
shear stress on the exposed cross-section (Figure 3.36a).

The element is drawn in 2D in Figure 3.36b, showing only the shear stresses acting on
cross-sectional planes AB and CD. Equilibrium of forces requires that these stresses be
equal but opposite.

The horizontal stresses cause equal but opposite forces τ(t dx) on surfaces AB and CD.
These forces produce a clockwise couple:

[Eq. 3.42]

τ T

2πR2t
--------------- 2T

πD2t
------------= =

2 200 lb-in.( )
π 1 in.( )2 0.1 in.( )[ ]
-----------------------------------------------=

τ 1270 psi 1.27 ksi= =

τ T

2πR2t
---------------=

M τ tdx( )[ ] dy( )=

Figure 3.35. (a) Wrench tightening a 
thin-walled pipe. (b) FBD of pipe.
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The only means of maintaining
rotational equilibrium is to apply a counter-
acting couple in the form of shear forces on
sides AD and BC, FAD and FBC , which are
dx apart (Figure 3.36c). Forces FAD and FBC
must be equal and opposite to maintain
vertical equilibrium. To balance the couple
M due to the horizontal stresses:

[Eq. 3.43]

The shear stresses acting on AD and BC,
both of area t(dy), are then (Figure 3.36d ):

[Eq. 3.44]

The shear stresses on sides AD and BC are
therefore equal and perpendicular to those
on AB and CD. 

At a point in the material, the shear
stresses at right angles to the applied shear
stress are referred to as complementary
shear stresses. Whenever a shear stress
acting on a plane is identified at a point,
there is automatically a complementary
shear stress on a plane at right angles to the
first plane. At any point, shear stresses on
perpendicular planes are equal. 

Note the directions of the direct shear
stresses acting on the cross-section (sides AB
and CD in Figure 3.36) and the directions of
the balancing complementary shear stresses
(on sides AD and BC). The shear stresses on
a material element always act to cause
counteracting couples. The arrowheads –
and tails – of the shear stresses must meet at
the corners of the element.

FAD FBC
M
dx
------ τ t dy( )[ ]= = =

τAD τBC

FAD

t dy( )[ ]
----------------- τ= = =

Figure 3.36. (a) The 3D element taken 
out of a thin-walled shaft. (b) The 2D 
element, t thick into paper, showing 
stresses acting on surfaces AB and CD. 
(c) The 2D element with forces on each 
side to enforce equilibrium. (d) The 
element showing equal complementary 
shear stresses required to keep element 
from rotating.
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Example 3.14  Complementary Shear Stress – A Welded Pipe

Given: A thin-walled pipe (radius R, thickness
t << R) is formed by rolling a plate into a
cylinder and welding the edges together to form
a continuous shaft. The shaft is subjected to a
torque T (Figure 3.37). 

Required: Determine the shear stress on the
weld, τW = τCD (along line CD).

Solution: Step 1. The shear stress on the cross-
section is:

This is the shear stress on AD and BC of element
ABCD, due directly to the applied torque T.

Step 2. Complementary shear-stress means that
the weld is also subjected to shear-stress τAD, so:

Answer: 

Elastic Shear Modulus
The relationship between normal

stress and strain is given by Hooke’s
Law, σ = Eε. A similar relationship
exists between shear stress τ and
shear strain γ (Figure 3.38):

[Eq. 3.45]

where G is the shear modulus.
Typical values for the shear modulus
are found in Table 3.5. 

The values of G are not always
readily accessible. A good
approximation for the value of G for
homogeneous (same at every point)
and isotropic (same in every
direction) materials is:

τAD
T

2πR2t
---------------=

τW τCD τ=
AD

T

2πR2t
---------------= =

τ Gγ=

Figure 3.37. (a) A thin-walled 
circular shaft manufactured from a 
plate rolled into a cylinder and 
welded. (b) Shear stress acting on 
element ABCD. Side CD is on the 
weld.

Figure 3.38. (a) Elastic response of axial 
member and deformation of material element. 
(b) Elastic response of torsional member and 
deformation of material element. 
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[Eq. 3.46]

E, G, and ν are the elastic properties
of a material.

Since ν ~ 1/3 for many metals,
then G can be approximated:

[Eq. 3.47]

For aluminum, E = 70 GPa and
ν = 0.33; the “3/8 rule” predicts
G = 26 GPa, as given in Table 3.5.
For steel, E = 207 GPa, the rule
predicts G = 78 GPa.

Shear Stress–Strain Curves
The shear stress–strain response

observed in strain-controlled tests on
metal shafts is similar to the behavior
observed in the tension tests
described in Section 3.1. A typical
shear stress–strain curve is shown in
Figure 3.39. 

Initially, the behavior is linear–
elastic with τ = Gγ. However, when
the shear stress exceeds a critical
value, the linear relationship no
longer applies. Additional small
increments in plastic strain result in
smaller additional increments of
stress. 

To define the shear yield
strength, the procedure described in
Section 3.1 is again used. A line is
constructed parallel to the elastic
line, displaced on the strain-axis by
0.2%. Where the line intersects the
experimental stress–strain curve is
the shear yield strength τy . 

G E
2 1 ν+( )
--------------------=

G
3
8
---E≈

Table 3.5.  Representative values of Young’s 
Modulus E, and Shear Modulus G .

Materials E, GPa (Msi)  G, GPa (Msi)

Steels 207 (30) 80 (12)

Titanium alloys 115 (17) 43 (6.3)

Aluminum alloys 70 (10) 26 (3.8)

Nickel alloys 215 (31) 83 (12)

Cast iron 180 (26) 70 (10)

Douglas fir 12.4 (1.8)
parallel to grain

Depends on 
grain direction

Glass 70 (10) 29 (4)

Rubbers 0.01–0.1
(0.0015–0.015)

0.003–0.03
(0.0005–0.005)

Polymers
0.1–5

(0.015–0.75)
0.03–1.7

(0.056–0.2)

Engineering 
ceramics

300–450
(44–65)

125–190
(18–28)

Carbon fiber/
polymer matrix
composite

10–150
requires 

composite 
calculation

7–40
requires 

composite 
calculation

Figure 3.39. Shear stress–strain curve of a 
ductile material. The failure strain γf can be very 
large; solid ductile shafts tested in torsion can 
usually be completely twisted around several 
times before failure.
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From experiments on ductile metals, it is observed that τy is often related to the axial
yield strength Sy as follows:

[Eq. 3.48]

This means that τy for many metals can be deduced from Sy , a very valuable result. For
example, the tabulated values of yield strength for aluminum 6061-T6 are: Sy = 35 ksi and
τy = 20 ksi (Aluminum Association Aluminum Design Manual, 2005). Using Equation
3.48 gives a value in agreement with the tabulated value:

For advanced composites, non-isotropic materials and brittle materials, this relation is not
generally valid. 

Torsional Stiffness of a Thin-Walled Circular Shaft
With G known, the torsional

stiffness of any straight, thin-walled
circular shaft of length L, radius R,
and wall thickness t, can be
calculated. The thin-walled shaft of
Figure 3.40 is subjected to torque T.
Substituting the expressions for
shear stress τ (Equation 3.40) and
shear strain γ (Equation 3.38) into
Equation 3.45 results in:

[Eq. 3.49]

Solving for torque T:

[Eq. 3.50]

The torsional stiffness KT (Figure 3.41a, b) of the thin-walled shaft is:

[Eq. 3.51]

Note the similarity of the form of the torsional stiffness to the form of the axial stiffness of
a bar, K = EA/L (Equation 3.6). Both are proportional to a function of cross-sectional
geometry and to material stiffness, and inversely proportional to length.

If the applied torque is T, the angle of twist θ over length L can be calculated:

τy

Sy

3
-------

Sy

1.73
----------= =

τy

Sy

3
------- 35 ksi

3
-------------- 20 ksi= = =

τ Gγ= T

2πR2t
--------------- G

Rθ
L

-------=⇒

T
2πR3tG

L
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

θ=

KT
T
θ
--- 2πR3tG

L
--------------------= =

Figure 3.40. The thin-walled circular shaft.
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[Eq. 3.52]

The torsional flexibility FT of the shaft is:

[Eq. 3.53]

Elastic Strain Energy of a Thin-Walled Circular Shaft
The thin-walled circular shaft is a torsional

spring of stiffness KT (Figure 3.41). The work
done by torque T rotating through differential
angle dθ is dW = Tdθ. The total work to twist the
shaft by angle θ during elastic deformation is the
area under the linear–elastic curve of
Figure 3.41b:

[Eq. 3.54]

The work done on the shaft WT is stored as
elastic shear strain energy U. Hence:

[Eq. 3.55]

The elastic energy per unit volume – the elastic
shear strain energy density UD,τ – is:

[Eq. 3.56]

The maximum shear stress to avoid yielding is
τy . The maximum elastic shear strain energy
density is then:

[Eq. 3.57]

The approximate equality in Equation 3.57 is
valid when ; i.e.,
for homogeneous, isotropic ductile metals.

θ L

2πR3tG
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

T=

FT
θ
T
--- L

2πR3tG
--------------------= =

WT T θd
 0

 θ

∫ KTθ( ) θd
 0

 θ

∫ 1
2
---KTθ2= = =

U WT
1
2
---KTθ2 1

2
--- 2πR3tG

L
--------------------⎝ ⎠

⎛ ⎞ γL
R
------⎝ ⎠

⎛ ⎞ 2
= = =

1
2
--- 2πRtL( )γ 2 G

γ 2G
2

--------- Volume[ ]= =

UD τ,
1
2
---γ 2G 1

2
---τ2

G
-----= =

UR τ,
1
2
---

τy
2

G
----- 4

9
---

Sy
2

E
-----≈=

τy Sy 3⁄  and G 3E 8⁄= =

Figure 3.41. (a) Torsional spring and 
thin-walled circular shaft, both under 
torque T. (b) Energy stored in a 
torsional spring or a thin-walled 
shaft. (c) Elastic shear strain energy 
density stored in a thin-walled shaft.



www.manaraa.com

3.2 The Torsion Test – Shear Properties 77

Example 3.15  Thin-Walled Circular Shaft in Torsion

Given: A thin-walled circular shaft has
average diameter D = 2R = 150 mm,
thickness t = 10.0 mm, and length
L = 2.0 m (Figure 3.42). The material is
a high-strength steel with shear modulus
G = 82 GPa and tensile yield strength
Sy = 600 MPa. The applied torque is
T = 42.0 kN·m.

Required: Determine (a) the shear stress in the shaft, (b) the angle of twist between the
ends of the shaft, (c) the torsional stiffness, (d) the factor of safety against yielding, and (e)
the elastic shear strain energy density. 

Solution: Step 1. The shear stress in a thin-walled shaft is:

Answer: 

Step 2. The angle of twist θ is given by Equation 3.52:

Answer: 

Step 3. The torsional stiffness KT is given by Equation 3.51:

Answer: 

The stiffness can also be calculated from the torque and the angle of twist:

Step 4. The factor of safety is the torque to cause yielding divided by the maximum
working load. The magnitude of the torque when the material begins to yield, assuming

, is:

τ T

2πR2t
--------------- 42.0 10

3×  N
 
·m

2π 0.075 m( )2 0.010 m( )
----------------------------------------------------------- 118.8 10

6×  N/m2= = =

τ 119 MPa=

θ L

2πR3tG
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

T τL
GR
-------- 118.8 10

6×  Pa( ) 2.0 m( )

82 10
9×  Pa( ) 0.075 m( )

------------------------------------------------------------ 0.0386 rad= = = =

θ 0.0386 radians 2.21°==

KT
2πR3tG

L
-------------------- 2π 0.075 m( )3 0.010 m( ) 82 10

9×  psi( )
2.0 m

----------------------------------------------------------------------------------------------= =

KT 1.09 
MN 

·m
rad

---------------- 19.0 
kN

 
·m

degree
----------------= =

KT
T
θ
--- 42.0 kN·m

0.0386 rad
--------------------------- 1.09 

MN·m
rad

---------------= = =

τy Sy 3⁄=

Ty 2πR2t( )τy 2πR2t( ) Sy 3⁄( )= =

2π 0.075 m( )2 0.010 m( )[ ] 600 MPa 3⁄( ) 122 kN·m= =

Figure 3.42. Thin-walled circular shaft.
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The factor of safety is:

Answer: 

Alternatively, applying the factor of safety to the stresses gives:

Step 5. The shear strain energy density is:

Answer: 

3.3  General Stress and Strain

An axial bar has uniform axial stress and strain; the thin-walled circular shaft also has
uniform shear stress and shear strain. Uniform stress (strain) means that the stress (strain)
is the same at every point in a body. For the axial and torsion members studied in this
chapter, the stress state at any point can be visualized on 2D (square) elements since the
stresses act in a single plane.

In general, however, stresses and strains vary from point-to-point in a body. Referring
to Figure 3.43, it is evident that every point in the arbitrary body is affected differently;
each point experiences a different stress, and thus a different strain. Stresses are, in
general, 3D, but in many cases can be reduced to 2D.

A material point may be visualized as a
very small cube or element. The stresses at
that point are the average stresses acting on
that cube, as shown in Figure 3.44. A cube is
a natural stress element as it provides a built-
in coordinate system (cartesian). Any object
can be thought of as being made of many
infinitesimally small cubes.

Each face of the stress element has three
stresses acting on it: a normal stress σ,
which is tensile (positive) or compressive
(negative) and acts perpendicular to the face;
and two shear stresses τ, which act parallel

FS
Ty

T
----- 122

42.0
----------= =

FS 2.9=

FS
τy

τ
----- 600 3⁄

119
-------------------- 2.9= = =

UD τ,
1
2
--- 118.8 10

6×  Pa( )2

82 10
9×  Pa( )

------------------------------------------- 86.06 10
3×  

N·m
m3
----------= =

UD τ, 86.1 
 kN·m

m3
---------------=

Figure 3.43. General body under 
various loads.
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to the face in the other two directions. All of the
stresses acting at a point are shown on the cube in
Figure 3.44; they are drawn in their positive
senses as defined below.

The values of the stresses specify a state of
stress. Equilibrium of forces and moments on the
cube can be used to show that there are six
unique stresses: 

σx , σy , σz , τxy , τyz , τzx

Note that τxy = τyx , τyz = τzy, and τzx = τxz , since
at any point, shear stresses on perpendicular
planes are equal (complementary shear stress).

Stress Subscripts
The subscripts on the stress symbols

represent: 

1. the face on which the stress acts, and 
2. the direction in which the stress acts. 

Thus, τxy is a shear stress (τ) on the x-face acting in the y-direction. Likewise, τyz is a shear
stress on the y-face in the z-direction.

While two subscripts may be used for normal stresses (e.g., σxx ), this is somewhat
redundant and the normal stresses are simply given here with one subscript, e.g., σx is the
normal stress on the x-face in the x-direction. 

Positive Sense/Sign Convention
Figure 3.44 shows all of the 3D stresses, each drawn in its positive sense.

A positive stress physically acts on a positive face in a positive direction, or on a
negative face in a negative direction. Two such stresses are in equilibrium with each other.
For example, the left-side of the element in Figure 3.44 is a negative x-face, since an
outward pointing normal vector to that face points in the negative x-direction. The normal
stress on that face is drawn in the negative x-direction, in agreement with the definition of
positive sense. If the value of σx is positive, it acts on both x-faces in the directions drawn;
σx is tensile. If τzy is positive, it acts in the direction drawn (upward on the +z-face).

A negative stress physically acts on a positive face in a negative direction, or on a
negative face in a positive direction. If the value of any stress is negative, it physically acts
opposite to the direction drawn in Figure 3.44. A negative normal stress is a compressive
stress. A negative τzy physically acts opposite drawn (downward on the +z-face).

Internal forces, torques, and moments are defined positive/negative in the same
manner as the stresses. For example, the force in an axial member is positive (tensile), if it
acts on a positive face in a positive direction, or on a negative face in a negative direction.

Figure 3.44. Cubic element showing 
all the stresses in their positive 
directions.
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General Stress-Strain Relationship
For a homogeneous (the same at every point) and isotropic (the same in every

direction) material, as are most materials considered in this text (e.g., metals, ceramics,
etc.), the strains caused by the stresses are defined by Hooke’s Law. 

The normal strains are given by the general 3D Hooke’s Law:

[Eq. 3.58]

The normal strain in any direction is caused by the stress in that direction – the direct
stress – and by the normal stresses in the two perpendicular directions due to the Poisson
effect.

The shear strains are:

[Eq. 3.59]

The stress–strain relationship can be written in matrix form as follows:

[Eq. 3.60]

The square matrix is the flexibility matrix F of the material. The inverse of the flexibility
matrix is the stiffness matrix K:

[Eq. 3.61]

Matrix methods are useful in efficiently dealing with general states of stress and strain.
Advanced topics in engineering mechanics, such as Structural Analysis, Continuum
Mechanics, the Theory of Elasticity and Fluid Mechanics, all rely on matrix methods.
Matrix methods are also useful in coordinate-system transformations. Stiffness and
flexibility matrices (Chapter 11), as well as coordinate transformations (introduced briefly
in Chapter 8), are used to analyze the response of composite materials in Chapter 15.
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Special Stress and Strain States

Plane Stress

In many cases, loads applied to a system act in a
single plane. When the stresses on an element act
only in one plane (e.g., the x–y plane in
Figure 3.45a), the state of stress is called plane
stress. Plane stress generally exists when the loaded
element is relatively thin in the out-of-plane
direction. The plane stress element is usually drawn
in 2D (e.g., in the x–y plane).

Taking the z-axis as the out-of-plane direction,
then the non-zero stresses are: σx , σy, and τxy . The
out-of-plane stresses (with z in their subscripts) are
all zero: σz = τyz = τzx = 0. The non-zero strains are:

[Eq. 3.62]

Note that there is a non-zero normal strain in the z-
direction εz due to the Poisson effect. However, the
shear strains with components in the z-direction are
zero (γyz = γzx = 0) since there are no out-of-plane
shear stresses.

Plane Strain

For plane strain problems, no deformation is
allowed in the out-of-plane direction. Plane strain
generally occurs when the out-of-plane thickness is
comparable to, or larger than, the in-plane
dimensions (Figure 3.47), or where a part is
constrained between rigid objects (objects made of a
much stiffer material).

With the z-axis as the out-of-plane direction:
εz = γyz = γzx = 0. In order for there to be no out-of-plane
normal strain:

εx
1
E
--- σx νσy–( )=

εy
1
E
--- σy νσx–( )=

εz
ν–

E
------ σx σy+( )=

γxy

τxy

G
-------=

Figure 3.46. Plane strain 
element. σz = ν (σx + σy).

Figure 3.47. The z-direction 
of a dam has a large dimension 
relative to the in-plane 
dimensions. It is considered 
a plane strain case.

Figure 3.45. Plane stress 
element.
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[Eq. 3.63]

an out-of-plane normal stress must be applied (Figure 3.46):

[Eq. 3.64]

When the sum of σx and σy is positive, the Poisson effect would cause the z-thickness to
decrease. A positive stress σz is therefore required so that the z-thickness does not change.

The non-zero strains are:

[Eq. 3.65]

Other Stress States

The following are special stress states of
interest (Figure 3.48):

• Uniaxial stress: Normal stress on an 
element that acts in only one 
direction; no shear stress acts.

• Biaxial stress: Normal stresses in two 
directions; no shear stress.

• Triaxial stress: Normal stresses in all 
three directions; no shear stress.

• Hydrostatic stress: Equal normal 
stresses in all three directions; no 
shear stress.

• Pure shear: Only shear stresses act on 
an element (usually 2D).

εz
1
E
--- σz ν σx σy+( )–[ ] 0= =

σz ν σx σy+( )=

εx
1
E
--- σx ν σy σz+( )–[ ]=

1 ν+( )
E

----------------- σx 1 ν–( ) νσy–[ ]=

εy
1
E
--- σy ν σz σx+( )–[ ]=

1 ν+( )
E

----------------- σy 1 ν–( ) νσx–[ ]=

γxy

τxy

G
-------=

Figure 3.48. (a) Uniaxial stress. 
(b) Biaxial stress. (c) Triaxial stress.
(d) Pure shear.
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Chapter 4 Axial Members and Pressure Vessels

4.0  Introduction

The strength of suspension bridges is
provided by two main cables that extend
from the anchor at one end, over the two
central support towers, to the anchor at the
opposite end (Figure 4.1). The cables are
subjected to tensile loads. The roadway is
supported by vertical cables called
suspenders attached at one end to the main
cable and at the other to the roadway’s
support system. The suspenders are loaded
in tension. The towers, which hold up the
main cable, are primarily loaded in
compression. 

Trusses, such as those used in bridges,
space structures, and supermarket or
warehouse roof systems, are made of straight
members that are subjected to axial loads
(Figure 4.2).

In automobiles, the transmission of
power from engine to wheels is achieved
with rotating shafts coupled by gears.

Figure 4.1.  Main components of a suspension bridge. The main cables and suspenders 
are axial members in tension; the towers are primarily axial members in compression.

Figure 4.2.  Roof trusses spanning the 
distance between two walls. The trusses 
are separated by purlins. 

Figure 4.3.  Schematic of the assembly 
of torsion members to propel 
automobiles (top view).
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Referring to Figure 4.3, at least three shafts are
necessary to drive the rear wheels. The main
drive shaft transmits torque from the engine to
the differential gears. From the differential, two
half-shafts transmit torque to the wheels to drive
the vehicle forward.

The above examples illustrate that complex
technical challenges can be solved by joining
together components of simple shapes. A
particularly vivid example of this philosophy is
the Space Shuttle, which is a complex system
constructed from many simple components
(Figure 4.4).

The aims of this chapter are to determine:

1. the stresses, strains, and elongations of individual components,
2. the stiffness (force–deflection relationship) of an assembly of several axial 

components using compatibility and energy methods, and
3. the stresses in axial components due to thermal loading and basic stress 

concentrations.

The basic components studied in this chapter are axial members and pressure vessels.
Each of these components supports a single load (force or pressure) that results in only
normal stresses (axial or biaxial). Bolts and rivets, which join members together, are
discussed in Chapter 14.

Methods of Analysis
There are two general approaches to determine the response of an assembly of

components – the force method and the displacement method.

Force Method

The steps of the force method are as follows:

1. Apply the conditions of equilibrium to the applied loads, reactions, and internal 
forces to determine the stresses in each component; e.g., for a bar in tension: 
σ = P/A.

2. Calculate the strains from the stresses using Hooke’s Law; e.g., ε = σ /E.
3. Integrate the strain in each component to find its elongation; e.g., Δ = εL.
4. Relate the elongation of each component to the overall displacement or deflection 

of the assembly; the elongation of each member must be compatible with the 
elongations of the other members.

Displacement Method

The steps of the displacement method follow the reverse sequence:

Figure 4.4.  The Space Shuttle is a 
complex assembly of many basic 
components. Copyright ©2008 
Dominic J. Dal Bello and licensors. 
All rights reserved.
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1. Determine the elongation of each member in terms of the overall displacement of 
the assembly.

2. Determine the strain in each component in terms of its elongation; e.g., ε = Δ/L.
3. Calculate the stresses from the elastic law; e.g., σ = Eε.
4. Apply the conditions of equilibrium to determine the internal and external forces; 

e.g., P = σA.

For any given problem, either method can be used; which method to chose is a matter of
convenience.

Types of Systems
There are two types of systems: statically

determinate and statically indeterminate
systems.

Statically Determinate Systems
In statically determinate systems, all of the

reactions and internal forces can be calculated
using only the equations of equilibrium
(statics). The force method is then the primary
method to calculate the stresses, strains, and
displacements.

The lamp supported by the two wires in
Figure 4.5 is a statically determinate system
(recall Example 3.3). Equilibrium in the x- and
y-directions on the FBD of point B solves for the
forces in both wires.

Statically Indeterminate (Redundant) Systems

In statically indeterminate systems (redundant systems), the reactions and internal
forces cannot be calculated from statics alone. The rigid bar system in Figure 4.6 is an
example of such a system. 

Bar AB is rigid, while identical bars C and D are elastic. Force P is applied at point B
which displaces upward distance δ. The FBD of bar AB is given in Figure 4.6b. There are
two useful equilibrium equations: 

[Eq. 4.1]

but three unknowns: reaction RA and member forces RC and RD . There are more
unknowns than equilibrium equations; the system cannot be solved by statics alone. The
forces beyond those that are required for equilibrium are called redundant forces. This
problem is solved in detail in Example 4.9.

Fy∑ 0:  RA RC– RD– P+ 0= =

MA∑ 0:  R– C
L
3
---  ⎝ ⎠

⎛ ⎞ RD– 2L
3

------  ⎝ ⎠
⎛ ⎞ PL+ 0= =

Figure 4.5.  The forces in the wires 
supporting the lamp are found by 
applying equilibrium at point B.
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A statically indeterminate system may be
solved using the force method by considering the
redundant forces as temporarily known, and
solving the statics problem in terms of the known
and redundant forces. The necessary relationships
between the elongations (deflections) of various
members are then used to relate the redundant
forces to the known forces. This solution method for
statically indeterminate problems is demonstrated in
Examples 4.6–4.8.

Statically indeterminate systems are usually
best solved using the displacement method,
where the relationships between the elongations
of the members are found first. In Figure 4.6,
since AB is rigid, bar C must elongate by ΔC =  δ/3
and bar D by ΔD = 2δ/3. The displacements of
the individual components must be compatible
with the overall system. Compatibility requires
the system to continue to fit together under the
applied load. Since ΔD = 2ΔC , and bars C and D
are identical, then the force in bar D must be
twice that of bar C:

[Eq. 4.2]

This relationship provides the third equation
required to solve the three unknowns in
Equation 4.1.

Modern computational methods, such as the finite element method, are developed on
the basis of the displacement method and energy methods. While the force method is often
the primary solution method for statically determinate systems, the displacement method
can also be used.

The following two sections (Sections 4.1 and 4.2) illustrate the force method and the
displacement method with a series of examples analyzing axial members.

4.1  Axial Members – Force Method

Statically Determinate Systems
Examples 4.1–4.5 are statically determinate systems that are solved using the force

method. 

RD 2RC=

Figure 4.6.  (a) Rigid bar AB under 
load P. (b) FBD of AB. (c) AB pivots 
about point A. The displacements 
(exaggerated) of points C and D are 
proportional to tip displacement δ.
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Example 4.1  Uniform Bar in Tension

Given: Load P is applied at the ends of a bar of
constant cross-section A and length L
(Figure 4.7). The bar is made of an elastic
material with modulus E.

Required: Determine the stress σ and strain ε in
the bar, and its elongation Δ in terms of P, L, A, and E.

Solution: Following the steps of the force method:

Step 1. Equilibrium. The relationship between the applied force and the internal stress is:

P = σA 

Answer: 

Step 2. Elasticity (Stress–Strain relationship). From Hooke’s Law, the strain is:

ε = σ/E 

Answer: 

Step 3. Strain–Elongation. The elongation as a function of strain is:

Answer: 

The elongation Δ of a bar of constant cross-sectional area A and constant modulus E,
subjected to constant axial force P (positive in tension, negative in compression) along its
entire length L is: 

[Eq. 4.3]

The force method directly gives the flexibility F of the bar, where Δ = FP. Thus:

[Eq. 4.4]

The stiffness K of the bar is defined: P = KΔ. Thus:

[Eq. 4.5]

Equations 4.3–4.5 are valid when P, A, and E are all constant over the entire length of
the bar L, resulting in a uniform strain.

To determine the elongation when P, A, and/or E change over the length of the bar, the
bar must be broken up into shorter segments Li , where P, A, and E are all constant. The
total elongation is the sum of the elongations of each segment Δi :

σ P
A
---=

ε P
AE
-------=

Δ εL σL
E

-------= =

Δ PL
AE
-------=

Δ PL
AE
-------=

F L
AE
-------=

K EA
L

-------=

Figure 4.7.  An elastic bar under 
load P. 
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[Eq. 4.6]

where Pi , Ai , Ei , and Li are the force, area, modulus, and length of the ith segment.

Example 4.2  Rods Supporting Elevated Walkways

Given: A set of six stepped rods
supports two elevated walkways
overlooking a hotel atrium (Figure 4.8).
The upper segment of each rod, AB, has
area A1, length L1, and modulus E1. The
lower segment, BC, has properties A2,
L2, and E2. The load of the upper
walkway is supported at joint B, the
junction of the two bars. The upper
walkway applies a load to each rod of
WU at point B, and the lower walkway
applies a load to each rod of WL at point C
(Figure 4.8c). Each rod is assumed to
carry the same load.

Required: Determine (a) the internal
stresses in each segment of the rod AB
and BC and (b) the total elongation Δ of
stepped rod AC.

Solution: Step 1. Equilibrium of rod
ABC requires the reaction to equal the
applied loads (Figure 4.8d ):

The internal loads in the rods are found
by taking cuts between A and B, and
between B and C (Figures 4.8e, f ). The
internal loads in the upper and lower
segments of the stepped rod are:

The stresses in the segments are then: 

Δ Δi∑
PiLi

AiEi
----------∑= =

T WU WL+=

PAB T WU= WL+=

PBC WL=

Figure 4.8.  (a) Two elevated walkways 
overlooking a hotel atrium. (b) A sketch of 
the walkways to determine the reaction load 
T at the ceiling. The tributary area 
contributing to the load on the left-front rod is 
shaded on each walkway. (c) Forces and 
tributary areas of each rod. (d) FBD of each 
rod. The load of the upper walkway WU is 
applied at point B, and the load of the lower 
walkway WL is applied at point C. (e) FBDs 
to determine the internal forces in the upper 
and (f) lower segments of the rods.
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Answer: and

Step 2. Elasticity relates the stresses to the strains in each segment of the rod:

and

Step 3. Strain–elongation gives the elongation of each segment:

and  

Step 4. Elongation–displacement. The total elongation Δ is the sum of the elongations of
each segment:

Answer: 

Note that point B displaces (moves) downward by δB = ΔAB , and point C displaces
downward by δC = ΔAB + ΔBC .

Continuously Varying Stress in Axial Members
The tapered column in Figure 4.9

supports a compressive load F. While the
force through the column is constant, the
cross-sectional area is not. Hence, stress and
strain vary continuously over the length of
the member. 

Even though the cross-section may be
constant over the length of a rod or column,
stress can still vary continuously. This is
generally due to external friction-like forces
acting on the surface of the member, such as
a foundation pile in the ground, fibers in the
matrix of a composite, or a nail being
extracted from a piece of wood. Friction
forces transfer the internal axial force from
the rod to the surrounding material (e.g., dirt,
composite matrix, wood). The internal force
of a column also varies continuously when
its self-weight is taken into account.

Examples with varying stress follow.

σAB

PAB

A1
----------

WU WL+

A1
-----------------------= = σBC

PBC

A2
----------

WL

A2
-------= =

εAB

σAB

E1
----------

WU WL+

A1E1
-----------------------= = εBC

σBC

E2
----------

WL

A2E2
-------------= =

ΔAB εABLAB

WU WL+( )L1

A1E1
----------------------------------= = ΔBC

WLL2

A2E2
--------------=

δ Δ= AB ΔBC

WU WL+( )L1

A1E1
----------------------------------

WLL2

A2E2
--------------+=+

Figure 4.9.  (a) 3D view of tapered 
column. (b) Side-view of column 
showing stresses at levels C and D.
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Example 4.3  Tapered Column under Compressive Load 

Given: A tapered concrete column has a square
cross-section that varies from side a = 125 mm at
the top to side 2a = 250 mm at the bottom
(Figure 4.10a). The total length of the column is
L = 1.20 m, and it carries a compressive load of
F = 200 kN. The modulus of concrete is
E = 30 GPa. Neglect the weight of the concrete.

Since the force is constant, and area increases
from top (x = 0) to bottom (x = L), the axial
compressive stress varies; it is maximum at the
top and minimum at the bottom.

Required: Determine (a) the variation of stress in
the column σ (x), (b) the variation of strain ε(x),
and (c) the change in length of the column Δ.

Solution: Since the internal axial force is known
throughout, P(x) = –F, the force method is utilized.

Step 1. Equilibrium requires the force–stress relationship at any cross-section to be: 

To determine how the stress varies, A(x) must be determined. Since area is always positive,
σ (x) will always be negative (compressive).

At any section distance x from the top of the column, the length of the side of the cross-section is:

Side b(x) increases linearly from a (at x = 0) to 2a (at x = L = 1.2 m).

Hence, the stress at any cross-section is

Answer: 

Step 2. Stress–Strain. Young’s modulus for concrete is E = 30 GPa, so the strain at any
position x is:

Answer: 

P x( ) σ x( )A x( ) F–= =

b x( ) a a x
L
---+ a 1 x

L
--- +⎝ ⎠

⎛ ⎞ 0.125 1 x
1.2
------- +⎝ ⎠

⎛ ⎞  m= = =  

σ x( ) P x( )
A x( )
-----------  F–

b x( )[ ]2
------------------ 200– 10

3×
0.125 1 x 1.2⁄+( )[ ]2

------------------------------------------------- N

m2
-------= = =

σ x( ) 12.80–

1 x 1.2⁄+( )2
-------------------------------  MPa=

ε x( ) σ x( )
E

----------- =

ε x( )   426.7– 10
6–×

1 x 1.2⁄+( )2
----------------------------------=

Figure 4.10.  (a) The tapered 
column under constant load.
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Step 3. Strain–Elongation. To determine
the displacement u(x) of a cross-section
at location x, it is necessary to do some
calculus. A slice of the column, dx thick,
is considered, where dx is so small that
A(x) is essentially constant
(Figure 4.10b). Thus, over length dx, the
force, area, and modulus are all constant.
Slice dx is a very short axial member
under constant force P(x) = –F. 

Under compression, the top face of slice
dx displaces downward u(x) and the
bottom face displaces downward
u(x)+du (Figure 4.10c). The change in
length of the slice is:

Step 4. Elongation–Displacement.
Performing the indefinite integral of du
gives the downward displacement of the
cross-section at any x:

The constant of integration C is found by applying the condition that the displacement of
the base of the column – the cross-section at x = 1.2 m – is zero:

Hence, the displacement u(x) of any cross-section distance x from the top of the column is:

The change in length of the entire column corresponds to the downward displacement of
the top cross-section x = 0:    

A positive value of u means the cross-section moves downward (in the +x-direction),
which is the case for all sections. The column shortens, so the change in length is negative:

Answer: 

du ε x( )dx
P x( )

A x( )E x( )
----------------------- xd= =

ud∫ ε x( ) xd∫ u x( ) 426.7– 10
6–× 1

x
1.2
------- +⎝ ⎠

⎛ ⎞ 2–
xd∫ 0.512 10

3–×
1 x 1.2⁄+( )

------------------------------- C+= = = =

u x 1.2 m=( ) 0 0.512 10
6–×

2
-------------------------------= C C→+ 0.256 10

3–×–= =

u x( ) 0.256 10
3–× 2

1 x 1.2⁄+( )
---------------------------- 1–   m 0.256 2

1 x 1.2⁄+( )
---------------------------- 1–   mm= =

u 0( ) 0.256 mm=

Δ 0.256 mm–=

Figure 4.10.  (b) A slice of the column dx. 
Over length dx, the area is considered to be 
constant. (c) The top of the slice moves 
down by u(x), the bottom by u(x)+du ; the 
strain of the slice is then ε(x) = du/dx. 
(d) Qualitative plot of the downward 
displacement u(x); the column is fixed at the 
bottom (x = L), so u(L) = 0. The 
displacement of the top is the sum of the 
elongations of all infinitessimal slices dx.
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Example 4.4  Extraction of a Nail

Given: A nail is pulled out of a piece of
wood (Figure 4.11a). The nail diameter is
D = 2R, and its embedded length is L. Force
T applied to extract the nail is resisted by an
interfacial shear stress τ acting between the
nail surface and the wood; τ is assumed to be
constant (Figure 4.11b). The tip of the nail
provides no resistance to pull-out. The nail
begins to slide (pull-out) when the sliding
stress τs  is reached (τs is the stress to
overcome the nail–wood friction).

Required: Determine the change in length
of the embedded part of the nail just before it
starts to slide, in terms of τs , L, D, and E.

Solution: 

Step 1. Equilibrium. Applying equilibrium to
Figure 4.11b gives the relationship between
force T and interfacial shear stress τ :

AS is the surface area of the nail supporting
the shear stress.

The variation in axial force P(x) is found by
taking a FBD of the nail from 0 to x
(Figure 4.11c). The internal force at any
distance x from the bottom is therefore:

At x = L, P = T = τ[πDL], so P(x) can be
rewritten:

The corresponding stress variation is:

Step 2. Stress–Strain gives:

T τAS τ πDL( )= =

P x( ) τ πDx( )=

P x( ) T x
L
---=

σ x( ) P x( )
A

----------- 4

πD2
---------- T x

L
--- ⎝ ⎠

⎛ ⎞= =

Figure 4.11.  (a) Hammer extracting nail. 
(b) The shear stress resisting pull-out. 
(c) A slice of the nail with internal force 
P(x) and shear stress τ. (d) A slice of the 
nail dx. (e) Length dx is taken so small 
that the axial force is considered to be 
constant. (f) The bottom of the slice 
moves up by u(x), the top by u(x)+du; its 
strain is then ε (x) = du/dx.
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Step 3. Strain–Elongation. Consider a thin slice dx (Figure 4.11d), so thin that the change
of P(x) over dx can be neglected (Figure 4.11e). The change in length of slice dx is:

as shown in Figure 4.11f.

Step 4. Elongation–Displacement. Taking the indefinite integral of du gives the
displacement (movement) of the cross-section at x:

Constant C is found by noting that the displacement at the bottom (x = 0) is zero, since the
nail has yet to move. Hence C = 0. The expression for the displacement at any point x,
before the nail slides, is:

The change in length of the embedded part of the nail is equal to the displacement of the
cross-section at x = L: 

When the nail begins to slide, τ = τs , so Ts = τs(πDL), and the change of the embedded
length is:

Answer: 

Compatibility
Under load, the components of a system must deform and deflect in such a way that

the system remains intact. The axial members of a loaded truss must each elongate in such
a way that they continue to be pinned together. In other words, the members of an
assembly are geometrically constrained to deform together. This condition is called
compatibility. Applying the concept of compatibility is a key step when solving systems
where several components are joined together, whether the systems are statically
determinate or statically indeterminate. 

ε x( ) σ x( )
E

------------ 4Tx

EπD2L
------------------= =

du ε x( )dx P x( )
A x( )E x( )
-----------------------dx= =

u x( ) ε x( ) xd∫ 4Tx

EπD2L
------------------ xd∫ 2Tx2

EπD2L
------------------ C+= = =

u x( ) 2Tx2

EπD2L
------------------=

Δ u L( ) 2TL

EπD2
--------------= =

Δ u L( )=
2TsL

EπD2
--------------=

Δ
2τsL2

ED
--------------=
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Example 4.5  Hanging Lamp

Given: A lamp weighing W = 14.0 lb is
supported by two wires, both of length L = 5.0 ft
and diameter D = 0.10 in. (Figure 4.12). The
distance between the two cable mounts is
s = 8.0 ft so that point B is H = 3.0 ft below
horizontal line AC. The wires are made of steel
with modulus E = 30×106 psi and yield strength
Sy = 50 ksi. Assume the wire below point B is
rigid and of sufficient strength.

Required: Determine (a) the downward
displacement of the lamp δ (i.e., of point B) due
to its own weight, (b) the stiffness of the wire
assembly in the vertical direction, K = W/δ,
(c) the load W = Wy when yielding occurs in the
wires, and (d) the factor of safety against yielding
for the lamp load W = 14 lb.

Solution: Step 1. Vertical equilibrium of point B
and symmetry (Figure 4.12b) require that:

The stress in each wire is thus:

Step 2,3 (combined). The stress–strain and strain–displacement steps are combined into a
single force–elongation step. The elongation Δ of each wire is:

Step 4. Elongation–displacement. Compatibility requires that wires AB and BC elongate
such that their lower endpoints – joint B on each member – stay connected. Wire
elongations Δ must be compatible with the overall system displacement δ (Figure 4.12c).
By symmetry, point B moves downward δ and the wires move from their dotted position
ABC to the solid position AB'C (greatly exaggerated).

Figure 4.12d magnifies the displacement. If AB were to elongate by itself, point B would
move to D. If BC were to elongate by itself, point B would move to D'. Since AB and BC
must remain connected, endpoints D and D' adjust to position B'. This is done by AD
rotating clockwise and CD' rotating counterclockwise, each by δθ. Since Δ is very small
compared to length L, δθ is very small, and the changes in wire slopes are negligible; i.e.,

T TA TC
W

2 θsin
----------------- W

2 H L⁄( )
------------------- 14.0

2 3 5⁄( )
------------------ 11.67 lb= = = = = =

σ T
A
--- 4T

πD2
----------

4 11.67 lb( )
π 0.100 in.( )2
-------------------------------- 1.486=  ksi= = =

Δ TL
AE
------- σL

E
-------

1486 psi( ) 60 in.( )

30 10
6×  psi( )

-------------------------------------------- 0.002972 in.= = = =

Figure 4.12.  (a) Lamp supported by 
wires. (b) FBD of point B.



www.manaraa.com

4.1 Axial Members – Force Method 95

the slopes of AB and AB' are the same, which
means the forces in the wires do not change.

The dashed circular arc DB' in Figure 4.12d
is the path of point D as AD rotates. The arc
is normal to radius AD. Solid line DB' is also
normal to AD. Since radius AD is very large
compared to both Δ and distance DB', then
the difference between dashed arc DB' and
solid line DB' over the distance of interest is
negligible. A similar argument can be made
for dashed arc and solid line D'B'.

Thus, point B' can be located by constructing
perpendiculars to AD and CD'. Point B' is the
intersection of the perpendiculars.

Due to symmetry, either triangle BDB' or
BD'B' can be used to determine δ, the new
position of the joint below point B.

The relationship between displacement δ and
wire elongation Δ is (Figure 4.12d):

Answer: 

Step 5. The stiffness is:

Answer: 

Step 6. The load to yield each wire is:

By symmetry, the wires yield at the same time, so the load that causes yielding Wy is:

Answer: 

Step 7. The factor of safety against yielding is the ratio of the load at yield (the failure
load) to the working load (here the lamp’s weight): 

Answer: 

The following example illustrates the compatibly principle on a more complex system.

δ Δ
θsin

------------ 0.002972 in.
3 5⁄

------------------------------= =

δ 0.00495 in.=

K W
δ
----- 14 lb

0.00495 in.
---------------------------= =

K 2830 lb in.⁄=

Ty SyA 50 ksi( )π 0.10 in.( )2

4
----------------------------- 393 lb= = =

Wy 2Ty θsin 2 393 lb( ) 3 5⁄( )= =

Wy 471 lb=

FS
Wy

W
------- 471 lb

14.0 lb
-----------------= =

FS 33=

Figure 4.12.  (c) Each wire elongates by 
Δ as point B deflects downward distance 
δ to point B'. (d) Geometry of the 
deflection: Δ = BD = δsinθ.
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Example 4.6  Truss Deflection

Given: Aluminum truss ABC is loaded at
joint B by a point load of F = 10.0 kips
(Figure 4.13a). The cross-sectional areas of
the bars are: AAB = 0.5 in.2 and
ABC = 0.6 in.2. The modulus of aluminum is
E = 10,000 ksi.

Required: Determine the horizontal and
vertical displacements of joint B, u, and v.

Solution: Step 1. Equilibrium of point B
(Figure 4.13b) requires that:

Solving for PAB and PBC gives:

Steps 2,3. Elongation–strain–force. From
geometry, the length of each bar is:

The elongation of each bar is then (Figure 4.13c):

Step. 4. Compatibility. The change in length of each bar is small (~0.14%), so the change
in slope of each bar is negligible. Due to the forces, bar AB extends by ΔAB = BD and bar
BC extends by ΔBC = BD' (Figure 4.13c). 

Compatibility requires that the ends of each bar, points D and D', continue to fit together.
In order for this to happen, AD and CD' must rotate towards each other, point D moving on
a circular arc of radius AD and point D' moving on a circular arc of radius CD'. The
circular arcs are perpendicular to AD and CD'. Because the elongations are small, the

Fx∑ 1

5
-------PAB– 3

5
---PBC+ 0= =

Fy∑ 2

5
-------PAB

4
5
---PBC F–+ 0= =

PAB 6708 lb=

PBC 5000 lb=

LAB 5 1.5 ft( ) 40.25 in.= =

LBC 5 3⁄( ) 3.0 ft( ) 60.0 in.= =

ΔAB

PABLAB

AABE
-------------------- 6708 lb( ) 40.25 in.( )

0.5 in.2( ) 10 10
6×  psi( )

---------------------------------------------------------- 0.0540 in.= = =

ΔBC

PBCLBC

ABCE
-------------------- 5000 lb( ) 60.0 in.( )

0.6 in.2( ) 10 10
6×  psi( )

---------------------------------------------------------- 0.0500 in= = =

Figure 4.13.  (a) Truss ABC loaded at 
joint B.   (b) FBD of joint B.
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required rotations are small. Over the
distance of interest, the circular path of
point D, and a line perpendicular to AD
at D, are the same; the difference is
negligible. Thus, D moves along a line
perpendicular to AD. Likewise, point D'
moves on a line perpendicular to CD'
(Figure 4.13c).

Point B' can be located by constructing
perpendiculars to AD and CD'. Point B'
is the intersection of the perpendiculars.
To determine this point requires a bit of
geometry using Figures 4.13c and d.

A vertical dashed line is dropped from
point B, and elongations ΔAB = BD and
ΔBC = BD' are constructed from point B.
Perpendiculars are drawn from D and D';
the intersection of these lines is the new
point B'. From the scale drawing in
Figure 4.13c, joint B moves down and to
the left; how far it moves must be
determined.

Line DB' crosses the vertical dashed line
at point G . Right triangle BDG is used to
determine the vertical distance of
point G below point B:

Line D'B' crosses the vertical dashed line
at point H. From the right triangle BD' H:

From the geometry of the magnified view in Figure 4.13d, GH can be divided into five
equal parts, x, with B' being 2x below and 4x to the left of point G. Solving for x:

BG 2

5
-------BD 1

2
---

1

5
-------BD

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

5
2

-------BD 0.060374 in.= =

BH 4
5
---BD′ 3

4
--- 3

5
---BD′⎝ ⎠

⎛ ⎞+=

5
4
---BD′ 0.0625 in.= =

Figure 4.13.  (c) Elongation of AB and BC. 
Point B on AB moves to D; point B on BC 
moves to D'. Compatibility requires that 
points D and D' coincide, so the bars must 
rotate towards each other. (d) Magnification 
near new joint B' to determine its location.
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The displacement of joint B to its new location joint B' is to the left and down:

Answer: 

Answer: 

Other mathematical methods may be used to solve for the location of B'. For example,
once point D is located (in the x–y plane), an equation for line DB' can be developed (the
slope and a point are known). Likewise, once D' is located, line D'B' can be described. The
resulting linear equations intercept at B'. Or, magnified drawings constructed to scale can
actually be measured to determine the displacement.

Statically Indeterminate (Redundant) Systems
In the chapter introduction, it was noted that some systems cannot be solved by Statics

alone; this is the case when there are more unknowns than equilibrium equations. These
systems are statically indeterminate or redundant. When applying the force method, the
idea of a redundant force must be introduced to complete such a problem. Examples 4.7–
4.9  are applications of the force method to redundant systems. 

Example 4.7  Two Parallel Bars

Given: Bars 1 and 2 are each attached to a rigid base and a rigid boss (Figure 4.14). The
boss is constrained to move vertically only. The bars have lengths, cross-sectional areas,
and moduli as shown in the diagram. Downward load F is applied to the boss, which
displaces (deflects) downward distance δ. Assume the system remains elastic.

Required: For the particular case L2 = 2L1, A2 = 4A1, and E1 = E2 = E, determine
expressions for (a) the stresses in each bar, σ1 and σ2 and (b) the downward deflection δ
of the rigid boss. 

Solution: Step 1. Equilibrium. If the forces in the bars are P1 and P2, then from
equilibrium of the FBD in Figure 4.14b:

There is one equilibrium equation, but two unknowns, P1 and P2. The system is
redundant.

To proceed, assume that P1 = R (the redundant). Force R is unknown, but is temporarily
treated as known. The internal forces are then:

The stress in each bar is written:

x GH
5

--------- 1
5
--- 5

4
---BD′ 5

2
-------BD–⎝ ⎠

⎛ ⎞ 0.000425 in.= = =

u 4x– v⇒ BG– 2x–= =

u 0.0017 in.–=

v 0.0612–  in.=

F P1 P2+=

P1 R    and    P2 F R–= =
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Step 2,3. Force–elongation. The elongation of
each bar is:

and

Step 4. Compatibility requires that the
elongations of the individual parts be compatible
with the system displacements. Here, the bars
both elongate the same amount δ ; this provides
the second needed equation:

Solving for the redundancy R gives:

For the particular case L2 = 2L1, A2 = 4A1 and
E1 = E2 = E (Figure 4.14c):

The force in each member is now known.
Expressing the stresses in the bars in terms of the
total cross-sectional area, A = A1 + A2 , so that A1 = A/5 and A2 = (4/5)A, gives:

Answer: and

The displacement of the boss is equal to the elongation of each bar:

Answer: 

σ1
R
A1
------    and    σ2

F R–
A2

-------------= =

Δ1

RL1

A1E1
-------------= Δ2

F R–( )L2

A2E2
------------------------=

δ Δ1 Δ2

RL1

A1E1
-------------⇒

F R–( )L2

A2E2
------------------------= = =

R
F
--- 1

L1A2E2

L2A
1
E1

-------------------+
1–

=

P1 R F
3
---= =

P2 F R– 2F
3

-------= =

σ1
R
A1
------ 5F

3A
-------= = σ2

5F
6A
-------=

δ Δ1 Δ2 ε1L1

σ1

E
------L1

σ2

E
------L2= = = = =

δ
5FL1

3AE
-------------

5FL2

6AE
-------------= =

Figure 4.14.  (a) Two parallel bars 
constrained to move in the vertical 
direction. (b) FBD of system 
considering only vertical loads. 
(c) After solving for the internal 
forces, the stresses are determined.
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For this particular case, the short bar carries one-third of the load F, and the stress in the
short bar is twice that of the long bar. This concentration of stress into the shorter bar is a
well-known phenomenon observed in many situations where there are changes in
geometry. The stress concentration factor is defined as the maximum stress in the system
divided by an average stress in the system. Letting σave = F/A, then:

Stress concentration is discussed further in Section 4.5.

Example 4.8  Two In-Line Bars

Given: Another redundant system consists of
two in-line bars, Bars 1 and 2, which are
joined together as shown, and fixed at the top
and bottom (Figure 4.15). Load W is applied
at the junction of the bars. 

Required: For the particular case L2 = 2L1,
A2 = 4A1, and E1 = E2 = E, determine (a) the
internal force and stress in each bar and  (b) the
deflection δ of the junction (where the load is
applied).

Solution: Step 1. Equilibrium. Considering
the FBD in Figure 4.15b, the reaction forces
at the top and bottom equal the internal
forces of Bars 1 and 2, P1 and P2,
respectively. Both internal forces are drawn
in tension, so: 

It is not possible to calculate the values of P1 and P2 from this single statics equation; the
system is redundant.

Let force P1 = R be the redundant force, so that: P2 = R – W.

Steps 2 and 3. The force–elongation relationship gives the elongation of each bar:

and

Step 4. The compatibility condition is used to find the redundant force R. The downward
displacement δ of load W is equal to the extension of Bar 1 Δ1, and the shortening
(negative elongation) of Bar 2 Δ2. The elongations of the bars, Δ1 and Δ2, are therefore
equal but opposite. Or, since the top and bottom of the assembly are fixed, the total
elongation of the stepped-bar-assembly is zero:

SCF
σmax

σave
------------ 5F

3A
------- ⎝ ⎠

⎛ ⎞ A
F
--- ⎝ ⎠

⎛ ⎞ 1.67= = =

P1 W– P2– 0= W⇒ P1 P2–=

Δ1

P1L1

A1E1
-------------

RL1

A1E1
-------------= = Δ2

P2L2

A2E2
-------------

R W–( )L2

A2E2
-----------------------= =

Figure 4.15.  (a) Two in-line bars 
constrained at top and bottom. (b) FBD 
of the bars. (c) FBD of solution for the 
particular case studied.
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This expression is rearranged to solve for R: 

The internal forces are then:

and

With the forces known, for the particular case L2 = 2L1, A2 = 4A1, and E1 = E2 = E
(Figure 4.15c):

Answer: and

The stresses in the bars are:    

and

The downward displacement of the load is δ = Δ1 = –Δ2:

Answer: 

Example 4.9  Rigid Bar

Given: Bar AB is rigid with length L, while bars C and D are elastic, both with modulus E,
cross-sectional area A, and length H (Figure 4.16). Force P is applied at point B which
displaces upward by distance δ. 

Required: Determine the force in each bar, RC and RD, in terms of P.

Solution: Step 1. Equilibrium. The FBD of Bar AB is given in Figure 4.16b. There are two
equilibrium equations: 

Δ1 Δ2+ 0
RL1

A1E1
-------------

R W–( )L2

A2E2
-----------------------+= =

R W 1
L1A2E2

L2A1E1
-------------------+

1–

=

P1 R W 1
L1A2E2

L2A1E1
-------------------+

1–

= = P2 R W–  W– 1
L2A1E1

L1A2E2
-------------------+

1–

 = =

P1
W
3
-----= P2  2W

3
--------–=

σ1
W

3A1
---------= σ2  2W

3A2
---------–  W

6A1
---------–= =

δ Δ1

P1L1

A1E1
------------- Δ– 2

P2L2

A2E2
-------------–= = = =

δ
WL1

3A1E
-------------

2WL2

3A2E
--------------= =

Fy∑ 0:  RA RC– RD– P+ 0= =

MA∑ 0:  R– C
L
3
--- ⎝ ⎠

⎛ ⎞ RD–
2L
3

------⎝ ⎠
⎛ ⎞ PL+ 0= =
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and three unknowns: reaction RA and tension
forces RC and RD. There are more unknowns
than equations; the system is redundant.

In the force method, one force (or as many as
necessary) is selected as the redundant force, and
is assumed for the time to be known. Selecting
RD as the redundant, and solving for RA and RC
in terms of P and RD gives:

Steps 2 and 3. Force–elongation. The elongation
of each elastic bar is:

and

Step 4. Compatibility. Since Bar AB is rigid, the
elongations of Bars C and D are related to the
displacement of point B:

and

Eliminating δ between the last two sets of
equations gives the redundant RD in terms of
force P:

Answer: 

Solving for RA and RC:   

Answer: 

RC and RD are both positive, corresponding to tension forces and positive elongations.
Since the properties of Bars C and D are the same, and ΔB = 2ΔC, then RD = 2RC .

The displacement of point B, δ, as a function of P is:

Note that the use of the force method gives the flexibility of the system directly, since
δ =FP.

RA R– D 2P+=

RC 2– RD 3P+=

ΔC

2– RD 3P+( )H

AE
------------------------------------= ΔD

RDH

AE
------------=

ΔC
1
3
---δ= ΔD

2
3
---δ=

2 2– RD 3P+( ) RD=

RD
6
5
---P=

RA
4
5
---P=

RC
3
5
---P=

δ 9
5
---PH

AE
--------=

Figure 4.16.  (a) Rigid Bar AB under 
load P. (b) FBD of AB. (c) AB pivots 
about Point A. The displacements of 
Points C and D are proportional to 
tip displacement δ.
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4.2  Axial Members – Displacement Method

The displacement method is used in this section to solve four of the previous examples
in Section 4.1, two statically determinate and two statically indeterminate (redundant).
A new example, with many redundant members, is also solved. From kinematic
(displacement) relationships, the internal strains are first determined, which lead to the
stresses via Hooke’s Law, from which internal and external forces are determined using
equilibrium. The steps are as follows:

1. Determine the elongation of each member in terms of the overall displacement 
(deflection) of the assembly; the elongation of each member must be 
compatible with the elongations of the other members.

2. Determine the strain in each member in terms of its elongation; e.g., ε =Δ/L.
3. Calculate the stresses from the elastic law; e.g., σ = Eε.
4. Apply the conditions of equilibrium to determine the internal and applied forces; 

e.g., P = σA.

Example 4.10  Uniform Bar in Tension

Given: The bar in Example 4.1 elongates by Δ
when axial force P is applied at its ends. The bar
has constant cross-sectional area A and length L
(Figure 4.17). The material of the bar is elastic
with modulus E. 

Required: Determine the force P needed to
elongate the bar by Δ.

Solution: Following the steps of the displacement method:

Steps 1 and 2 (combined). Strain–elongation–displacement. The elongation Δ causes axial
strain: 

Step 3. Elasticity (the stress–strain relationship) requires the stress to be: 

Step 4. Equilibrium. From equilibrium, the internal force P throughout the bar is:

Answer: 

The stiffness of the axial bar under constant tension is, as noted previously: 

ε Δ
L
---=

σ Eε EΔ
L
---= =

P σA EA
L

-------Δ= =

Figure 4.17.  Bar under tension.
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The displacement method immediately gives the stiffness of the system; the result directly
gives force as a function of displacement.

Example 4.11  Parallel Bars With Applied Displacement

Given: The two-bar structure of
Example 4.7 is shown in Figure 4.18.
The system is statically redundant. Due
to load F, the rigid boss displaces
downward by δ. 

Required: Using the displacement
method, for the particular case L2 = 2L1,
A2 = 4A1, and E1 = E2 = E, determine
(a) the relationship between force F and
displacement δ and (b) the stress in each
bar, σ1 and σ2.

Solution: Step 1. Elongation–
displacement. Compatibility requires that
the elongation of each bar, Δ1 and Δ2,
equal the downward displacement of the
rigid boss δ :

Δ1 = δ and Δ2 = δ
Steps 2 and 3. The force–elongation relationship for axial members gives:

Step 4. Equilibrium. Applying equilibrium to Figure 4.18b, the sum of the internal forces
must equal to the applied force F:

The stiffness of the system is within the set of parentheses.

For the particular case L2 = 2L1, A2 = 4A1, and E1 = E2 = E, the applied force is:

With the total cross-sectional area A = A1 + A2, the load–displacement relationship
reduces to:

K P
Δ
--- EA

L
-------= =

P1

E1A1

L1
-------------Δ1

E1A1

L1
-------------δ    and    P2

E2A2

L2
-------------Δ2

E2A2

L2
-------------δ= == =

F P1 P2+
E1A1

L1
-------------

E2A2

L2
-------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

δ= =

F
EA1

L1
----------

E 4A1( )

2L1( )
------------------+ δ

3EA1

L1
-------------δ= =

Figure 4.18.  (a) Two parallel bars 
constrained to move vertically. (b) FBD of 
system considering only vertical loads.
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Answer: 

The load–displacement relationship is the same as found using the force method in
Example 4.7. However, it is apparent that the displacement method applied to this
redundant system is easier to use than the force method.

The stresses are the same as in Example 4.7:

Answer: and

where σave = F/A. The value of σ1/σave = 5/3 = 1.67 is the stress concentration factor on
the short bar.

Example 4.12  Two In-Line Bars

Given: The redundant system of Example 4.8
consists of two bars in series: Bars 1 and 2, fixed
at their ends (Figure 4.19). The applied load W at
the junction displaces it by distance δ.

Required: For the particular case L2 = 2L1,
A2 = 4A1, and E1 = E2 = E, determine (a) the
load W to cause displacement δ, and (b) how the
load is distributed to the individual bars.

Step 1. Displacement–elongation. Compatibility
requires that Bar 1 elongate by the downward
displacement of the junction δ, and that Bar 2
shorten by the same amount: 

Step 2 and 3. Force–elongation:

Step 4. Equilibrium of the joint alone, or of the overall system, requires that:

F 3EA
5L1
-----------δ      δ→

5FL1

3EA
-------------

5FL2

6EA
-------------= = =

σ1

P1

A1
------ 1

A1
------

EA1

L1
----------δ

E1

L1
------

5FL1

3EA
-------------= = =

σ2
5
3
---σave= σ2

5
6
---σave=

Δ1 δ    and    Δ2 δ–==

P1

E1A1

L1
-------------Δ1

E1A1

L1
-------------δ= =

P2

E2A2

L2
-------------Δ2

E2A2

L2
------------- δ–( )= =

Figure 4.19.  (a) Two in-line bars 
constrained at top and bottom. 
 (b) FBD of the bars.
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Answer: 

The stiffness of the system is: 

For the particular case L2 = 2L1, A2 = 4A1, and E1 = E2 = E:

Step 5. The force W to cause displacement δ is: 

Answer: 

Step 6. The internal forces are:

Answer:

            

Example 4.13  Hanging Lamp

Given: The hanging lamp problem (Example 4.5)
is reexamined using the displacement method.
Only the displacement figures are repeated here
(Figure 4.20). A W = 14 lb lamp is supported by
two wires both of length L = 5.0 ft. The distance
between the two cable mounts is s = 8.0 ft. The
wires have a diameter of D = 0.10 in., and are
made of steel (E = 30×106 psi, Sy = 50 ksi).

Required: Using the displacement method, determine
(a) the downward displacement δ of the lamp and
(b) the tension in each wire, TAC = TBC = T.

Solution: Apply the steps of the displacement method.

Step 1. Displacement–elongation. Because the
load and geometry are symmetric, point B moves
directly downward. The wires move from the
dashed position ABC to the solid position AB'C

W P1 P2–
E1A1

L1
-------------δ

E2A2

L2
------------- δ–( )  –= =

W
E1A1

L1
-------------

E2A2

L2
-------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

δ=

K W
δ
-----

E1A1

L1
-------------

E2A2

L2
-------------+= =

K
E A1

L1
----------

4E A1

2L1
--------------+

3E A1

L1
--------------= =

W Kδ
3E A1

L1
--------------δ= =

P1

E1A1

L1
-------------δ

E1A1

L1
-------------W

K
-----= =

P1
W
3
-----=

P2  2W
3

--------–=

Figure 4.20.  (a) Geometry of 
original (dashed ) and displaced 
(solid ) wires. (b) The triangle 
relating the downward displacement 
of point B, δ, the extension of each 
wire, Δ = BD = BD', and the angle θ.
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in Figure 4.20a (the displacements are exaggerated). The displacement of wire AB can be
described in two steps: it elongates by Δ becoming AD, and rotates clockwise to AB'. Wire
BC elongates by Δ becoming CD', and rotates counterclockwise to CB' (Figure 4.20b).

The relationship between the downward displacement δ of point B and the elongation Δ of
either wire is determined from the triangle in Figure 4.20b:

From the geometry, H = 3.0 ft.

Steps 2 and 3. Force–elongation. The relationship between the force in each wire T and its
elongation Δ is:

Step 4. Equilibrium. From equilibrium, the force W needed to cause displacement δ is: 

The stiffness of the system is then: 

Step 5. The displacement of the system is thus:

Answer: 

Step 6. The force in each member is: 

Answer: 

The answers for the deflection δ and the wire tension T agree with the results of
Example 4.5.

Notice the stiffness increases with (H/L)2 = sin2θ. When θ = 0o, the wires are both
horizontal and the stiffness is zero. For example, the transverse stiffness of a guitar string
is small; it is easy to deform a guitar string perpendicular to its axis. As soon as there is
sideways displacement of the string, the stiffness increases. When the two wires are
parallel L = H, the stiffness equation simplifies to that of two axial members in parallel:

Δ δ θsin δ H
L
----= =

T EA
L

-------Δ EA
L

------- δ H
L
----⎝ ⎠

⎛ ⎞ EAH

L2
------------δ= = =

W 2T  θsin 2= T H
L
----= 2 EAδH

L2
---------------⎝ ⎠

⎛ ⎞ H
L
---- 2EAH2

L3
------------------δ= =

K W
δ
----- 2EAH2

L3
------------------ EπD2H2

2L3
---------------------- 30 10

6×  psi( )π 0.10 in.( )2 36 in.( )2

2 60 in.( )3
-------------------------------------------------------------------------------------- 2828 lb/in.= = = = =

δ W
K
----- 14 lb

2828 lb/in.
-------------------------- δ 0.00495 in.== = =

T TAB TBC
EAH

L2
------------= δ 30 10

6×  psi( )π 0.10 in.( )2 36 in.( )
4 60 in.( )2

------------------------------------------------------------------------------------ 0.00495 in.( )= = =

T 11.7 lb=

Kparallel 2
EA
L

-------⎝ ⎠
⎛ ⎞ EπD2

2L
--------------= =



www.manaraa.com

108 Ch. 4 Axial Members and Pressure Vessels

Example 4.14  Stiffness of a Wheel with Many Spokes

Background: The displacement method is
especially well suited for systems with many
redundant members. For such systems, the
force method is generally impractical.

Given: A bicycle wheel of radius R has N
spokes, each of cross-sectional area A. The
modulus of the spokes is E. The rim and hub
are taken to be rigid. The weight and
dynamic forces of the rider cause downward
force F at the rigid wheel hub, displacing it
downward by distance δ (Figures 4.21a–c).

Required: Determine the relationship
between force F and displacement δ ; i.e., the
stiffness of the assembly of spokes for a
downward load applied at the hub.

Solution: Consider a triangular-shaped
element dθ at angle θ to the horizontal
(Figure 4.21d, dashed triangle). The number
of spokes represented by element dθ is:

The cross-sectional area of the spokes in dθ
is:

Step 1. Displacement–Elongation. From the
geometry of the displacement, the
relationship between the elongation of a
spoke element Δ(θ) and the downward
displacement of the hub δ is (Figure 4.21e):

Steps 2 and 3. Force–elongation. The strain ε
of a spoke element at angle θ is:

The force dP in each element is:

dN Ndθ
2π
------=

dA ANdθ
2π
------=

Δ θ( ) δ  θsin=

ε θ( ) Δ θ( )
R

------------ δ  θsin
R

------------------= =

Figure 4.21.  (a) The bicycle rider 
applies load F to the rear wheel. (b) The 
wheel is made up of N spokes, R long, 
each spoke of cross-sectional area A, 
and modulus E. (c) The hub displaces 
downward, so a single spoke at angle θ 
moves from its original (dashed ) position 
to a new (solid ) one, elongating by Δ. 
(d) An element dθ moves from its 
unloaded dotted position to the solid 
one. (e) Movement of point O to point O', 
giving the relationship between δ and Δ. 
(f) FBD of a spoke. Copyright ©2008 
Dominic J. Dal Bello and licensors. All 
rights reserved.
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Step 4. Equilibrium. The vertical force component of each spoke element is:
. Applying equilibrium in the vertical direction requires an integral:

Solving for the integral alone:

Thus, the force–displacement relationship is: 

Answer: 

The stiffness of the spoke system is: 

Answer: 

which is equal to one-half of the total stiffness of the system if all of the spokes were
aligned vertically.

The stress in any spoke at angle θ is: 

For 0 < θ < π (the upper half of the wheel), the stress is tensile (sinθ > 0). For π < θ < 2π
(the bottom half), the stress is compressive (sinθ < 0). These results make sense
physically; the upper spokes are being pulled downward, and the lower spokes are being
compressed. In order to avoid buckling of the spokes due to compression, they are
generally pretensioned.

Summary of Equations for Stress, Strain and Elongation
When the axial force, the cross-sectional area, and the modulus are all constant

throughout the length of an axial member, the strain is constant. Only for a constant–strain
component may its elongation – the relative displacement between its endpoints – be
expressed as:

[Eq. 4.7]

If any of the values of force, area, and modulus vary over the length of an axial system, the
system must be broken up into smaller elements where all the values are constant in each
element. The elements may be shorter lengths, Li , or even differential lengths dx. The total
elongation is the summation (integral) of the displacement of each small constant–strain
element. A summary of the relevant equations is given in Table 4.1.

dP θ( ) σ θ( )dA Eε θ( )dA E
δ θsin

R
----------------⎝ ⎠

⎛ ⎞ AN dθ
2π

----------------⎝ ⎠
⎛ ⎞ EAN

2πR
------------δ θ dθsin( )= = = =

dV dP θsin=

F Vd
 0

 2π

∫ dP θ EAN
2πR
------------δ θ dθsin( ) θ EANδ

2Rπ
--------------- θsin2 θd

 0

 2π

∫=sin
 0

 2π

∫=sin
 0

 2π

∫= =

θsin2 θd
 0

 2π

∫ π=

F EANδ
2Rπ

---------------π EAN
2R

------------δ= =

K F
δ
--- N

2
----EA

R
-------= =

σ θ( ) Eε θ( ) EΔ θ( )
R

---------------- Eδ θsin
R

---------------------= = =

Δ PL
AE
-------=
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4.3  Thermal Loading

Changes in temperature cause
materials to expand or contract.
Consider a bar of length L that is free
to expand. When the temperature is
increased by an amount ΔT, the length
of the bar increases by:

[Eq. 4.8]

where α is the coefficient of thermal
expansion. The thermal strain εt of
the bar is then:

[Eq. 4.9]

The coefficient of thermal expansion is a material property. The units of α are the inverse
of temperature (e.g., 1/°C, 1/°F). Representative values of α can be found in Appendix B
and in the Online Notes.

For convenience in the following examples, Table 4.2 provides representative material
properties for steel, aluminum, and concrete. Although they actually vary with
temperature, the coefficient of thermal expansion α and modulus E are taken as constant
with temperature in this treatment. 

When two materials with different expansion coefficients must deform together,
internal thermal stresses will develop within the system. 

Table 4.1.  General equations for in-line axial members.

Axial Force, 
Cross-sectional 
Area, Modulus 

Stress on any
Cross-section

Strain at any
Cross-section

Elongation
of System

Remark;
Constant Strain 

Element

All Constant L

Discretely 
Varying

Break component into 
lengths Li , where P, A, 

and E are all constant.

Continuously
Varying

Consider length dx, so 
small that over its 

length, P, A, and E are 
all constant.

σ P
A
---= ε Δ

L
--- σ

E
---= = Δ PL

AE
-------=

σi

Pi

Ai
-----= εi

Δi

Li
-----

σi

Ei
-----= = Δ

PiLi

AiEi
----------∑=

σ x( ) P x( )
A x( )
-----------= ε x( ) σ x( )

E x( )
-----------= P x( )

A x( )E x( )
----------------------- xd

L
∫

Δ Lα ΔT=

εt
Δ
L
--- αΔT= =

Table 4.2.  Coefficient of Thermal Expansion 
for common structural materials.

Material α (1/°C) E (GPa)

Steel 200

Aluminum 70

Concrete 30

14 10
6–

×

23 10
6–

×

7 10
6–

×
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Example 4.15  Unconstrained Expansion of a Steel Bar 

Given: An unconstrained (free to expand) steel bar of length L = 1.0 m is heated from
room temperature (25°C) to 100°C.

Required: Determine (a) the thermal strain εt and (b) the elongation Δ of the bar.

Solution: Step 1. The thermal strain is:

Answer: 

Step 2. The elongation is:

Answer: 

Thermal and Mechanical Loading (Temperature and Applied Stress)
The unconstrained bar of length L

(Figure 4.22) is now subjected to a constant
axial stress σ. The temperature is then
increased by ΔT. The total strain in the bar is
the sum of the mechanical and thermal
strains, εm and ε t :

[Eq. 4.10]

The change in length Δ is:

[Eq. 4.11]

Example 4.16  Steel Bar under Applied Stress and Temperature

Given: An unconstrained steel bar
(Figure 4.23) of length L = 1.0 m and square
cross-section of side b = 20 mm is subjected
to a compressive axial load P = 20 kN
(σ = 50 MPa). The modulus is E = 200 GPa.

Required: Determine the temperature
increase ΔT that must be applied to the
loaded bar to return it to its original length.

εt α  ΔT 14 10
6–×  °C

1–( ) 100 25–( )°C[ ]= =

εt 1.05 10
3–×=

Δ ε= tL 1.05 10
3–×( ) 1.0 m( ) 1.05 10

3–×  m= =

Δ 1.05 mm=

ε εm εt+ σ
E
--- α ΔT+= =

Δ εL σ
E
--- α ΔT+⎝ ⎠

⎛ ⎞ L= =

Figure 4.22.  (a) Original length of bar. 
(b) Elongation due to mechanical load P. 
(c) Additional elongation due to thermal 
load ΔT.

Figure 4.23.  (a) Original length of bar. 
(b) Elongation (here negative) due to 
mechanical load P. (c) Additional 
elongation due to thermal load ΔT.
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Solution: By applying temperature, the compressed bar is to expand to its original length,
so the total elongation of the bar due to the mechanical and thermal loads is zero:

Thus:

Answer: 

Example 4.17  Aluminum Rod with
Fixed Ends

Given: An aluminum rod fixed between two
rigid supports (Figure 4.24).

Required: Determine the stress in the rod
when it is heated by 35°C.

Solution: The total change in length is zero:

Thus:

Answer: 

The bar is in compression.

Example 4.18  Loss of Prestress in Reinforced Concrete under Thermal
Load

Given: A representative element of reinforced concrete (square cross-section 40×40 mm)
surrounds a single high strength steel rebar (diameter D = 10 mm), as shown in
Figure 4.25. The system is prestressed by tightening the rebar endcaps, which places the
steel rebar in tension and the concrete in compression. No external load is applied to the
system. The purpose of prestressing is to prevent tensile stresses in the concrete – and thus
avoid fracture or cracking – by preloading the concrete in compression. Here, the rebar is
under a tensile stress of σs,p = 200 MPa. Assume that the rebar and concrete remain the
same length.

Required: Determine (a) the stress in the concrete after the prestressing process and (b)
the loss of prestress in the concrete when the temperature increases from 20 to 40°C. 

Δ εL σ
E
--- α ΔT+⎝ ⎠

⎛ ⎞ L 0= = =

ΔT σ
Eα
-------–  P

b2Eα
-------------–  20– 10

3×  N( )

20 10
3–×  m( )2

200 10
9×  Pa( ) 14 10

6–×  °C 1–( )
----------------------------------------------------------------------------------------------------------------------–= = =

ΔT 17.8°C=

Δ εL σ
E
--- α ΔT+⎝ ⎠

⎛ ⎞ L 0= = =

σ EαΔT– 70 10
9×  Pa( ) 23 10

6–×  °C 1–( ) 35° C( )–= =

σ 56.4–  MPa=

Figure 4.24.  (a) Bar between rigid 
supports. (b) FBD of bar at temperature 
ΔT.
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Solution: Step 1. Stress due to prestressing.
The area of the steel is:

The area of the concrete is thus:

The stress in the concrete due to the
mechanical prestress is found from
equilibrium of Figure 4.25c:

where σs,p and σc,p are the stresses in the
steel and concrete due to prestressing; there
is no external load. Thus:

Answer: 

The concrete is initially in compression as
intended.

Step 2. Stress due to thermal loading. When temperature is applied, both materials expand
(Figure 4.25d). Unconstrained, the steel would expand more than the concrete. Here, since
the materials are constrained to remain the same length, thermal stresses – stresses due to
the thermal load – are induced in each material σs,t and σc,t .

During thermal loading, no external mechanical load is applied to the system. Thus, the
thermal stresses are in equilibrium:

or:

Consider the prestressed length as the reference for the thermally induced strain. Since the
concrete and steel must expand or contract together, their strains due to thermal loading

As
π
4
--- 0.01 m( )2 78.54 10

6–×  m2= =

Ac 0.04 0.04 m2×[ ] π
4
--- 0.01 m( )2–=

1521 10
6–×  m2=

σs p, As σc p, Ac+ 0=

σc p, σs p,

 As

 Ac
-------–=

250 MPa( ) 78.54 10
6–×  m2

1521 10
6–×  m2

----------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

σc p, 12.90–=  MPa

σs t, As σc t, Ac+ 0=

σc t, σs t,–
 As

 Ac
-------=

Figure 4.25.  (a) Cross-section of 
element. (b) Side view. (c) Internal 
stresses due to prestress only. 
(d) Expansion under thermal load ΔT. 
(e) Internal stresses due to prestress 
and temperature.
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are the same. These strains are a combination of the free thermal expansion of each
material, α ΔT, and the elastic strain due to the induced thermal stresses:

Rearranging and solving for the thermal stress in the steel gives:

Substituting the equilibrium expression for the thermal stress in the concrete σc,t into the
last expression gives the thermal stress induced in the steel σs,t :

The thermal stress in the concrete is then:

Answer: 

Since the coefficient of thermal expansion of steel is higher than that of concrete, the steel
would expand more than the concrete if both were free to expand. Since both must remain
the same length, the thermal stress in the steel is compressive, and that in the concrete is
tensile.

Step 3. Total stress due to prestressing and thermal loading. The total stress in the steel
and in the concrete due to both prestressing and thermal loading is (Figure 4.25e):

Answer: 

Answer: 

Here, the applied temperature decreases the prestress by 8%. Although not significant in
this example, loss of prestress can become a real concern in practice as the concrete
becomes more susceptible to fracture under applied tensile loads. With time, the prestress
can also decrease as the system relaxes.

εs t, αs ΔT
σs t,

Es
---------+ εc t, αc ΔT

σc t,

Ec
---------+= = =

σs t, Es αc αs–( )ΔT
Es

Ec
------σc t,+=

σs t, Es αc αs–( )ΔT 1
Es

Ec
------

As

Ac
------+

1–

=

200 10
9×  Pa[ ]= 7 14–( ) 10

6–×  °C 1–[ ] 40 20–( ) °C[ ] 1 200( ) 78.54( )
30( ) 1521( )

--------------------------------+
1–

20.83–  MPa=

σc t, σs t,–
 As

 Ac
------- 20.83–  MPa( )–

78.54
1521
-------------⎝ ⎠

⎛ ⎞= =

σc t, 1.07 MPa=

σs σs p, σs t,+ 229 MPa= =

σc σc p, σc t,+ 11.8–  MPa= =
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Example 4.19  Two-Bar Structure under Mechanical and Thermal Loads

Given: A two-bar structure, Bars 1 and 2.
Each bar has length L, cross-sectional area A,
modulus E, yield strength Sy , and thermal
expansion coefficient α (Figure 4.26). The
system is subjected to a tensile load P. Bar 2
is subjected to a thermal load ΔT greater than
Bar 1. The bars are constrained to remain the
same length. The material properties are
assumed to be constant with temperature. 

Required: (a) Determine the stress in each
bar due to mechanical and thermal loading.
(b) Determine the conditions to avoid
yielding in terms of force P and temperature
increase ΔT. Present the result on a plot.

Solution: Step 1. Mechanical loading. Since
the bars are identical, due to applied load P,
they support the same mechanical stress and
have the same strain (Figure 4.26b):

and

Step 2. Thermal loading. Apply temperature ΔT to Bar 2. Compatibility requires that the
additional strain in each bar be the same:

where σ1,t and σ2,t are the additional stresses induced in the bars by the increase in
temperature of Bar 2. Equilibrium relates the thermal stresses:

From compatibility of the thermal strains, and equilibrium, the induced thermal stresses
are:

and

Step 3. The total stress in each bar as a function of P and ΔT is found by superimposing the
stresses from the mechanical and thermal cases (Figure 4.26c):

Answer: 

σ1 p, σ2 p,
P

2A
-------= = ε1 p, ε2 p,

P
2AE
-----------= =

ε1 t,

σ1 t,

E
---------- ε2 t,

σ2 t,

E
---------- α ΔT+= = =

σ1 t, A σ2 t, A+ 0 σ2 t,→ σ1 t,–= =

σ1 t,
Eα ΔT

2
-----------------= σ2 t,

Eα ΔT
2

-----------------–=

σ1 σ1 p, σ1 t,+ 1
2
--- P

A
--- Eα  ΔT+= =

Figure 4.26.  (a) Two-bar structure. 
(b) Stress in bars due to mechanical 
load P only.
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Answer:

Step 4. Yielding. Since P and ΔT are positive in this
case, then σ1 > σ2. Tensile yielding occurs when σ1
reaches the yield strength Sy . To avoid yielding:

Answer: 

When ΔT = 0, yielding occurs when:

When P = 0, yielding occurs when:

Normalizing σ1 by the yield strength Sy , the
equation to avoid yielding in Bar 1 reduces to:

Answer: 

or

Answer: 

A Temperature-Force Failure Map for the system can
be plotted as shown in Figure 4.26d. The solid line is
the boundary at which yielding occurs. Provided that
the operating condition – temperature change ΔT and
load P – lies within this boundary, yielding does not
occur.

4.4  Thin-Walled Pressure Vessels

Pressure vessels are used to contain gasses and pressurized liquids. The 48-in.
diameter Trans-Alaska Pipeline transports oil from northern Alaska to Valdez, Alaska,
over a distance of 800 miles; the maximum oil pressure is 1180 psi. The brake cylinder in
an automobile contains the pressure of brake oil leading to the brake drums. In agricultural
areas, domestic heating systems and gas stoves are fueled by propane gas stored in
cylindrical vessels capped with hemispherical ends; their working pressures are on the
order of 150 psi. The huge grain silos in America’s heartland are pressure vessels (exerting
pressure in the radial direction only). Even a shaken can of soda is a pressure vessel.

σ2 σ2 p, σ2 t,+ 1
2
--- P

A
--- Eα ΔT–= =

σ1
1
2
--- P

A
--- Eα ΔT+ Sy<=

P Py 2ASy= =

ΔT ΔTy

2Sy

Eα
--------= =

P
2ASy
------------ Eα ΔT

2Sy
------------------ 1.0<+

P
Py
------ ΔT

ΔTy
--------- 1.0<+

Figure 4.26.  (c) Stresses in 
bars under mechanical and 
thermal load ΔT. (d) Failure Map 
for yielding of present two-bar 
structure.
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Two common pressure vessel
geometries are cylindrical and spherical
(Figure 4.27). The thickness of a vessel wall
is often small compared to its diameter. For
example, the typical wall thickness of the
Alaska Pipeline is t = 0.462 in. and the
diameter is D = 48 in. The ratio of thickness
t to diameter D is t/D = 1/104 = 0.0096. In
general, if t is less than D/20 = R/10, the
vessel is described as being thin-walled.
This condition is satisfied in most practical
situations.

The outward pressure of the contained
gas or liquid is resisted by tensile stresses in
the walls of the pressure vessel. Considering
the vessel to be thin-walled (t << R) implies
that these stresses are constant through the
wall thickness. Any differences from the
inner radius to the outer radius are taken as
negligible.

On occasion, pressure vessels fail and
release their contents with explosive force. It
is therefore crucial that they are designed to
maintain their structural integrity.

Cylindrical Pressure Vessels
A thin-walled cylindrical vessel has

outer radius R, wall thickness t, and
contains pressure p. The walls of the
pressure vessel are subjected to a biaxial
state of stress (Figure 4.28a). These
stresses can be calculated from equilibrium
of FBDs associated with cuts taken through
the cylindrical part of the vessel
(Figure 4.28b).

Hoop (Circumferential) Stress

The hoop stress σH is caused by the
pressure acting to expand the circumference
of the vessel. The hoop stress is calculated by
taking a horizontal cut through the
diametrical plane of Figure 4.28b, resulting

Figure 4.27.  (a) A cylindrical pressure 
vessel with hemispherical end caps. 
(b) A spherical pressure vessel.

Figure 4.28.  (a) An element in a 
pressure vessel is in a state of biaxial 
stress. (b) Main body of a cylindrical 
vessel.
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in the half-cylinder in Figure 4.29. The
downward force Fp acting on the cut
plane is due to the pressure p and is:

[Eq. 4.12]

The pressure may be considered to act
on a membrane across the cylinder
diameter since a FBD can be made using
any boundary.

The pressure force is counteracted
by the hoop stress in the pressure vessel
wall. The corresponding force Fw in the
wall is:

[Eq. 4.13]

Equating the two forces to satisfy
equilibrium:

[Eq. 4.14]

and solving for the hoop stress:

[Eq. 4.15]

Since t is small compared to R, the term
t/R is much smaller than unity (1.0) and
is dropped to give the hoop or
circumferential stress:

[Eq. 4.16]

Since R/t is large, the hoop stress in the
vessel is generally 10 or more times
larger than the enclosed pressure.

Longitudinal (Axial) Stress

The longitudinal stress σL is caused by the pressure acting against the cylinder end
caps. The longitudinal stress is calculated by considering the forces on the cross-section of
the cylinder by taking a cut perpendicular to the cylinder axis (Figure 4.30). The pressure
force Fp acts to the right over area A = π (R–t)2:

[Eq. 4.17]

Fp p 2 R t–( )L[ ]=

Fw σH 2tL[ ]=

p 2 R t–( )L[ ] σH 2tL[ ]=

σH
pR
t

------- 1 t
R
---–=

σH
pR
t

-------=

Fp pπ R t–( )2 pπR2 1 t
R
---–

2
= =

Figure 4.30.  Determination of the 
longitudinal or axial Stress. At the vertical 
cut, the force acting to the right is caused by 
the pressure, and the force acting to the left 
is caused by the longitudinal stress.

Figure 4.29.  Determination of the hoop or 
circumferential stress. At the diametrical 
cut, the downward force is caused by the 
pressure, and the upward force is caused by 
the hoop stress.
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Since t/R << 1, the pressure force is approximately:

[Eq. 4.18]

This force is counteracted by the longitudinal stress σL in the pressure vessel wall. The
projected cross-sectional area of the wall is:

[Eq. 4.19]

Since t/R << 1, the expression for the area reduces to A = 2πRt (the product of the
circumference and thickness). The longitudinal force Fw in the vessel wall is therefore:

[Eq. 4.20]

Equating the two forces to satisfy equilibrium:

[Eq. 4.21]

and solving for the longitudinal or axial stress:

[Eq. 4.22]

By symmetry, no shear stresses act on a material element oriented with the hoop- and
axial-directions. The pressure vessel material is in a biaxial state of stress, with stress
components:

and [Eq. 4.23]

Note that the hoop stress is twice as large as the axial stress; it is the hoop stress that
governs the strength of a cylindrical pressure vessel (Figure 4.31).

On the outer surface of the vessel, the normal stress is zero. On the inner surface,
pressure p acts against the wall, but because R is much larger than t, the in-plane stresses
σH and σL are much larger than pressure p (Equation 4.23). The stress element in a thin-
walled pressure vessel is thus considered to be in a state of plane stress.

The stresses of Equation 4.23 are for
material elements in the main (cylindrical)
part of the vessel, away from any openings
or geometric irregularities which cause
stress concentrations. Also, the internal
pressure must be greater than the external
pressure, i.e., a gas held in compression,
stretching the walls in tension. The
equations are not valid for an outside
pressure (e.g., submarines) since outside
pressure causes a different failure condition

Fp p πR2[ ]=

A π R2 R t–( )2–[ ] π 2Rt t2–[ ] 2πRt 1 t
2R
-------–= = =

Fw σL 2πRt[ ]=

p πR2[ ] σL 2πRt[ ]=

σL
pR
2t
-------=

 σH
pR
t

------- =  σL
pR
2t
------- =

Figure 4.31.  Hot dogs are cylindrical 
vessels pressurized with steam. Since 
the hoop stress is twice the axial stress, 
the dog’s skin splits along its axis.
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(buckling, as when the walls of an empty
aluminum can are crushed). 

The stresses developed in thick-walled
pressure vessels (e.g., cannon barrels,
nuclear pressure vessels, etc.) are beyond the
scope of this text. They are found using the
Theory of Elasticity.

Strains in Cylindrical Vessels

Once the stresses are known, the hoop and longitudinal strains can be determined
using Hooke’s Law. Since there are stress components in two directions, the strains must
include the Poisson effect (Figure 4.32). The elastic strains caused by:

• the hoop stress σH acting alone are:

• the axial stress σ L acting alone are: 

Strain εi,j represents the strain in the i-direction due to stress in the j-direction. 

The total strains at a particular point due to stresses σH and σL acting at the same time are
found by superimposing the strains due to each stress acting independently. Thus:

and [Eq. 4.24]

Substituting the expressions for σH and σL gives:

and [Eq. 4.25]

Strain–Displacement

A cylindrical pressure vessel expands radially by ΔR and axially by ΔL. The change of
radius ΔR is calculated from the hoop strain:

[Eq. 4.26]

The increase in radius is: [Eq. 4.27]

The change in length of the cylinder is: [Eq. 4.28]

εH H,

σH

E
-------      εL H,; ν

σH

E
-------–= =

εH L, ν
σL

E
------–       εL L,;

σL

E
------= =

εH

σH

E
-------   ν

σL

E
------–= εL

σL

E
------  ν

σH

E
-------–=

εH
pR
tE
------- 1 ν

2
---–⎝ ⎠

⎛ ⎞= εL
pR
tE
------- 1

2
--- ν–⎝ ⎠

⎛ ⎞=

εH
Change in circumference

Orginal circumference
------------------------------------------------------------ 2π R ΔR+( ) 2πR–

2πR
---------------------------------------------- RΔ

R
-------= = =

RΔ RεH
pR2

tE
--------- 1 ν

2
---–⎝ ⎠

⎛ ⎞= =

LΔ LεL
pRL
tE

---------- 1
2
--- ν–⎝ ⎠

⎛ ⎞= =

Figure 4.32.  Stress and strain states for 
a cylindrical pressure vessel.
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Example 4.20  Alaska Pipeline

Given: The Trans-Alaska Pipeline is constructed of
steel pipe (E = 29 Msi, Sy = 65 ksi, ν = 0.3), with an
outside diameter of D = 48 in. (Figure 4.33). The
typical operating pressure is pD = 840 psi.

Required: (a) Estimate the thickness t of the Alaska
Pipeline using a factor of safety of 1.5. (b) Estimate
the increase in pipe diameter ΔD due to the operating
pressure. Neglect any Poisson effect due to the axial
stress.

Solution: Step 1. Thickness t. With a FS = 1.5
(actual value), the allowable stress in the pipe is:

The maximum stress in the wall is the hoop stress:

Setting the hoop stress equal to the allowable stress and the pressure equal to the operating
pressure, then solving for the required thickness gives:

Answer: 

The typical wall thickness in the Alaska Pipeline is actually 0.462 in. 
Source: http://www.alyeska-pipe.com/Pipelinefacts/Pipe.html Accessed May 2008.

Step 2. The increase in diameter under operating conditions is found from the hoop strain.
Neglecting the Poisson effect due to axial stress:

The increase in diameter is: 

Answer: 

σA

Sy

FS
------- 65 ksi

1.5
-------------- 43.33 ksi= = =

σH
pR
t

-------=

t
pDR

σA
---------- 840 psi( ) 24 in.( )

43.33 ksi
-----------------------------------------= =

t 0.465 in.=

εH
pR
tE
-------≈ 840 psi( ) 24 in.( )

0.465 in.( ) 29 10
6×  psi( )

------------------------------------------------------------- 0.001495= =

DΔ DεH 48 in.( ) 0.001495( )==

DΔ 0.072 in.=

Figure 4.33.  Cross-section of 
pipeline. Not to scale.
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Spherical Pressure Vessels

Spherical Stress

In spherical pressure vessels
(Figure 4.34), the spherical stress σS is
calculated by considering a diametrical cut
through the vessel (Figure 4.35). This cut
results in the same configuration as the
longitudinal stress in the cylindrical pressure
vessel.

The pressure force Fp acts over area
π(R–t)2, and recalling that t << R, then:

[Eq. 4.29]

The force in the vessel wall that resists the
pressure force is:

[Eq. 4.30]

Equating the forces and solving for the
spherical stress:

[Eq. 4.31]

No matter the direction of the diametrical cut,
the sphere looks the same. Thus, the normal
stress on a surface element oriented in any
direction is the same. Due to symmetry, no
shear stress acts, so a material point is under a
biaxial state of stress, with both stresses
being equal (Figure 4.36).

On the outer surface of the vessel, the
normal stress is zero. On the inner surface,
pressure p acts against the wall, but because R
is much larger than t, the in-plane stresses σS
are much larger than pressure p (Equation
4.31). The stress element in a thin-walled
pressure vessel is considered to be in a state
of plane stress.

Fp pπ R t–( )2 pπR2 1 t
R
--- –⎝ ⎠

⎛ ⎞ 2
= =

pπR2=

Fw 2πRt( )σS=

σS
pR
2t
-------=

Figure 4.35.  Force across a diametrical 
cut of a spherical pressure vessel.

Figure 4.36.  Stress and strain states.

Figure 4.34.  A spherical pressure 
vessel.
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Strains and Displacements in Spherical Vessels

The spherical strain εS is calculated from Hooke’s Law:

[Eq. 4.32]

By symmetry, this is the strain in any direction in the wall (Figure 4.36).

The change in radius is:

[Eq. 4.33]

Example 4.21  Propane Tank

Given: A propane tank for a barbecue (BBQ) is assumed to be spherical. The tank is made
of steel (Sy = 40 ksi) and has a diameter of D = 16 in. The propane is stored at pD = 30 psi. 

Required: Determine the required thickness t if the design factor of safety is 10.0. 

Solution: The allowable stress is:

The spherical stress is:

Setting the spherical stress equal to the allowable stress and the pressure equal to the
design pressure, the required thickness is:

Answer: 

This is the minimum thickness required to contain the pressure at the design factor of
safety. Other types of loadings, such as just moving the vessel, hole geometry, etc., must
also be considered; they will require a thicker wall.

Proof Testing of Pressure Vessels
It is a matter of principle that major components are proof tested before going into

service. For safety, proof testing of pressure vessels is especially important.

The design or working pressure is pD , while the ultimate or failure pressure is pf . The
proof load pP lies between the working and failure pressures. The American Society of
Mechanical Engineers (ASME) Pressure Vessel Code requires that pressure vessels be

εS

σS

E
------ ν

σS

E
------– pR

2tE
--------- 1 ν–( )= =

RΔ εSR pR2

2tE
--------- 1 ν–( )= =

σA

Sy

FS
------- 40 ksi

10
-------------- 4.0 ksi= = =

σS
pR
2t
-------=

t
pDR

2σA
---------- 30 psi( ) 8.0 in.( )

2 4000 psi( )
----------------------------------------= =

t 0.030 in.=
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tested to a proof load of at least 1.5pD . The vessel is loaded to 50% more than the
maximum pressure expected in service.

Even though a vessel is designed to contain pressurized gas, proof testing is usually
performed with compressed water. For the same pressure, the energy of pressurized gas is
over 200 times greater than the energy of pressurized water. Failure of a pressure vessel
filled with water is not as violent as a test conducted with gas; the water will simply leak
out, while the gas may send metal shrapnel flying.

4.5  Stress Concentration Factors

It is often necessary to drill holes in a
component, or to design a component with a change
in cross-section. When component geometry
changes, such as at a hole in a plate (Figure 4.37),
the stress at that location is elevated. The ratio of the
maximum stress σmax to an average stress σave in the
system is the stress concentration factor SCF:

[Eq. 4.34]

Equivalently, the maximum stress in the system is:

[Eq. 4.35]

Understanding how stress is elevated due to local
changes in component geometry is important in
creating successful designs. The following
introductory discussion is valid for materials that
remain linear–elastic.

Elliptical Hole in an Infinite Plate
Figure 4.38a represents an infinite plate of finite thickness t, with an elliptical hole of

major diameter 2a and minor diameter 2b. An infinite plate has width and height
dimensions much greater than the plate thickness and hole dimensions. Thus, the effect of
plate size on the material response near the hole is negligible. The plate is loaded by stress
σave, normal to diameter 2a. 

For an ellipse, the radius of curvature ρ of the hole at  is:

[Eq. 4.36]

For large values of b/a (b/a > 1, Figure 4.38b), ρ is large, and the change in geometry at
the sides of the hole in the stress direction is gradual. For small values of b/a (b/a < 1,

SCF
σmax

σave
------------=

σmax SCF( )σave=

x a±=

ρ b2

a
-----=

Figure 4.37.  Hole in a plate 
subjected to stress σave.
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Figure 4.38a), ρ is small, and the hole is
relatively sharp. Sharp corners give rise to
large stress concentration factors.

If the plate material remains linear
elastic, then the stress concentration factor
for a stress element at the side of the ellipse
is:

[Eq. 4.37]

or:

[Eq. 4.38]

The more rapid the change in geometry – the
larger the ratio a/b or a/ρ – the greater the
stress concentration factor.

Circular Hole in an Infinite Plate
A circle is an ellipse with radius

a = b = ρ (Figure 4.37). The stress
concentration factor at the surface of a
circular hole in an infinite plate loaded by
stress σave is:

[Eq. 4.39]

A complete elastic stress analysis
(beyond the scope of this text) determines
the stress on the cross-section through the
center of the circle (Figure 4.39). The stress
on this cross-section as a function of distance
r ( ) from the center of the circle is:

[Eq. 4.40]

Equation 4.40 reduces to 3σave at the hole
surface r = a. In an infinite plate, the stress
far from the hole (r >> a) is σave .

SCF
σmax

σave
------------ 1 2a

b
---+==

SCF 1 2 a
ρ
---+=

SCF
σmax

σave
------------ 3= =

r a≥

σ r( ) σave 1 1
2
--- a

r
--- ⎝ ⎠

⎛ ⎞ 2
3 a

r
--- ⎝ ⎠

⎛ ⎞ 4
++=

Figure 4.38.  (a) Plate with an elliptical 
hole, a > b. (b) Plate with a hole, a < b.

Figure 4.39.  Stress distribution in an 
infinite plate with a circular hole.
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Center Circular Hole in a Plate of Finite Width
Figure 4.40 represents a plate of finite width W and thickness t, having a hole of

diameter D. The plate is subjected to axial load P, causing applied stress σ = P/tW. The
average stress σave is defined at the net section (the cross-section with the least area):

[Eq. 4.41]

The stress concentration factor for this case is (from R. Roark and W. Young, Formulas for
Stress and Strain, 1975):

[Eq. 4.42]

The stress concentration factor SCF is plotted against D/W in Figure 4.41. For large
values of W (D << W, ), σave reduces to P/tW, and the stress concentration
factor reduces to SCF = 3, the infinite plate solution (Equation 4.39).

Other Loads and Geometries
Stress concentration factors for other load types (bending, torsion, and shear), and for

other changes in geometry (reduction in area, notches, etc.) are available in reference
books and online. One such website is www.fatiguecalculator.com.

σave
P

t W D–( )
----------------------=

SCF
σmax

σave
------------ 3.00 3.13

D
W
-----⎝ ⎠

⎛ ⎞– 3.66
D
W
-----⎝ ⎠

⎛ ⎞ 2
1.53

D
W
-----⎝ ⎠

⎛ ⎞ 3
–+= =

D W⁄ 0→

Figure 4.40.  Plate of finite width 
W, thickness t, with hole of 
diameter D.

Figure 4.41.  SCF for tensile stress at hole of 
diameter D at center of a plate of width W.
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Example 4.22  Stress Concentration Factor: Elliptical Hole in an Infinite Plate

Given: An elliptical hole 2a = 20 mm wide by 2b = 5.0 mm high, in an infinite plate
(Figure 4.38a). The plate is subjected to a stress of σ = 20 MPa.

Required: Determine (a) the stress concentration factor and (b) the maximum stress in the
plate.

Solution: Step 1. The stress concentration factor is:

Answer: 

Step 2. The maximum stress is therefore:

Answer: 

Example 4.23  Stress Concentration Factor: Circular Hole in an Infinite Plate

Given: A circular hole of diameter D = 0.5 in. in an infinite plate (Figures 4.37 and 4.39).
The plate is subjected to a stress of σ = 5.0 ksi.

Required: Determine (a) the stress at the hole surface and (b) the stress on the net section
at r = 0.5 in. (one diameter from the center of the circle).

Solution: Step 1. The stress concentration factor at the hole surface is SCF = 3. Hence:

Answer: 

Step 2. At distance r = D = 2a from the hole center, the stress on the net section σ (r) is: 

Answer: 

Example 4.24  Stress Concentration Factor: Circular Hole in a Finite Plate

Given: A hole of diameter D = 0.5 in. is drilled in a steel plate of finite width W = 6.0 in.
and thickness t = 0.25 in. (Figure 4.40). The plate is subjected to force P. The yield
strength is Sy = 45 ksi.

Required: Determine the load P = Py that will cause yielding. 

Solution: Step 1. The stress concentration factor at the hole surface, for D/W = 1/12, is:

SCF 1 2a
b
---+ 1 2 20 2⁄( )

5 2⁄( )
-----------------+= =

SCF 9=

σmax 9 20 MPa( ) 180 MPa= =

σmax 3σ 15.0 ksi= =

σ r 2a=( ) σ 1 1
2
--- a

r
--- ⎝ ⎠

⎛ ⎞ 2
3 a

r
--- ⎝ ⎠

⎛ ⎞ 4
++ σ 1 1

2
--- a

2a
------ ⎝ ⎠

⎛ ⎞ 2
3 a

2a
------ ⎝ ⎠

⎛ ⎞ 4
++ 1.22σ= = =

σ 2a( ) 6.1 ksi=

SCF
σmax

σave
------------ 3.00 3.13

D
W
-----⎝ ⎠

⎛ ⎞– 3.66
D
W
-----⎝ ⎠

⎛ ⎞ 2
1.53

D
W
-----⎝ ⎠

⎛ ⎞ 3
–+ 2.76= = =
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Step 2. For yielding to occur, σmax = Sy , so:

Answer: 

4.6  Energy Methods

It was noted earlier that axial members are
essentially linear springs. One of the properties of
a spring is that as it supports load P and elongates
Δ, it stores energy (Figure 4.42). The elastic
energy stored in a spring is:

[Eq. 4.43]

Whether a spring is in tension (P > 0, Δ > 0) or
compression (P < 0, Δ < 0), the elastic energy is
always positive.

Recall that the spring stiffness K of an axial
member of constant area A and modulus E
subjected to constant force P over its length L is:

[Eq. 4.44]

so the elastic energy stored in an axial bar is:

[Eq. 4.45]

Now, consider force P applied to an assembly
of elastic springs (Figure 4.43). The ith spring in
the assembly has stiffness Ki , elongates Δi ,
supports load Pi , and stores energy Ui :

[Eq. 4.46]

The total elastic energy stored in the assembly of springs is:

[Eq. 4.47]

σave

σmax

SCF
------------ 45 ksi

2.76
-------------- 16.3 ksi= = =

Py t W D–( )σave 0.25( ) 6.0 0.5–( ) 16.3( )= =

Py 22.4 kips=

U 1
2
---PΔ 1

2
---P2

K
------ 1

2
---KΔ2= = =

K EA
L

-------=

U 1
2
---PΔ 1

2
---P2L

AE
---------- 1

2
---EA

L
-------Δ2= = =

Ui
1
2
---PiΔi

1
2
---

Pi
2

Ki
------ 1

2
---KiΔi

2= = =

U 1
2
---∑ PiΔi

1
2
---

Pi
2

Ki
------∑ 1

2
---KiΔi

2∑= = =

Figure 4.42.  (a) Spring under force 
P. (b) Axial member under force P. 
(c) The area under the P–Δ curve 
equals the energy stored in the 
system.
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Substituting the axial stiffness
expression:

[Eq. 4.48]

Thus, knowing either all of the internal
forces Pi (from the force method), or all
of the elongations Δi (from the
displacement method), the total internal
energy can be determined.

The total energy stored is equal to
the work done by the applied load:

[Eq. 4.49]

where P and δ must be in the same
direction. 

Equating the applied work to the
total elastic energy stored:

[Eq. 4.50]

Knowing either P or δ, the other can be
solved from the stored energy U.

The effective stiffness of the system in the direction of the applied load is the ratio of
the load to the displacement in the direction of the load:

[Eq. 4.51]

From the point of view of the load P, how the springs are assembled does not matter. Load
P is simply acting on a structure that has an effective stiffness of Keff .

Example 4.25  The Lamp Problem, Using the Energy Method 
(Example 4.5, Example 4.13)

Given: A lamp weighing W = 14.0 lb is supported by two wires, both of length L = 5.0 ft
(Figure 4.44). The distance between the two cable mounts is s = 8.0 ft, and H = 3.0 ft. The
wires have a diameter of D = 0.10 in. (A = 0.007854 in.2), and are made of steel
(E = 30×106 psi, Sy = 50 ksi). Assume the wires remain elastic.

U 1
2
---

Pi
2Li

AiEi
-----------∑ 1

2
---

EiAi

Li
----------Δi

2∑= =

W 1
2
---Pδ=

1
2
---Pδ U=

Keff
P
δ
---=

Figure 4.43.   As far as the applied load is 
concerned, an assembly of springs is 
equivalent to a single spring. The sum of the 
energies stored in the individual springs of 
an assembly is equal to the work done on the 
assembly.
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Required: Determine (a) the energy stored
in the wires, (b) the downward displacement
of the lamp due to its weight, and (c) the
stiffness of the wire assembly in the vertical
direction K = W/δ.

Solution: Since this problem is statically
determinate, the force method is used. From
equilibrium equations in Example 4.5, the
tensile force in each wire was found to be:

where θ is the angle of the wires measured
from the horizontal. 

The total energy stored in the two wires is:

Answer: 

The downward displacement is therefore:

Answer: 

This is the same result obtained for the displacement as in Examples 4.5 and 4.13.

The stiffness of the wire assembly is:

[Eq. 4.52]

Answer: 

Example 4.26  The Bike Wheel Problem, Using the Energy Method
(Example 4.14)

Given: The bicycle wheel of radius R has N spokes, each of cross-sectional area A
(Figure 4.45). The elastic modulus of the spokes is E. The rim and hub are assumed to be
rigid. The weight and dynamic forces of the rider cause downward force F at the rigid
wheel hub, displacing it downward distance δ. Assume the system remains elastic.

T TAB TBC= =

W
2 θsin
---------------- W

2 3 5⁄( )
------------------ 11.67=  lb= =

U 1
2
---

Pi
2Li

AE
-----------∑=

2 1
2
---

11.67 lb( )2 60 in.( )

0.007854 in.2( ) 30 10
6× psi( )

-----------------------------------------------------------------------×=

U 0.0347 in-lb=

δ 2U
W
------- 2 0.0359 in-lb( )

14.0 lb
-------------------------------------= =

δ 0.00495 in.=

K W
δ
----- 14.0 lb

0.00495 in.
---------------------------= =

K 2830 lb/in.=

Figure 4.44.  The lamp supported by two 
wires.
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Required: Determine the relationship
between force F and displacement δ; i.e.,
the stiffness of the assembly of spokes for a
downward load applied at the hub. Use the
energy method.

Solution: Since this problem is statically
indeterminate, the displacement method is
used to set up the energy method. Consider a
triangular-shaped element dθ at angle θ to
the horizontal (Figure 4.21d, dashed
triangle). The number of spokes represented
by element dθ is:

The cross-sectional area of the spokes in dθ is:

Step 1. Displacement–elongation. From the
geometry of the displacement, the
elongation of a spoke element Δ(θ) with
respect to hub displacement δ is
(Figure 4.45e):

Step 2. The internal energy stored in the ith
spoke element at angle θ is:

Integrating from 0 to 2π to find the total
internal elastic energy in the spokes:

dN Ndθ
2π
------=

dA ANdθ
2π
------=

Δ θ( ) δ  θsin=

dU 1
2
---

EiAi

Li
---------- Δi

2=

1
2
--- E

R
--- ANdθ

2π
------⎝ ⎠

⎛ ⎞ δ θsin( )2=

U 1
2
---

EiAi

Li
----------Δi

2∑=

1
2
--- E

R
---

AN
2π
--------⎝ ⎠

⎛ ⎞ δ θsin( )2dθ
 0

 2π

∫=

EANδ2

4πR
------------------ π( ) EANδ 2

4R
------------------==

Figure 4.45.  (a) The bicycle rider 
applies load F to the rear wheel. (b) The 
wheel is made up of N spokes, R long, 
each spoke of cross-sectional area A, 
and modulus E. (c) The hub displaces 
downward, so a single spoke at angle θ 
moves from its original (dashed) position 
to a new (solid) one, elongating by Δ. 
(d) An element dθ moves from its 
unloaded dotted position to the solid 
one. (e) Movement of point O to point O', 
giving the relationship between δ and Δ. 
(f) FBD of a spoke. Copyright ©2008 
Dominic J. Dal Bello and licensors. All 
rights reserved.
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Step 3. The downward displacement is therefore:

The stiffness of the spoke system is:

Answer: 

which agrees with the result of Example 4.14 using the displacement method alone. Note
that the energy method was much simpler to apply. In Example 4.14, both the force and the
elongation of each spoke element needed to be determined. Using the energy method, only
the elongation of each member was required.

The energy method is a very useful and powerful tool. Mathematical operations
dealing with energy (a scalar) are easier to apply than those dealing with forces (vectors).
The energy method is the basis for most computer structural analysis tools. Chapter 11
covers the energy method in more detail.

F 2U
δ

-------
2
δ
--- EANδ 2

4R
-------------------⎝ ⎠

⎛ ⎞  
EAN
2R

------------δ= = =

K F
δ
--- EAN

2R
------------= =

Figure 4.46.  Galileo’s sketch of an axial member 
under a tensile load (Dialogues Concerning Two New 
Sciences, 1638. Translated by H. Crew and A. de Salvio, 
1914. Reissued by Northwestern University Press, 1968).



www.manaraa.com

F.A. Leckie, D.J. Dal Bello, Strength and Stiffness of Engineering Systems, Mechanical Engineering Series, 133 
DOI 10.1007/978-0-387-49474-6_5, © Springer Science+Business Media, LLC 2009

Chapter 5 Torsion Members

5.0  Introduction

A common method of transmitting power is by 
means of torque in a rotating shaft. Shafts in 
turbines, motors, and automobile drive systems are of 
circular cross-section. Aircraft wings are also subject 
to torsion, and the torque is transmitted by a torsion 
box that runs along the interior of the wing. The 
operation of micro-mechanical devices often depends 
on the torsional properties of a micro-shaft. 

These types of components are considered here 
under the general heading of torsion members.

5.1  Shafts of Circular Cross-Section

Thin-Walled Shaft in Torsion
Recall from Chapter 3, the thin-walled circular shaft of thickness t and average radius 

R (t << R), subjected to torque T (Figure 5.2). The shear stress τ, shear strain γ, and angle
of twist θ between two cross-sections distance L apart, are:

[Eq. 5.1]

[Eq. 5.2]

τ T

2πR2t
---------------=

γ τ
G
---- T

2πR2tG
--------------------= =

Figure 5.1.  Schematic of the 
assembly of torsion members to 
propel automobiles.

Figure 5.2.  (a) Thin-walled shaft of radius R and thickness t, 
subjected to torque T. (b) Cross-section of thin-walled shaft.
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[Eq. 5.3]

Since the shaft is thin-walled, the shear stress is 
uniform (constant) across the wall thickness 
(Figure 5.3). Also, the outer, inner, and average 
radii are approximately all equal.

In practice, most shafts are solid or have a 
thick wall. The displacement method is used to 
investigate these cases.

Solid Shaft in Torsion
A solid shaft of radius R and length L (Figure 5.4) can be considered as an assembly of 

infinitely many thin-walled circular shafts or elements (Figure 5.5). Each thin-walled shaft 
has radius r, thickness dr, and length L, and supports shear stress τ (r) on its cross-section 
(Figure 5.6).

Due to applied torque T, the angle of twist of the solid shaft of length L is θ. Due to 
symmetry, any radial line on the cross-section must remain straight. Since radii remain 
straight, the thin-walled elements must all rotate together by angle θ. In other words, the 
rotation of each thin-walled element must be compatible with the rotation of the solid shaft 
as a whole. Hence, the displacement method is used.

θ γL
R
------ TL

2πR3tG
--------------------= =

Figure 5.4.  (a) Solid circular shaft in torsion. (b) Cross-section of solid shaft.

Figure 5.5.  (a) A solid circular shaft can be 
considered as an assembly of many thin-
walled shafts. (b) A thin-walled shaft of radius 
r, thickness dr.

Figure 5.6.  Shear stress varies 
with distance r. Each cylindrical 
element of radius r and 
thickness dr contributes to the 
total torque on the shaft: 
dT = rF = r [τ(r) (2πr dr)].

Figure 5.3.  Shear stress τ acting on 
cross-section of thin-walled circular 
shaft due to torque T = (2πR2t)τ.
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Each thin-walled element makes a contribution dT to support the applied torque T. The 
angle of twist of any thin-walled element is expressed using Equation 5.3, replacing T with 
dT, R with r, and t with dr:

[Eq. 5.4]

Solving for dT:

[Eq. 5.5]

To solve for the total torque T supported at any cross-section of the solid shaft, integrate dT

from r = 0 to R. Noting that rotation θ is not a function of r, then:

[Eq. 5.6]

The angle of twist of the solid shaft due to torque T is then:

[Eq. 5.7]

From the geometry of a thin-walled shaft (Figure 5.2), the shear strain of a thin-walled 
element at radius r within the solid shaft is:

[Eq. 5.8]

The shear stress, τ = Gγ, thus varies linearly with r:

[Eq. 5.9]

Substituting θ from Equation 5.7 into Equation 5.8 gives the shear strain with r:

[Eq. 5.10]

The shear stress as a function of r is therefore:

[Eq. 5.11]

The shear strain and shear stress increase linearly with distance r from the center of the 
shaft. The shear stress is zero at the center – the axis of rotation – and reaches its 
maximum at r = R. The maximum shear stress for the solid shaft is then:

[Eq. 5.12]
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Combining Equations 5.11 and 5.12, the shear 
stress at any distance r is:

[Eq. 5.13]

as shown in Figure 5.7.

The torsional stiffness of a solid shaft in 
torsion – the ratio of applied torque to angle of 
twist – is:

[Eq. 5.14]

Hollow (Thick-Walled) Shaft in Torsion
A hollow shaft of outer radius R, inner radius Ri, and length L (Figure 5.8) can also be 

considered as an assembly of infinitely many thin-walled shafts or elements. Each thin-
walled shaft has radius r, thickness dr and length L, and supports stress τ (r) (Figure 5.9).

Due to torque T, the angle of twist of the hollow shaft is θ. Due to symmetry, any 
radial line remains straight. The rotation of each thin-walled element must be compatible
with the rotation of the shaft as a whole, so each element has an angle of twist of θ.

τ r( ) r
R
---τmax=

KT
T
θ
--- πGR4

2L
--------------= =

Figure 5.7.  Shear stress 
distribution in a solid shaft in 
torsion.

Figure 5.9.  (a) A thick-walled shaft acts as an assembly of many thin-
walled shafts. (b) Each cylindrical element of radius r and thickness dr, 
contributes to supporting the total applied torque.

Figure 5.8.  (a) Thick-walled shaft under torsion. (b) Cross-section of 
thick-walled shaft.
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Each thin-walled element makes a contribution dT to support the applied torque T
(Figure 5.9), and repeating Equation 5.5:

[Eq. 5.15]

Integrating over the solid area of the hollow shaft, i.e., from Ri to R, gives the torque:

[Eq. 5.16]

The angle of twist θ is then:

[Eq. 5.17]

Substituting θ from Equation 5.17 into Equation 5.8, gives the shear strain with r:

[Eq. 5.18]

The shear stress is linear with r:

[Eq. 5.19]

As is the case for the solid shaft, the shear stress increases linearly with radius r; it is 
minimum at r = Ri , and reaches its maximum value at r = R (Figure 5.10). For r < Ri , 
there is no material so there is no shear stress. On the inner surface of the cylinder, r = Ri , 
so the shear stress is:

[Eq. 5.20]

The maximum shear stress occurs at the outer 
radius, r = R:

[Eq. 5.21]

In general, the shear stress can be written as:

[Eq. 5.22]

with r > Ri .

The torsional stiffness of the hollow shaft is: 

[Eq. 5.23]

dT 2πGθ
L

--------------r3dr=

T Td
 Ri

 R

∫ πGθ
2L

----------- R4 Ri
4–⎝ ⎠

⎛ ⎞= =

θ 2TL

π R4 Ri
4–( )G

--------------------------------=

γ r( ) rθ
L
----- 2Tr

π R4 Ri
4–( )G

--------------------------------= =

τ r( ) 2Tr

π R4 Ri
4–( )

---------------------------=

τ Ri( )
2TRi

π R4 Ri
4–( )

---------------------------=

τmax τ R( ) 2TR

π R4 Ri
4–( )

---------------------------= =

τ r( ) r
R
---τmax=

KT
T
θ
--- πG

2L
------- R4 Ri

4–( )= =

Figure 5.10.  Shear stress 
distribution in a hollow circular shaft 
in torsion.
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Polar Moment of Inertia
For any circular cross-section in torsion, the shear stress and strain distributions, the 

angle of twist, and the torsional stiffness can each be written in a general form:

Shear Stress: ;     Shear Strain: 

Angle of Twist:        Torsional Stiffness:

[Eq. 5.24]

Variable J is the polar moment of inertia and is a function of the cross-section geometry. 
The general expression for the polar moment of inertia is:

[Eq. 5.25]

The polar moment of inertia of a cross-section is a measure of its resistance to twisting. 
For a given torque, the larger the value of J, the larger the torsional stiffness, and the 
smaller the angle of twist. Shear stress is proportional to R/J, and since J increases faster 
than R, stress decreases with increasing J. The units of J are mm4 = 10–12 m4 or in.4.

Expressions for the polar moment of inertia for various circular cross-sections are 
given in Table 5.1.

* Use Rave for the best results for J in the thin-walled formula. The thin-walled formula 
can be derived from the thick-walled formula by letting t = R–Ri approach zero; i.e., 
t << R, R ~ Ri :

Table 5.1.  Polar Moment of Inertia for Circular Cross-sections; R is the outer radius.

Cross-section Cross-section Polar Moment of Inertia, J

 [Eq. 5.26]

Thick-walled (Hollow)
Shaft

R = D/2, Ri = Di/2
[Eq. 5.27]

Thin-walled Shaft * 
t  << R

t = R–Ri = (D–Di)/2
Rave = (R+Ri)/2; Dave = (D+Di)/2

[Eq. 5.28]

τ r( ) Tr
J

------= τmax
TR
J

-------= γ r( ) Tr
JG
------- τ r( )

G
----------= =

θ TL
JG
-------= KT

T
θ
--- JG

L
-------= =

J r2 Ad
A∫=

πR4

2
---------- πD4

32
----------=

π R4 R– i
4( )

2
-------------------------

π D4 D– i
4( )

32
--------------------------=

2πRave
3 t

πDave
3 t

4
-----------------=

J π
2
--- R4 Ri

4–( ) π
2
--- R2 Ri

2+( ) R2 Ri
2–( ) π

2
--- R2 Ri

2+( ) R Ri+( ) R Ri–( )= π
2
--- 2R2( ) 2R( ) t( ) 2πR3t== = =
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Example 5.1  Effect of Geometry

Given: A circular steel shaft, L = 2.0 m long, has an outside diameter D = 80.0 mm and 
transmits a torque of T = 4000 N·m. The shear modulus of steel is G = 77 GPa.

Required: Using the same outer diameter for each case, determine the maximum shear 
stress and angle of twist for (a) a solid shaft, (b) a hollow shaft with Di = 30.0 mm, and
(c) a thin-walled shaft with t = 5.00 mm. (d) Compare the results of the different 
geometries. Use the actual outer radius in the stress formula: τ = TR/J.

Solution: The various cross-sectional geometries are: (a) D = 80.0 mm, (b) D = 80.0 mm 
and Di = 30.0 mm, and (c) Dave = [D + (D – 2t)]/2 = 75.0 mm and t = 5.0 mm. 

Using the equations for the polar moment of inertia from Table 5.1, and the general 
formulas for the maximum shear stress and angle of twist (Equation 5.24), gives the 
following results:

The area of the hollow (thick-walled) shaft is 14% less than that of the solid shaft, but the 
performance is essentially unchanged (the stress and angle of twist have only increased by 
about 2% each). The central core of the circular shaft adds little to the strength and 
stiffness of a torsion member. 

In the thin-walled shaft, all of the material is acting near the maximum value of the stress. 
The area of the thin-walled shaft is 23% (~1/4) that of the solid shaft, while the stress is 
only 2.4 times that of the solid shaft. For high-performance engines, where weight is 
important, thin-walled shafts offer an attractive alternative design since they are very 
efficient in supporting torsional loads.

Shaft
Formula for

J
J 

(×10–6 m4)

Max. Stress
τmax = TR/J

(MPa)

Angle of Twist
θ = TL/JG

Cross-sectional

Area (×10–3 m2)

Solid Shaft 4.021 39.8 25.8×10–3 rad 
= 1.48º

5.026

Hollow
Shaft

3.942 40.6 26.4×10–3 rad 
= 1.51º

4.320

Thin-walled
Shaft

1.657 96.6 62.7×10–3 rad 
= 3.59º

1.178

πD4

32
----------

π D4 D– i
4( )

32
--------------------------

πDave
3 t

4
-----------------
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5.2  Torsion Members – Force Method

The following examples demonstrate the force method applied to torsion members. 
The torque everywhere in the system is first determined, followed by the shear stress and 
the angle of twist.

Example 5.2  Solid Shaft under Torsion

Given: A solid shaft, L = 3.0 ft long, with a 
diameter D = 2R = 2.0 in., is subjected to a 
torque T = 4000 lb-in. (Figure 5.11). The
shaft is made of steel with shear modulus 
G = 12×106 psi and yield strength Sy = 50 ksi.

Required: Determine (a) the maximum shear 
stress, (b) the angle of twist of the shaft, and 
(c) the factor of safety FS against yielding.

Solution: Step 1. The polar moment of inertia is:

Step 2. The maximum shear stress is:

Answer: 

Step 3. The angle of twist is:

Answer: 

Step 4. The shear yield strength is not given, but for ductile materials it can be 
approximated from the yield strength Sy :

The factor of safety is therefore:

Answer: 

The design of shafts is often limited by the angle of twist.

J πD4

32
---------- π 2.0 in.( )4

32
-------------------------- 1.571 in.4= = =

τmax
TR
J

------- 4000 lb-in.( ) 1.0 in.( )
1.571 in.4

----------------------------------------------------= =

τmax 2.55 ksi=

θ TL
JG
------- 4000 lb-in.( ) 36.0 in.( )

1.571 in.4( ) 12 10
6×  psi( )

----------------------------------------------------------------= =

θ 0.00764 rad 0.44°= =

τy

Sy

3
------- 50 ksi

3
--------------  28.9 ksi= = =

FS
τy

τ
----- 28.9 ksi

2.55 ksi
-------------------= =

FS 11.3=

Figure 5.11.  Solid shaft in torsion.
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Example 5.3  Hollow Shaft under Torsion

Given: A hollow shaft, L = 3.0 ft long, 
with outer diameter D = 2.0 in., and inner 
diameter Di = 1.0 in., is subjected to a 
torque T = 4000 lb-in. (Figure 5.12). The 
shaft is made of steel with shear modulus 
G = 12×106 psi and yield strength 
Sy = 50 ksi.

Required: Determine (a) the shear stresses at the outer and inner surfaces, (b) the angle of 
twist of the shaft, and (c) the factor of safety FS against yielding.

Solution: Step 1. The polar moment of inertia is:

Step 2. The maximum shear stress is at the outer surface of the shaft, and is:

Answer: 

The shear stress at the inner surface is:

Answer: 

Step 3. The angle of twist is:

Answer: 

Step 4. The shear yield strength is:

so the factor of safety is:

Answer: 

Note that there is not much difference in the responses of the current hollow shaft and the 
solid shaft of Example 5.2. Both shafts have the same outer diameter, but the hollow shaft 
provides a weight savings of 25% with a modest increase in stress of 6.7%.

J
π D4 Di

4–( )

32
---------------------------- π 2.0 in.( )4 1.0 in.( )4–[ ]

32
------------------------------------------------------------ 1.473 in.4= = =

τ R( ) TR
J

------- 4000 lb-in.( ) 1.0 in.( )
1.473 in.4

----------------------------------------------------= =

τmax 2.72 ksi=

τ Ri( )
TRi

J
-------- 4000 lb-in.( ) 0.5 in.( )

1.473 in.4
----------------------------------------------------= =

τ Ri( ) 1.36=  ksi

θ TL
JG
------- 4000 lb-in.( ) 36.0 in.( )

1.473 in.4( ) 12 10
6×  psi( )

----------------------------------------------------------------= =

θ 0.00815 rad 0.47°= =

τy
Sy

3
------- 50 ksi

3
--------------  28.9 ksi= = =

FS
τy

τ
----- 28.9 ksi

2.72 ksi
-------------------= =

FS 10.6=

Figure 5.12.  Hollow shaft in torsion.
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Example 5.4  Pre-torqued Suspension Torsion Bar

Given: In high-performance cars, the 
steering and handling characteristics are 
improved by introducing a prestressed 
circular torsion bar. The torsion bar is pre-
torqued by rotating one end of the bar with 
respect to the other end. One end of the 
torqued bar is then attached to the frame, 
and the other end to the wheel suspension. 

Such a solid shaft, with diameter D = 30 mm and length L = 1.3 m, is made of steel 
(G = 77 GPa). The pre-torque causes a relative angular displacement between the ends of 
the bar of θ = 3.0° (Figure 5.13). 

Required: Determine (a) the pre-torque required, and (b) the maximum shear stress.

Solution: Step 1. The polar moment of inertia is:

Step 2. Solving for the torque, and noting that 3.0° = 0.05236 rad:

Answer: 

Step 3. The maximum shear stress is:

Answer: 

Example 5.5  Stepped Shaft in Torsion

Given: The solid stepped shaft, ABC, is fixed at A, and is subjected to torques TB = 
880 N·m and TC = 275 N·m (Figure 5.14). Segment AB has length LAB = 1.5 m and 
diameter DAB = 50 mm. Segment BC has length LBC = 1.0 m and diameter DBC = 30 mm. 
The material is steel with a shear modulus of G = 77 GPa.

Required: Determine (a) the maximum shear stress in AB, (b) the maximum shear stress 
in BC, and (c) the total angle of twist of shaft ABC, θAC . 

Solution: Step 1. The polar moment of inertia of each cross-section is:

J πD4

32
---------- π 0.030 m( )4

32
------------------------------- 79.52 10

9–×  m4= = =

T JGθ
L

---------- 79.52 10
9–×  m4( ) 77 10

9×  Pa( ) 0.05236 rad( )
1.3 m

-----------------------------------------------------------------------------------------------------------------= =

T 247 N·m=

τmax
TR
J

------- 247 N·m( ) 0.015 m( )

79.5 10
9–×  m4( )

---------------------------------------------------= =

τmax 46.5 MPa=

JAB

π DAB( )4

32
---------------------- π 0.05 m( )4

32
---------------------------- 613.6

9–×10  m4= = =

Figure 5.13.  Solid shaft in torsion.
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Step 2. From a FBD of the shaft 
(Figure 5.14b), the reaction at the wall is:

The torques carried in AB and BC are 
(Figure 5.14c):

Step 3. The maximum shear stress and 
angle of twist of segment AB are:

Answer: 

Step 4. The maximum shear stress and angle of twist of segment BC are:

Answer: 

Step 5. Since the internal torques twist both segments in the same direction, the total angle 
of twist is (Figure 5.14d):

Answer: 

JBC

π DBC( )4

32
---------------------- π 0.03 m( )4

32
----------------------------= =

79.52 10
9–×  m4=

TA TB TC+ 1155 N·m= =

TAB TA 1155=  N·m=

TBC TC 275 N·m= =

τAB max,

TABRAB

JAB
--------------------=

1155 N·m( ) 0.025 m( )

613.6 10
9–×  m4

------------------------------------------------------=

τAB max, 47.0=  MPa

θAB

TABLAB

JABG
--------------------=

1155 N·m( ) 1.5 m( )

613.6 10
9–×  m4( ) 75 10

9×  Pa( )
------------------------------------------------------------------------------- 0.0376 rad 2.16°= = =

τBC max,
TR
J

------- 275 N·m( ) 0.015 m( )

79.52 10
6–×  m4

---------------------------------------------------= =

τBC max, 51.9 MPa=

θBC
TL
JG
------- 275 N·m( ) 1.0 m( )

79.52 10
9–×  m4( ) 75 10

9×  Pa( )
------------------------------------------------------------------------------- 0.0461 rad 2.64°= = = =

θAC θAB θBC+ 2.16° 2.64°+= =

θAC 4.8= °

Figure 5.14.  (a) A stepped-shaft subjected 
to torques TB and TC . (b) FBD of entire 
system. (c) FBDs to find internal torques TAB 
and TBC . (d) Strain γ, and angle of twist 
θ = γR, of AB and BC. Total angular 
displacement is θAC = θAB + θBC .
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Example 5.6  Torsional Vibration Damper

Given: A damper used to reduce 
the torsional vibration in a 
machine consists of a solid shaft 
AB, set inside hollow shaft BC

(Figure 5.15). For AB:

DAB = 60 mm,  
LAB = 750 mm.

For BC:

Do = 110 mm, Di = 80 mm, 
LBC = 600 mm. 

The shafts are joined at cross-
section B. The vibrating machine 
is at point A and the assembly is 
anchored at fixed base point C. 
The damper is made of steel with 
G = 77 GPa. 

The damper is designed to 
occupy minimal space by 
doubling back upon itself.

Required: Determine (a) the 
maximum shear stress in each segment for an applied torque T = 8.60 kN·m, (b) the 
rotations of cross-sections A and B with respect to fixed cross-section C, and (c) the 
torsional stiffness KT = T/θ of the damper system.

Solution: Step 1. The polar moments of inertia are:

Step 2. Equilibrium requires that the torque be the same throughout. Although the damper 
is turned back upon itself, it is the same as two shafts joined together in series. The torque 
in each segment is:

The maximum shear stress in each segment is then:

Answer: 

JAB
πD4

32
---------- π 60 10

3–×  m( )4

32
----------------------------------------- 1.27 10

6–×  m4= = =

JBC

π D4 Di
4–( )

32
---------------------------- π 110 10

3–×  m( )4
80 10

3–×  m( )4
–[ ]

32
--------------------------------------------------------------------------------------------- 10.4 10

6–×  m4= = =

TAB TBC T 8.6 kN·m= = =

τAB max,

TRAB

JAB
------------- 8.6 kN·m( ) 0.03 m( )

1.27 10
6–×  m4

-------------------------------------------------= =

τAB max, 203=  MPa

Figure 5.15.  (a) Vibrational damper. Dimensions in 
mm. (b) FBD of AB. (c) FBD of BC.
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Answer: 

Step 3. Torque–twist (as in force–displacement) gives the angle of twist of each segment to be:

The angle of twist is the relative rotation of one end of a shaft with respect to the other end. 
θAB is the angle of twist between cross-sections A and B; θBC is the angle of twist between 
cross-sections B and C.

Step 4. Compatibility (rotation–twist). Section C is fixed, so the absolute rotation of 
section B, θB , is equal to the angle of twist of BC, θBC (from point C to point B):

Answer: 

The total rotation of section A is the absolute rotation of section B and the angle of twist of 
A with respect to B:

Answer: 

Step 5. The torsional stiffness KT of the assembly is:

Answer: 

Example 5.7  Drill Bit

Given: A drill bit is stuck in a piece of wood, but the user attempts to continue to operate 
it (Figure 5.16). Assume that the bit is a simple cylinder of radius R and embedded length 
L. The drill applies torque T. The surrounding wood applies a uniform interfacial shear 
stress τi on the surface of the cylinder, reducing the internal torque T(x) carried in the bit 
linearly from the drill-end (x = L) to the tip of the bit (x = 0). No torque is transferred 
across the free-end (tip) of the bit.

Required: Determine the angle of twist of the embedded length of the drill bit. Measure x
from the tip (free end) of the bit.

τBC max,

TRBC

JBC
-------------- 8.6 kN·m( ) 0.055 m( )

10.4 10
6–×  m4

----------------------------------------------------= =

τBC max, 45.5 MPa=

θAB

TLAB

JABG
------------- 8.6 kN·m( ) 0.750 m( )

1.27 10
6–×  m4( ) 77 GPa( )

----------------------------------------------------------------- 0.0660 rad = 3.78°= = =

θBC

TLBC

JBCG
-------------- 8.6 kN·m( ) 0.600 m( )

10.4 10
6–×  m4( ) 77 GPa( )

----------------------------------------------------------------- 0.0064 rad = 0.37°= = =

θB θBC 0.0064 rad 0.37°= = =

θA θBC θAB+=

θA 0.0724 rad= 4.1°=

KT
T

θA
------ 8.6 10

3×  N·m
0.0724 rad

----------------------------------= =

KT 119 kN·m/rad = 2.1 kN/deg=
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Solution: Step 1. Equilibrium of the 
embedded bit (Figure 5.16b). Assuming that 
the bit attempts to rotate clockwise as it cuts, 
the value of the torque T at the drill end is:

and acts in the direction drawn. 

Equilibrium on a FBD from the tip of the bit 
to the cross-section at x (Figure 5.16c) gives 
the internal torque T(x):

T(x) is drawn in its positive sense, but 
physically acts in the opposite direction, so it 
has a negative value.

Step 2. Torque–twist. Consider a length dx so 
small that the change in T(x) over dx is 
negligible. Over dx (Figure 5.16d), the angle 
of twist is:

Step 3. Compatibility (rotation–twist). The 
angle of twist from the tip (x = 0) to any 
cross-section at x is found by integrating 
dθ (x) from 0 to x: 

The angle of twist between the free end (x = 0) and the drill end (x = L) is:

Answer: 

The angle of twist is negative because with respect to the x-axis, the rotation of the left 
(drill) end of the bit is clockwise.

T τi 2πRL( )R τi2πR2L= =

T x( ) τi– 2πR2
⎝ ⎠
⎛ ⎞ x T– x

L
---= =

dθ x( ) T x( )dx
JG

-----------------
τi– 2πR2( )x dx

JG
-------------------------------------= =

θ x( ) T x( ) xd
JG

-----------------
 0

 x

∫
τi– 2πR2( )x dx

JG
-------------------------------------

 0

 x

∫= =

1
JG
------- T x

L
--- –⎝ ⎠

⎛ ⎞ xd
 0

 x

∫ Tx2–
2JGL
--------------= =

θ θ L( ) T– L2

2JGL
--------------= =

θ T– L

πR4G
-------------- 16– TL

πD4G
----------------= =

Figure 5.16.  (a) Drill. (b) FBD of 
embedded drill bit, with interfacial shear 
stress τi. (c) FBD of length of drill from 0 
to x. (d) FBD of cylindrical slice dx thick.
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The drill bit is the twisting analogy to the nail being extracted from a piece of wood 
(Example 4.4). Recall the nail’s elongation under tensile force T was:

The equations are the same except for the numerical constant, the definition of the load T 

(torque versus tension), the type of modulus (shear versus axial), and the exponent on the 
diameter (due to how the cross-section supports the applied load).

Example 5.8  Stepped-Shaft with Fixed Ends – Statically Indeterminate

Given: The stepped shaft ABC shown in 
Figure 5.17 is fixed at ends A and C. 
Torque T is applied at the juncture point 
B. The shear modulus of both segments 
of the shaft is the same, equal to G.

Required: Using the force method, 
determine (a) the angular displacement 
θB of cross-section B as a function of T,

and (b) expressions for the torques 
carried in each segment of the shaft, 
TAB and TBC. Take the system to remain 
elastic.

Solution: 

Step 1. Equilibrium of the entire system 
provides only one equation – the torque 
about the x-axis (Figure 5.17b):

Since there are two unknowns but only 
one useful equilibrium equation, the 
system is statically indeterminate.

Let the redundant torque be TC = R. In 
terms of the applied and redundant 
torques, the reactions are:

TC = R   and   TA = R + T

From equilibrium, the internal torques equal the reaction torques (Figure 5.17c):

Δ u L( ) 2TL

πD2E
--------------= =

Tx 0:  T=∑ TA– TC+ 0=

TAB TA R T+= =

TBC TC R= =

Figure 5.17.  (a) A stepped-shaft with fixed 
ends. (b) FBD of entire system. (c) FBDs to 
find internal torques TAB and TBC . (d) Strain 
γ, and angular displacement θ = γR, of AB 
and BC.
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Step 2. The twist–torque elastic relationship gives the angles of twist for AB and BC:

   and   

Step 3. Compatibility (rotation–twist relationship) relates the angle of twist of each 
member (θAB and θBC) to the displacement of the system θB (the rotation of section B): 

With reference to the +x-axis, section B rotates counterclockwise (positive) with respect to 
section A; section C rotates clockwise (negative) with respect to section B.

The total angle of rotation from A to C is zero:

Therefore:

Step 4. Solving for torques TAB and TBC :

Answer: 

Answer: 

Step 5. The angle of rotation of section B, θB, is:

Answer: 

The torsional flexibility and stiffness are:

   and   

Note that the stiffnesses of the torsion elements are additive since the rotation is resisted 
by both AB and BC acting together.

θAB

TABLAB

JABG
--------------------

R T+( )LAB

JABG
----------------------------= = θBC

RLBC

JBCG
--------------=

θAB θB  and  θBC θ– B==

0 θAB θ+
BC

R T+( )LAB

JABG
----------------------------

RLBC

JBCG
--------------+= =

R T 1
JABLBC

JBCLAB
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

–=

TAB T R+ T T 1
JABLBC

JBCLAB
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

–= =

TAB T=  1
JBCLAB

JABLBC
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

TBC R T–  1
JABLBC

JBCLAB
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

= =

θB

TABLAB

JABG
-------------------- T 1

JBCLAB

JABLBC
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1– LAB

JABG
------------- T

G
----

JAB LAB⁄

JAB LAB⁄( ) JBC LBC⁄( )+
--------------------------------------------------------------

LAB

JAB
---------= = =

θB
T
G
----

JAB

LAB
---------

JBC

LBC
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

=

FT
θ
T
--- 1

G
----=

JAB

LAB
---------

JBC

LBC
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

= KT
T
θ
--- G=

JAB

LAB
---------

JBC

LBC
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=
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5.3  Torsion Members – Displacement Method

The following examples illustrate the displacement method. In the displacement
method for torsion members, a rotation θ is imposed on the shaft at a key point. Through 
the angle of twist–torque relationships, the torques and shear stresses are determined.

Example 5.9  Stepped-Shaft with Fixed Ends – Statically Indeterminate

Given: The stepped-shaft problem of Example 5.8 and Figure 5.17 is repeated.

Required: Use the displacement method to determine (a) the angular displacement θB of 
cross-section B as a function of T and (b) the expressions for the torques carried in each 
segment of the shaft, TAB and TBC, in terms of T, J, and L.

Solution: Step 1. Rotation θB is imposed on the shaft at cross-section B. The displacement–
twist relationship requires that the angles of twist of segments AB and BC be: 

θAB = θB   and   θBC = −θB 

Step 2. The torque–twist relationship requires:

   and   

Step 3. Equilibrium requires: 

Step 4. The stiffness of the system is:

The torsional stiffness  and the torsional flexibility  agree with the results 
of Example 5.8.

The angular displacement of cross-section B is:

Answer: 

Step 5. The torque in each segment of the bar is:

Answer: 

TAB

JABG

LAB
------------- θAB( )

JABG

LAB
-------------θB = = TBC

JBCG

LBC
-------------- θBC( )

JBCG

LBC
-------------- θB–( )= =

T TA TC–
JABG

LAB
-------------θB  

JBCG

LBC
--------------– θB–( )

JAB

LAB
---------

JBC

LBC
---------- +

⎝ ⎠
⎜ ⎟
⎛ ⎞

GθB= = =

KT
T

θB
------ G

JAB

LAB
---------

JBC

LBC
---------- +

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

KT FT KT
1–=

θB
T
G
----

JAB

LAB
---------

JBC

LBC
---------- +

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

=

TAB

JABG

LAB
------------- T

G
----

JAB

LAB
---------

JBC

LBC
---------- +

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

=

TAB T= 1
JBCLAB

JABLBC
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–
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Answer: 

Note that the displacement method solves for T in terms of θB, immediately giving the 
stiffness of the system, while the force method (Example 5.8) solves for θB in terms of T, 
immediately giving the flexibility.

Example 5.10  Micro-Shaft with Fixed Ends – Statically Indeterminate

Given: A 3000 μm long silicon carbide 
shaft has a diameter of D = 10 μm. The 
ends of this MEMS (micro-
electromechanical system) structure are 
fixed (Figure 5.18). The shear modulus 
of silicon carbide is G = 195 GPa.

Required: Determine the torsional 
stiffness of the shaft when a torque is 
applied at point B, one-third of the way 
along the shaft from A.

Solution: Step 1. The polar moment of 
inertia is:

Step 2. The stiffness of a shaft ABC, 
fixed at both ends, with a torque applied 
at point B is, from Example 5.8:

Here, JAB = JBC, LAB = 1000 μm and 
LBC = 2000 μm, so:

Answer:  

TBC

JBCG

LBC
-------------- θB–( )=

TBC T 1
JABLBC

JBCLAB
-------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1–

–=

J πD4

32
----------

π 10 10
6–×  m( )

4

32
-----------------------------------------= =

982 10
24–×  m4=

KT
T
θ
--- G=

JAB

LAB
---------

JBC

LBC
---------- +

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

KT GJ 1
LAB
--------- 1

LBC
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

195
9×10  Pa( ) 982

24–×10 m4( ) 1

1000
6–×10 m

------------------------------- 1

2000
6–×10 m

-------------------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

KT 287 10
9–×  N·m/rad=

Figure 5.18.  (a) A solid shaft with fixed 
ends. (b) FBD of entire system. (c) FBDs to 
find internal torques TAB and TBC .  
(d) Strain γ and angular displacement 
 θB = γ R.
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Summary of Equations for Shear Stress, Strain, and Angle of Twist
Only when torque, polar moment of inertia, and shear modulus are all constant over 

the entire length of a circular shaft can its angle of twist (angular displacement) be 
expressed as:

[Eq. 5.29]

If any of the values of torque, polar moment of inertia and shear modulus vary over the 
length of a shaft, the system must be broken up into smaller lengths or elements, where all 
three values are constant in each element. The elements may be shorter lengths Li , or even 
differential lengths dx. The total angle of twist is the summation (integral) of the angle of 
twists of each small element. A summary of the relevant equations is given in Table 5.2.

Note the similarity of the torsion member equations in Table 5.2 to the axial member 
equations in Table 4.1 on Page 110. For example, the angular displacement equation 
(Equation 5.29) is analogous to the elongation, or axial displacement, of an axial bar:

[Eq. 5.30]

Table 5.2.  General equations for in-line torsion members.

Torque, Polar 
Moment of 

Inertia, Shear 
Modulus 

Maximum 
Shear Stress on 
Cross-section

(r = R)

Maximum
Shear Strain

at Cross-section

Angle of Twist
of System

Remark/
Constant 

Strain Element

All Constant L

Discretely 
Varying

Break component 
into lengths Li , 

where T, J, and G 
are all constant.

Continuously 
Varying

Consider length 
dx, so small that 
over its length, 

T, J, and G are all 
constant.

θ TL
JG
-------=

Δ PL
AE
-------=

τ TR
J

-------= γ Rθ
L

------- τ
G
----= = θ TL

JG
-------=

τi

TiRi

Ji
----------= γi

Riθi

Li
----------

τi

Gi
-----= = θ

TiLi

JiGi
----------∑=

τ x( ) T x( )R
J x( )

---------------= γ x( ) τ x( )
G x( )
------------= T x( )

J x( )G x( )
----------------------- xd

L
∫
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Error When Using the Thin-Walled Formula for J
In Chapter 3, the shear stress in a thin-

walled shaft due to torque T was given as:

where R is the average radius and t (<< R) is 
the wall thickness. The thin-walled 
approximation means that the variation in 
shear stress from inner to outer radius is 
negligible, i.e., the stress over the wall 
thickness is constant. Geometrically, the 
inner, average, and outer radii are nearly 
equal: Ri~Rave~R (R is now the outer radius).

In this chapter, the polar moment of inertia 
J was introduced. The maximum shear stress 
in a shaft with outer radius R is:

For a hollow shaft of inner radius Ri and 
outer radius R, the exact expression for J is:

while the thin-walled approximation for J is: 

Jthin is easier to manipulate than Jexact , a 
useful attribute in initial design calculations. 
If the outer radius is nearly equal to the 
average, R~Rave , then R can be used in Jthin .
Outer radius R sizes the shaft with respect to 
other components.

The preferred radius to use in the thin-
walled approximation Jthin is the average 
radius Rave . Rave is the best value is 
shown in the graphs below, which show the 
error in J and τmax :

    and    

when using the inner (r = Ri), average 
(r = Rave), and outer radius (r = R), for the 
value of r in Jthin . For τmax , Rmax is always 
taken as the outer radius R. 

Using the outer radius r = R in Jthin
overestimates Jexact , and underestimates the 
actual τmax . Using the inner radius r = Ri in 
Jthin underestimates Jexact , and overestimates 
the actual τmax .

Using the average radius r = Rave in Jthin
slightly underestimates Jexact, and slightly 
overestimates the actual τmax. Even at t/R = 0.4, 
the error in the maximum shear stress is less 
than 7%; for t/R < 0.2, the error is negligible. 
The slight overestimation of 
is a good result for a design calculation.

τ T
2πR2t
---------------=

τmax TR J⁄=

Jexact
π
2
--- R4 Ri

4–⎝ ⎠
⎛ ⎞=

Jthin 2πRave
3 t=

Jthin 2πr3t= τmax TRmax Jthin⁄=

τmax TR Jthin⁄=

Error in  and  compared to exact values when the value for 
r used in Jthin is r = Ri , Rave and R (inner, average and outer radii, respectively).

Jthin 2πr3t= τmax TR Jthin⁄=
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5.4  Closed Thin-Walled Members in Torsion

Closed thin-walled members of arbitrary 
cross-sectional shape are often used to carry 
torsion (Figure 5.19). A thin-walled section 
has a thickness t much smaller than the 
overall dimensions of the cross-section. The 
thickness may vary around the cross-section 
perimeter. 

Non-circular thin-walled members are 
used in aircraft wings. Part of the structural 
system in the wings is the so-called torsion 
box, which supports the torque applied to the 
wings. 

Shear Stresses and Shear Flow
Consider the cross-section of a closed 

thin-walled member subjected to constant 
torque T and varying thickness t

(Figure 5.19). The cross-section is constant 
over length L of the component. The aim is 
to determine the distribution of shear stress 
τ around the cross-section.

Consider element ABCD, dx long by ds

wide by t thick, removed from the thin-
walled member (Figures 5.19 and 5.20a). 
Side AB is on the cross-section and its 
thickness varies from tA to tB . Because 
the thickness varies, the shear stress 
changes as well, from τA to τB . By 
complementary shear stress arguments 
(Figure 5.20b), the stresses on sides AD

and BC are:

   and   [Eq. 5.31]

Applying equilibrium in the x-direction 
requires that:

[Eq. 5.32]

Hence:

τAD τA= τCB τB=

τAD tA dx( ) τCB tB dx( )=

Figure 5.19. A closed thin-walled 
member in torsion.

Figure 5.20.  (a) Element ABCD, dx 
wide, ds long, and t thick. (b) Top view 
of ABCD.
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[Eq. 5.33]

The shear flow q is defined as:

[Eq. 5.34]

Since A and B are arbitrary points on the cross-
section, Equations 5.33 and 5.34 imply that the 
shear flow is constant at every point around the 
cross-section:

[Eq. 5.35]

The element, width ds, is at distance s on 
the perimeter of the cross-section from an 
arbitrary origin (Figure 5.20c). The shear force 
on the element face of area dA = t ds is:

 [Eq. 5.36]

The torque caused by dF about any interior 
point O is therefore:

[Eq. 5.37]

where distance r is the lever arm of q ds about point O, measured from O to the centerline of 

the wall (Figure 5.20c). From geometry, the triangular area bound by ds and the line 
segments from point O to either side of ds is:

[Eq. 5.38]

Integrating dT about the entire perimeter gives the applied torque:

[Eq. 5.39]

where Ao is the total area enclosed by the perimeter of the section. The perimeter is 
measured at the centerline of the wall. For a given torque T, the shear flow q varies 
inversely with enclosed area:

[Eq. 5.40]

Since q = τ  t, the shear stress anywhere is given by:

[Eq. 5.41]

τAtA dx τBtB dx=

q τt=

q τ= AtA τBtB τt= =

dF τt ds q ds= =

dT rq ds=

dA 1
2
---r ds=

T Td
 s∫ rq sd

 s∫ rq
2 Ad

r
----------⎝ ⎠

⎛ ⎞
 s∫ 2q Ad

 s∫ 2qAo= = = = =

q T
2Ao
---------=

τ T
2Aot
-----------=

Figure 5.20.  (c) Thin-walled cross-
section under torque T. Shear flow q 
acting on element face AB.
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Angle of Twist
The angle of twist θ is found using the energy method. The internal energy in element 

ABCD is the product of the elastic strain energy density and the element volume (t ds)dx:

[Eq. 5.42]

where t ds is the differential area on the cross-section. Since τ = q/t, then:

[Eq. 5.43]

In this case, torque T, modulus G, and the cross-sectional geometry are all constant over 
length L, so integrating with respect to x results in replacing dx with L. Quantities T, G, and 
Ao do not depend on perimeter distance s, but t does. Integrating 1/t around the perimeter 
gives the total elastic energy stored:

[Eq. 5.44]

The work done by torque T twisting an elastic shaft by angle θ is:

[Eq. 5.45]

From energy balance, the energy stored equals the work done:

[Eq. 5.46]

Therefore, the angle of twist θ of the member is:

[Eq. 5.47]

and the angle of twist per unit length is:

[Eq. 5.48]

The torsional stiffness KT is:

[Eq. 5.49]

To solve for the angle of twist or the stiffness, it is necessary to find the thickness t as a 
function of distance s around the thin-walled cross-section. 

dU 1
2
---τ2

G
----- t ds( )dx[ ]=

dU 1
2G
-------q2ds

t
-----dx 1

2G
------- T2

4Ao
2

---------- 
⎝ ⎠
⎜ ⎟
⎛ ⎞ ds

t
-----dx= =

U LT2

8GAo
2

-------------- sd
t

-----
 s∫=

W 1
2
---Tθ=

LT2

8GAo
2

-------------- sd
t

-----
 s∫ 1

2
---Tθ=

θ TL

4GAo
2

-------------- sd
t

-----
 s∫=

θ
L
--- T

4GAo
2

-------------- sd
t

-----
 s∫=

KT
T
θ
---

4GAo
2

L
-------------- sd

t
-----

 s∫
1–

= =
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Example 5.11  Box Beam in Torsion 1

Given: Steel box beams are often used in bridge construction. The length of a box beam is 
10.0 m, and the cross-section is a hollow square with outside dimensions d = 750 mm and 
constant thickness t = 25 mm (Figure 5.21). The applied torque is 2000 kN·m. The shear 
modulus of the steel is 75 GPa.

Required: Estimate (a) the shear stress in the beam due to the torque and (b) the angle of twist.

Solution: Step 1. Ao is the area bound by the centerline of the walls:

Since t is constant, the shear stress in the walls is:

Answer: 

Step 2. The angle of twist is:

Answer:  

Since thickness t is constant, the integral term is simply the perimeter at the centerline 
divided by the thickness.

Ao 0.725 m( )2=

τ T
2Aot
----------- 2.0 106×  N·m

2 0.725 m( )2 0.025 m( )
--------------------------------------------------------= =

τ 76.1 MPa=

θ TL

4GAo
2

-------------- sd
t

-----
 s∫ TL

4G d t–( )4
--------------------------

4 d t–( )
t

------------------ 2.0
6×10  N·m( ) 10 m( )

75
9×10  Pa( ) 0.725 m( )3 0.025 m( )

------------------------------------------------------------------------------------= = =

θ 28.0 10 3–×  rad 1.60= °=

Figure 5.21.  (a) Thin-walled member under torque T. (b) Square cross-
section with constant thickness t. (c) Shear stress on cross-section τ.
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Example 5.12  Box Beam in Torsion 2

Given: A similar beam as in the previous example is considered. The length is again 
10.0 m, and the cross-section is a hollow square with outside dimensions d = 750 m. The 
thickness of one set of opposite sides is t1 = 25 mm, while the thickness of the other set of 
sides is t2 = 2t = 50 mm (Figure 5.22). The applied torque is 2000 kN·m. The shear 
modulus of the steel is 75 GPa.

Required: Estimate (a) the shear stress in the beam in the thin walls, (b) the shear stress in 
the thick walls, and (c) the angle of twist.

Solution: Step 1. Ao is the area bound by the centerline of the walls:

The shear stress in the 25 mm wall is:

Answer: 

The shear stress in the 50 mm walls is:

Answer: 

Step 2. The angle of twist is:

Ao d t1–( ) d t2–( ) 0.725 m( ) 0.700 m( ) 0.5075 m2= = =

τ1
T

2Aot1
-------------- 2.0 106×  N·m

2 0.5075 m2( ) 0.025 m( )
-----------------------------------------------------------= =

τ1 78.8=  MPa

τ2
T

2Aot2
-------------- 2.0 106×  N·m

2 0.5075 m2( ) 0.05 m( )
--------------------------------------------------------= =

τ2 39.4=  MPa

Figure 5.22.  (a) Thin-walled member under torque T. (b) Square 
cross-section with variable thickness t. (c) Shear stress τ1 and τ2.
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Answer: 

Note that although more material was added to the cross-section, the maximum shear 
stress in the 25 mm wall is the same as in Example 5.11 (actually the calculated value is 
slightly larger since the centerline perimeter is smaller). To reduce the maximum stress 
found in Example 5.11, the thickness of each wall must be increased.

Example 5.13  Thin-walled Circular Shaft in Torsion

Given: A thin-walled shaft of circular 
cross-section, average radius R, constant 
thickness t (t << R), and length L, is 
subjected to a torque T (Figure 5.23). 

Required: Using the general closed 
thin-walled torsion equations, determine 
(a) the shear stress on the cross-section and 
(b) the angle of twist. (c) Compare the 
results with the thin-walled circular shaft 
equations (Equations 5.1 and 5.3).

Solution: Step 1. The area bound by the average radius R is:

 

The shear stress in the wall is therefore:

Answer: 

Step 2. The angle of twist is:

Answer: 

These results are the same as Equations 5.1 and 5.3, the stress and angle of twist for a thin-
walled circular shaft of average radius R and thickness t.

θ TL

4GAo
2

-------------- sd
t

-----
s∫

TL

4GAo
2

--------------
2 d t2–( )

t1
---------------------

2 d t1–( )

t2
---------------------+= =

2.0 106×  N·m( ) 10 m( )
4 75 109×  Pa( ) 0.5075 m2( )2
---------------------------------------------------------------------- 2 0.700 m( )

0.025 m
---------------------------- 2 0.725 m( )

0.050 m
----------------------------+=

θ 22.3 10 3–×  rad 1.26°= =

Ao πR2=

τ T
2Aot
----------- T

2 πR2( )t
--------------------= =

τ T

2πR2t
---------------=

θ TL

4GAo
2

-------------- sd
t

-----
 s∫ TL

4G πR2( )2
-------------------------

2πR
t

----------= =

θ TL

2πR3tG
--------------------=

Figure 5.23.  (a) Thin-walled circular shaft 
in torsion. (b) Shear stress distribution 
around a thin-walled shaft.
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5.5  Power Transmission

Power is often transmitted through rotating 
shafts. For example, the drive shaft in an 
automobile transfers the engine’s power to the 
wheels; the drive shafts in a ship transfer power 
to the propellers (Figure 5.24). 

Power is the amount of work performed per 
unit time. Work has units of force–length, e.g., 
N·m = J (joules), or ft-lb. Power has units of 
work per time, e.g., N·m/s = J/s = W (watts), or 
ft-lb/s.

In the SI system, the power P (in W) 
transmitted by a shaft is the torque T (N·m) 
carried by the shaft multiplied by its angular 
velocity ω (rad/s):

[Eq. 5.50]

Rearranging Equation 5.50, the torque (N·m) 
supported by a rotating shaft that transmits 
power (W) at a given angular speed (rad/s) is:

[Eq. 5.51]

When US units are used, torque is usually 
given in pound–feet (lb-ft), angular speed in 
revolutions per minute (rpm), and power in 
horsepower (hp). Horsepower is defined as:

1 hp = 550 ft-lb/sec = 6600 in.-lb/sec [Eq. 5.52]

The US unit equation for relating torque T in pound–feet to power HP is:

[Eq. 5.53]

where HP is in horsepower and N is the angular velocity in revolutions per minute. The 
torque can also be given in pound–inches:

[Eq. 5.54]

Take care when using Equations 5.53 and 5.54; power is in horsepower and angular 
velocity N is in revolutions per minute. Note the different units of torque in each 
equation. 

P Tω=

T P
ω
----=

T(lb-ft) 33 000 HP×,
2πN

-------------------------------=

T(lb-in.) 63 000 HP×,
N

-------------------------------=

Figure 5.24.  (a) Shaft rotating with 
constant angular velocity ω.  
(b) Shafts transmit power through 
gears. (c) A ship’s drive shaft 
transmits power to its propeller. 
Copyright ©2008 Dominic J. Dal 
Bello and licensors. All rights 
reserved.



www.manaraa.com

160 Ch. 5 Torsion Members

To convert from rad/s to rpm:

[Eq. 5.55]

and from rpm to rad/s:

[Eq. 5.56]

Example 5.14  Propeller Shaft

Given: The solid-shaft (D = 20.0 mm) 
of a scale-model boat transmits a torque 
of T = 100 N·m at an angular speed of 
4.00 rad/s (Figure 5.25). 

Required: Determine (a) the maximum 
shear stress in the shaft due to the torque 
and (b) the power transmitted by the 
shaft to the propeller.

Solution: Step 1. The polar moment of 
inertia is:

Step 2. The maximum shear stress is:

Answer: 

Step 3. The power transmitted by the shaft is:

Answer: 

N(rpm) ω(rad/s) 1 rev
2π rad
---------------- ⎝ ⎠

⎛ ⎞ 60 s
1 min
-------------- ⎝ ⎠

⎛ ⎞ 9.549 ω×  (rad/s)= =

ω(rad/s) 0.1047 N×  (rpm)=

J πR4

2
---------- π 0.01 m( )4

2
---------------------------- 15.71 10 9–×  m4= = =

τmax
TR
J

------- 100 N·m( ) 0.01 m( )
15.71 10 9–×  m4

------------------------------------------------= =

τmax 63.7 MPa=

Power Tω 100 N·m( ) 4 rad/s( )= =

Power 400 N·m/s = 400 W=

Figure 5.25.  Shaft powering a propeller.
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Example 5.15  Design of a Hollow Shaft

Given: A hollow circular shaft is to transmit 240 hp at 2000 rpm. The allowable shear 
stress is τA = 12.0 ksi.

Required: If the ratio of the outer- to inner-diameter of the shaft is to be approximately 
1.5, design the shaft; i.e., select the outer and inner diameters D and Di. Round the 
diameters to the nearest 0.10 in.

Solution: Step 1. The required torque is:

Step 2. The maximum shear stress for a hollow shaft (outer radius R, inner radius Ri ) is:

Since D/Di = R/Ri = 1.5, then  

Thus:

Step 3. Setting τmax = τA, and solving for R:

Taking the outer radius to be R = 0.80 in., then the inner radius is Ri = 0.53 in. Rounding 
the outer diameter up and the inner diameter down to the nearest 0.10 in. gives: 

Answer: 

Answer: 

Check:

  OK

T(lb-ft) 33 000 HP×,
2πN

------------------------------- 33 000 240 hp( ),
2π 2000 rpm( )

-------------------------------------- 630 lb-ft 7560 lb-in.= = = =

τmax
TR
J

------- 2TR

π R4 Ri
4–( )

---------------------------= =

Ri
2R
3

-------=

τmax
2TR

π R4 2
3
---R ⎝ ⎠

⎛ ⎞4
–

-------------------------------------- 2TR

πR4 1 16
81
------–

------------------------------- 2T

πR3 65
81
------

---------------------- 0.7933 T

R3
------= = = =

R 0.7933 T
τA
-----

1 3/
0.7933

7560 lb-in.
12,000 psi
--------------------------⎝ ⎠

⎛ ⎞ 1 3/
0.794 in.= = =

D 1.60 in.=

Di 1.00 in.=

τmax
TR
J

------- 2 7560 lb-in.( ) 0.80 in.( )
π 0.80 in.( )4 0.50 in.( )4–[ ]
------------------------------------------------------------------ 11.1 ksi < 12 ksi= = =
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Chapter 6 Bending Members: Beams

6.0  Introduction

A beam is a structural component
that supports loads applied transverse to
its main dimensional axis (Figure 6.1).
Floor joists support the vertical loads
due to the occupants and furniture of a
building. Sign-posts and trees resist the
horizontal forces caused by wind. Diving
boards support divers, tree limbs support
children on tire-swings, and park
benches support resting seniors. Beams
must support the loads applied to them
without breaking or deflecting
excessively.

Since beams are subjected to
transverse loads, they must support both
internal bending moments and shear
forces. The four-point bend test
(Figure 6.2a) is commonly used to
determine the properties of high-tech
materials. In this test, a simply-supported
beam of constant cross-section is loaded
symmetrically by two identical point
loads P, one load applied distance a
inside each support.

Due to symmetry of both the
geometry and the load, the reaction at
each support is R = P (Figure 6.2b). The
shear force diagram V(x) vs. x, and the
bending moment diagram M(x) vs. x, are shown in Figure 6.2c, along with the positive
convention of this text (an internal load is positive if it acts on a positive face in a
positive direction or on a negative face in a negative direction). The shear and moment
equations are:

Figure 6.1.  (a) A tree acts as a cantilever 
beam under the wind load w (force per 
length). (b) Seniors resting on a park bench. 
Copyright ©2008 Dominic J. Dal Bello and 
licensors. All rights reserved.

Figure 6.2. (a) A four-point bend test: a 
simply supported beam under two equal and 
symmetrically applied point loads.
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• :

• :

• :

Between the applied loads, the shear force is
zero and the bending moment is constant. 

The condition of zero shear force and
constant bending moment is known as pure
bending. Although most beams also support
a shear force, the study of the pure bending
case provides the basis of a straightforward
theory to determine the normal stresses and
deflections that arise in beams.

6.1  Bending Strain and Stress

The behavior of a beam in bending is established using the displacement method. A
constant radius of curvature R is impressed on a length L of the beam (Figure 6.3). The
current aims are to determine:

1. the strains caused by the deformation,
2. the moment required to cause the deformation, and 
3. the resulting stresses in the beam due to the moment.

In the following formulation, the cross-section of the beam is constant along the x-axis and
symmetric about the y-axis (Figure 6.3a). The moment acts about the z-axis.

1. Radius of Curvature – Strain Relationship

Consider a beam of uniform cross-section and material properties subjected to
bending moment M, constant along the x-axis (Figure 6.3b). This pure bending condition
is the same loading as on the center segment of the four-point bend test. The moment is
drawn in the positive sense, with the top of the beam in compression. 

Since the bending moment and the cross-section are both constant with x, the beam at
every point along its length must bend, or curve, in the same manner; e.g., cross-sections
AB and CD are under the same loading and bending conditions (Figure 6.3b). The beam
must therefore deform into the arc of a circle, since the circle is the only shape of constant
curvature.

In pure bending, each cross-section must deform the same way, so each aligns with a
radius of the circle (Figure 6.3b). The graphical extensions of the cross-sectional planes

x a<

V x( ) P–= M x( ) Px=

a x L a–< <

V x( ) 0= M x( ) Pa=

x L a–>

V x( ) P= M x( ) P L x–( )=

Figure 6.2. (b) Free body diagram of 
beam. (c) Shear force and bending 
moment diagrams for four-point bending.



www.manaraa.com

6.1 Bending Strain and Stress 165

meet at a single point, O, called the
center of curvature. A cross-sectional
plane must remain plane after the
moment is applied. 

That cross-sectional planes remain
plane can be demonstrated by
considering center plane AB in
Figure 6.4. The loading and geometry of
the beam is the same viewed from either
the front or the back (Figures 6.4a and b).
Therefore, center plane AB must deflect
the same way, viewed from either front
or back. The only way that this is
possible is for plane AB to remain plane
(straight). This is true for all cross-
sectional planes since the beam in
Figure 6.4 can be continually halved and
the same argument used.

Under a positive moment, the top
surface of the beam shortens, while the
bottom surface elongates (Figure 6.3b).
Somewhere between those surfaces,
there is an interior surface that does not
change length; this is called the neutral
plane (at y = 0). Viewing the beam from
the side, this plane is a line, called the
neutral axis, indicated by the broken x-
axis in Figure 6.3. Where the neutral
axis (NA) lies – the location of y = 0 on
the cross-section – depends on the shape
of the cross-section.

The radius of the circular arc that the
beam bends into, measured from the
center of curvature O to the neutral axis,
is the radius of curvature R (Figure 6.3).
The inverse of R is the curvature κ
(Greek “kappa”):

[Eq. 6.1]

Now consider the beam segment of
length L in Figure 6.5. The beam is

κ 1
R
---=

Figure 6.3. (a) Side view and cross-section 
of beam. Its constant cross-section is 
symmetric about the y-axis. (b) Side view of 
beam bent under a pure (and positive) 
bending moment about the z-axis. The 
length of the beam at the neutral axis does 
not change.

Figure 6.4. (a) Side view of beam in pure 
bending, viewed from the front. (b) Beam 
viewed from the back. Due to symmetry, 
cross-sectional planes remain plane; e.g., 
AB must look the same from front and back.
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subjected to the impressed curvature caused
by a pure moment. Cross-sectional planes
AB and CD remain plane, moving to A'B' and
C'D' (exaggerated in Figure 6.5b). At the
neutral axis, distance R from the center of
curvature, the beam remains length L.

Line GH (representing a plane parallel to
the neutral plane) is distance y above the
neutral axis. The original length of GH is L.
The deformed length G'H' lies on a circular
arc of radius  from the center of
curvature. From proportionality:

[Eq. 6.2]

The strain of GH is linear with y:

[Eq. 6.3]

For a positive moment, the strain is negative
(compressive) above the neutral axis (y > 0),
and positive below it (y < 0). At y = 0, the
strain is zero – the neutral axis does not
change length. Note that the neutral axis still
has yet to be located.

2. Stress–Strain Relationship

From Hooke’s Law, the normal stress due to bending varies linearly with y:

[Eq. 6.4]

The stress is zero at the neutral axis (y = 0) and is greatest in magnitude where y is
maximum, furthest away from the bending axis (i.e., the z-axis).

3. Equilibrium

The beam of cross-sectional area A can be considered as a stack of very thin axial
members or elements, each supporting part of the applied load (Figure 6.6). Each element
has height dy and width t(y), where t is the beam width at y. The cross-sectional area of
each thin element is thus dA = t(y)dy.

The force on each element dF(y) at height y is its stress multiplied by its area:

[Eq. 6.5]

R y–

G′H′
L

------------ R y–
R

------------=

ε y( ) G′H′ L–
L

---------------------- R y–( ) R–
R

--------------------------  y
R
---–= = =

σ y( ) Eε= y( )  Ey
R

------–=

dF y( ) σ y( )dA=

Figure 6.5.  (a) Side view of length L of 
beam. Line GH is distance y above the 
Neutral Axis. (b) Beam under impressed 
curvature due to pure bending. GH 
deforms into G'H'.
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The total force F in the x-direction (along the
beam’s axis), is calculated by integrating dF
over the cross-sectional area A:

[Eq. 6.6]

Neither E nor R depends on area and can be
removed from the integral.

The beam is subjected to pure bending
only, so the resultant force F that acts on any
cross-section is zero:

[Eq. 6.7]

Since neither E nor 1/R is zero, it follows
that:

[Eq. 6.8]

The integral is the first moment of area of
the cross-section, used to locate the cross-
section’s centroid or center of area. The first
moment of area is zero when y is measured
from a horizontal axis through the area’s
centroid. The intersection of the cross-
section and the neutral plane – the z-axis in Figure 6.6 – therefore passes through the
cross-section’s centroid. Since the cross-section is symmetric about the y-axis, the neutral
axis also passes through the centroid. Table 6.1 gives expressions for the locations of the
centroids of a few common cross-sections.

The moment of dF(y) about the bending axis, i.e., about the z-axis in Figure 6.6, is:

[Eq. 6.9]

The negative sign is included in Equation 6.9 since, as drawn, dF for positive values of y
causes a clockwise (negative) moment about the z-axis. The total moment M about the z-
axis is then:

[Eq. 6.10]

The integral term is a geometric property of the cross-section called the second moment of
area:

F σ y( ) Ad
A

∫  Ey
R

------– Ad
A

∫= =

F  E
R
---– y Ad

A
∫ 0= =

y Ad
A

∫ 0=

dM y dF y( )– yσ y( )dA–= =

M yσ y( ) Ad
A

∫– yEy
R

------ Ad
A

∫ E
R
--- y2 Ad

A
∫= = =

Figure 6.6.  (a) Isometric view of beam 
visualized as a stack of axial members, 
each under load dF(y) = σ(y)dA. 
(b) Cross-section of beam. (c) A thin 
slice, cross-sectional area dA = t(y)dy 
under stress σ(y). 
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Table 6.1.  Geometric properties: Area, Moment of Inertia and Neutral Axis.

Notes: For circular beams:  I  =  J/2.
For T-beams: d1 = from neutral axis to centroid of vertical rectangular piece (w×d ).

d2 = from neutral axis to centroid of horizontal rectangular piece (b×f ).

For T-beams: distance of centroid above bottom:

Upright T: ; Inverted T: .

Shape Area
Moment of Inertia about 
horizontal axis through 

Centroid

Location of 
Neutral Axis 

(from 
bottom)

Rectangle,
Square bd

Hollow
Rectangle

(d is total depth)

Circle, 
solid

Circle, 
thick
wall

Built up 
I-beam

(d is total depth)
(parallel axis theorem)

Chords
of Truss

A
(total cross-sectional area 
of upper and lower chord) (d is distance between chord 

centroids)

T-beam

wd + bf

(d is height of vertical 
rectangle only)

See below

T-Beam,
inverted

wd + bf

(d is height of vertical 
rectangle only)

See below

bd3

12
---------

d
2
---

bd b 2w–( )– d 2f–( ) bd3 b 2w–( ) d 2f–( )3–
12

----------------------------------------------------------
d
2
---

πR2 πD2

4
----------= πR4

4
---------- πD4

64
----------= R D

2
----=

π R2 Ri
2–( )

π R4 Ri
4–( )

4
---------------------------

π D4 Di
4–( )

64
----------------------------= R D

2
----=

w d 2f–( ) 2bf+ w d 2f–( )3

12
------------------------- 2 bf 3

12
--------- bf d

2
--- f

2
---–⎝ ⎠

⎛ ⎞
2

++ d
2
---

Ad2

4
---------

~
d
2
---

wd3

12
--------- wd d1

2
⎝ ⎠
⎛ ⎞+ bf 3

12
--------- bf d2

2
⎝ ⎠
⎛ ⎞++

wd3

12
--------- wd d1

2
⎝ ⎠
⎛ ⎞+ bf 3

12
--------- bf d2

2
⎝ ⎠
⎛ ⎞++

yc

d
2
--- wd( ) d f

2
--- +⎝ ⎠

⎛ ⎞ bf( )+

wd bf+
----------------------------------------------------= yc

f d
2
--- +⎝ ⎠

⎛ ⎞ wd( ) f
2
--- bf( )+

wd bf+
---------------------------------------------------=



www.manaraa.com

6.1 Bending Strain and Stress 169

[Eq. 6.11]

The second moment of area is known as the
moment of inertia of the cross-section.
Table 6.1 gives expressions for a few
common cross-sections, where I is taken
about the horizontal axis through the
centroid. Hence, Equation 6.10 reduces to
the moment-curvature relationship:

[Eq. 6.12]

Recalling the stress–strain relationship
of Equation 6.4, and substituting the
expression for R from Equation 6.12, gives
the distribution of stress on the cross-section
of the beam:

[Eq. 6.13]

This normal stress due to the bending
moment is the bending stress:

[Eq. 6.14]

The bending stress is zero at the centroid,
y = 0 (at the neutral plane or neutral axis),
increases linearly with y, and reaches
maximum magnitudes at the top and bottom
of the beam (Figure 6.7).

Bending stress is positive (tensile) on one side of the neutral plane and negative
(compressive) on the other side. A positive moment causes compression (σ < 0) in the upper
part of the beam (y > 0); a negative moment causes compression in the lower part of the
beam (y < 0). Since M is generally a function of x, bending stress varies with both x and y.

The magnitude of the maximum stress at a given cross-section is:

[Eq. 6.15]

Variable c represents the distance to the material point furthest from the neutral axis, i.e.,
c = ymax . When the cross-section is symmetric about the z-axis (e.g., rectangles, circles, I-
beams), the centroid is vertically centered on the cross-section, so the distances from the

I y2 Ad
A

∫=

M EI
R
------ EIκ= =

σ y( ) ε y( )E  y
R
---E–  yM

I
-----–= = =

σ y( )  My
I

--------–=

σmax  Mc
I

--------=

Key results for bending
• The neutral axis passes through the 

centroid of the beam’s cross-section.
• The moment-radius of curvature 

relation is: 

• The strain is:

• The stress is:

• The positive and negative sense of the 
moment can be remembered by:

M EI
R
------=

ε y( ) y–
R
----- My–

EI
-----------= =

σ y( )  My
I

--------–=

Figure 6.7.  Bending stress varies 
linearly with distance y from the 
centroid. The centroid is not necessarily 
equidistant from the top and bottom of 
the beam, so the magnitudes of the 
bending stresses at those locations are, 
in general, not equal.
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centroid to the top and bottom of the beam are the same. In general, the centroid is not
vertically centered on the cross-section, e.g., the trapezoid (Figure 6.6). For such cross-
sections, there will be two values for c = ymax , one at the top of the beam and the other at
the bottom; the maximum positive and negative bending stresses will have different
magnitudes (Figure 6.7).

Example 6.1   Moment of Inertia of a Rectangle

Given: A rectangular cross-section has depth d
and width b (Figure 6.8).

Required: Determine the moment of inertia I
about the z-axis.

Solution: By symmetry, the centroid of the cross-
section, and thus the neutral axis, is centered
vertically and horizontally. Coordinate y varies
from –d/2 to +d/2, and differential area on the
cross-section is dA = b(dy). Thus:

Answer: 

Expressions for the moment of inertia for common shapes have already been calculated.
The expressions of I about the horizontal axis for a few shapes are given in Table 6.1.

Example 6.2   Rectangular Beam, Simply-Supported, Central Point Load

Given: A simply-supported beam of length L supports a central point load P (Figure 6.9).
In experiments, this set-up is called a three-point bend test. The constant cross-section is
rectangular with width b and depth d.

Required: Determine (a) the maximum bending stress and (b) the minimum radius of
curvature for the case: P = 250 kN, L = 3.0 m, b = 100 mm, d = 300 mm, E = 200 GPa.

Solution: Step 1. The variation of shear force and bending moment may be found by
constructing shear force and bending moment diagrams (SFD and BMD), as in
Figure 6.9c. The bending moment increases linearly with x, and reaches a maximum value
M = PL/4 at x = L/2. The BMD is symmetric about x = L/2. 

Step 2. The moment of inertia of the cross-section is:

I y2 A y2 b yd( )
d– 2⁄

 d 2⁄

∫=d
A

∫ by3

3
-----

d– 2⁄

d 2⁄

= =

 I bd3

12
--------- =

I bd3

12
--------- 100

3–×10  m( ) 300
3–×10  m( )3

12
------------------------------------------------------------------------- 225

6–×10  m4 225
6×10  mm4= = = =

Figure 6.8.  Rectangular cross-
section.
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Note that 10–6 m4 = 106 mm4.

Step 3. The bending stress is:

Since I is constant, the bending stress
is maximum where the moment is
maximum (at x = L/2) and where y is
maximum ( ):

Thus, the maximum stress is
(Figure 6.9d):

Answer: 

The stress is compressive at the top
(σ = –125 MPa at y = +150 mm) and
tensile at the bottom, increasing linearly
from the neutral axis. 

Step 4. Radius of curvature. Moment M,
and in turn radius of curvature R, varies
with x. The radius of curvature is
minimum – the beam has the tightest
bend – when the moment is maximum:

Answer: 

The radius of curvature R = 240 m is much greater than the beam span L = 3 m and depth
d = 300 mm. Physically, this means that the beam deflection is small compared to its
length.

σ y( )  My
I

--------–=

ymax c d 2⁄±= =

Mmax
PL
4

-------=

250
3×10  N( ) 3 m( )
4

----------------------------------------------=

187.5 kN·m=

σmax  
Mmaxc

I
-----------------–  =

 187.5 kN·m( ) 150± 3–×10  m( )

225
6–×10  m4( )

------------------------------------------------------------------------–=

 σmax 125+−=  MPa

Rmin
EI

Mmax
------------- 200

9×10  Pa( ) 225
6–×10  m4( )

187.5
3×10  N·m( )

------------------------------------------------------------------------= =

Rmin 240=  m

Figure 6.9.  (a) Simply-supported beam of 
rectangular cross-section under central point 
load. (b) FBD of beam. (c) Shear and 
moment diagrams. (d) Bending stress 
distribution at x = L/2; stresses act as drawn. 
(e) Qualitative deflection of the neutral axis.
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Example 6.3   Built-up T-beam, Simply-Supported, Uniformly Distributed
Load

Given: A simply-supported wooden beam is made by nailing two planks together as
shown in Figure 6.10. The beam supports a uniformly distributed load of w = 3.0 kN/m
and the span is L = 4.0 m. The dimensions of the cross-section are b = d = 200 mm and
w = f = 50 mm (Figure 6.10e). Take the modulus of wood to be E = 1.2 GPa.

Required: Determine (a) the maximum
bending stress, and (b) the minimum
radius of curvature.

Solution: Step 1. Determine the SFD
and BMD. It is convenient (but not
necessary) to measure x from the center
of the span.

From equilibrium and symmetry, the
reaction forces are R = wL/2. Due to the
simple (pinned) supports, the moment at
each end of the beam is zero.

The shear force from the FBD of
Figure 6.10c is:

The maximum magnitude of the shear
force occurs at the supports, :

The bending moment equation, with x
measured from the center of the beam, is:

The moment is zero at the supports and
maximum at the center (x = 0):

V x( ) wx=

x L 2⁄+−=

Vmax
wL
2

-------+−=

M x( ) w
2
---- L

2
--- ⎝ ⎠

⎛ ⎞ 2
x2–=

Mmax
wL2

8
---------- 3

3×10  N/m( ) 4 m( )2

8
--------------------------------------------------= =

6.0
3×10  N·m=

Figure 6.10.  (a) A simply-supported T-beam 
under uniformly distributed load w. (b) FBD 
of beam. (c) FBD of segment of beam cut 
at x > 0. (d) Shear and moment diagrams. 
(e) Cross-section of T-beam and 
determination of location of centroid.
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The general shear and moment diagrams for a simply-supported beam under uniformly
distributed load are shown in Figure 6.10d.

Step 2. The neutral axis (NA) passes through the centroid of the cross-section. Taking the
bottom of the beam as the datum (Figure 6.10e), the distance yc from the datum to the
centroid of an upright T-beam is given in Table 6.1:

The centroid is 162.5 mm above the bottom surface.

Step 3. The moment of inertia about the horizontal (z-) axis through the centroid is found
using the parallel axis theorem. Again, referring to Table 6.1 for the T-beam:

By coincidence, distances d1 and d2 are equal; this is generally not the case.

Step 4. Maximum bending stresses. The bending stress is:

Referring to Figure 6.10f, the top of the beam is at yt = +87.5 mm, and the bottom is at
yb = –162.5 mm. The bending stresses at the top and bottom are:

Answer:

and

Answer:

The bottom surface is further from the NA than
the top surface, so the magnitude of the stress
at the bottom is greater than at the top
(Figure 6.10f ).

yc

yiAi∑
Ai∑

-----------------

d
2
--- wd( ) d f

2
--- +⎝ ⎠

⎛ ⎞ bf( )+

wd bf+

----------------------------------------------------= 100 50 200×( ) 200 25+( ) 200 50×( )+
50 200×( ) 50 200×( )+

----------------------------------------------------------------------------------------------= =

162.5 mm=

d1 yc y1– 162.5 100– 62.5 mm= = =

d2 yc y2– 225 162.5– 62.5 mm= = =

I wd3

12
---------- wd d1

2
⎝ ⎠
⎛ ⎞+= bf 3

12
--------- bf d2

2
⎝ ⎠
⎛ ⎞+ 113.5

6×10  mm4=+

σ  My
I

--------–=

σmax t,  
Mmaxyt

I
------------------– 6.0

3×10  N·m( ) 87.5
3–×10  m( )

113.5
6–×10  m4

-------------------------------------------------------------------------= =

σmax t, 4.6 MPa  (compression)–=

σmax b,  
Mmaxyb

I
-------------------–=

σmax b, +8.6 MPa  (tension)=

Figure 6.10.  (f) Bending stress 
distribution at the center of the beam.
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Step 5. The minimum radius of
curvature occurs where the bending
moment is maximum: 

Answer:

The curvature κ is the inverse of the
radius of curvature κ = 1/R =
44.1×10–3 m–1. 

The radius of curvature is much
larger than the span, which is
generally the case in practice. 

6.2  Beam Deflection

When sitting on a park bench, the
wooden slats deflect downward. Such a
movement is unsettling if the slats deflect by
more than say, 1.0 inch. Likewise, bridges
deflect when cars, trucks, and trains pass
over them; an atomic force microscope
(AFM) deflects as it scans a surface
(Figure 6.11). In engineering systems, it is
often necessary to know the magnitude of
beam deflections under various loading
conditions. Often, the maximum allowable
beam deflection δallow is defined in terms of
the span L of the beam. 

The deflection index is defined as
. The allowable value of f is

approximately δ/L~1/240 for a wide range
of engineering applications. This small
displacement-to-span restriction means that

Rmin
EI

Mmax
------------- =

1.2
9×10  Pa( ) 113.5

6–×10  m4( )

6.0
3×10  N·m

--------------------------------------------------------------------------- =

 Rmin 22.7 m=

f δ L⁄=

Notes on T-beams
For T-beams, and other sections that are not

symmetric about the bending-axis (e.g., the z-
axis), the magnitude of the maximum bending
stresses (at top and bottom) are different. This
knowledge can be used to efficiently design a
cross-section when a material has different
strengths in tension and compression. 

The tensile strength of cast iron is less than its
compressive strength. Thus, cast iron beams,
common during the 19th century, had T-shaped
cross-sections, with the cap of the T designed to
be in tension, where the magnitude of the
bending stress is smaller since it is closer to the
neutral axis than the foot of the T. A modern
context is ceramic materials, which are strong in
compression and weak in tension.

Woods tend to be stronger in tension than in
compression, so wooden T-beams are designed so
that the cap of the T is in compression, as in
Example 6.3.

Figure 6.11.  (a) Atomic force 
microscope scanning a surface. 
(b) Force and displacement at AFM tip. 
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the slope of the deflected shape is also small. The ratio 1/240 is equivalent to a deflection
of 0.5 in. over 10 ft, or about 0.4%.

The Golden Gate Bridge, under full vehicle and pedestrian traffic load, was designed
to deflect no more than 10 ft. The distance between towers – the central span – is 4200 ft,
so the deflection index is f = 1/420, and rush-hour travelers should barely notice the
deflection. 

Deflection requirements are defined because excessive deflections may cause
difficulties in service. Deflection may cause such problems as:

Misfit or interference of parts. Automobile, aircraft, and subway chassis and door
frames must be stiff enough so that their doors can open and close whenever passengers
congregate in the vehicle. Plastered ceilings must not deflect so much that the plaster
begins to crack. Building codes require the deflection index for walls to be 1/240 for brittle
coverings (e.g., plaster), and 1/120 for more pliable coverings. For beams that support
ceilings, the index is 1/360 for brittle coverings and 1/240 for general coverings (2000
International Building Code).

Interference of moving parts. Rotating parts such as blades in engine motors have a
large amount of kinetic energy. Excessive deformation of the housing of a turbine motor,
and/or elongation of the blades, will cause a violent failure.

Psychological reaction. Although a system
may be strong enough, large deflections can
cause fear, if not physical discomfort. A
pedestrian bridge built over the River Thames in
England in 2000 was closed for modification
because its excessive sway caused anxiety.
Although the bridge was strong enough, its large
deflection did not provide for a safe and
comfortable passage; it was not stiff enough to
assure the public of its strength.

Increased loading due to deflection. If a
low-sloped roof deflects too much, say under a
newly installed air-conditioning unit, rain water
may begin to pond on the roof (Figure 6.12).
This ponding increases the load on the roof,
further increasing deflection, allowing more
water to pond, and so on until failure.

Curvature–Displacement Relation
In the x–y–z coordinate system, the displacement, or deflection, of a beam in the x–y

plane (with cross-section in the y–z plane) is v(x), defined as positive in the positive y-
direction (Figure 6.13). The deflected shape v(x) describes how the neutral axis deflects

Figure 6.12.  A low-sloped roof (1) 
is loaded with a heavy cooling unit, 
causing the roof to deflect to 
position (2). The deflection causes 
rain water to pond on the roof, 
further deflecting the roof to (3), 
allowing more water to pond, and 
so on.



www.manaraa.com

176 Ch. 6 Bending Members: Beams

with position x. Function v(x) is also referred to as
the elastic curve; it is the elastic deflection of the
beam (yielding does not occur).

From analytical geometry, the expression for the
radius of curvature R varies with deflection v(x):

[Eq. 6.16]

In practical problems, the slope dv/dx is much
smaller than unity (1.0) (the allowable displacement
is typically less than the span divided by 240). Then,
the second bracket of Equation 6.16 reduces to 1.0,
so that:

[Eq. 6.17]

The reader may recall from calculus that the second derivative of deflection with position
is called the curvature. Curvature has already been defined in this text as κ =1/R
(Equation 6.1). 

Repeating Equation 6.12, the moment–radius of curvature, M–R, relationship is:

[Eq. 6.18]

Eliminating 1/R from the previous two equations gives the second derivative of
displacement – the curvature – in terms of the moment:

[Eq. 6.19]

The curvature of the beam at any point – the tightness of its bend – is proportional to the
moment at that point M(x), and inversely proportional to the beam’s bending stiffness EI.
Equation 6.19 can be used to determine the deflected shape by integration. 

The slope and deflection of the beam are found by taking the indefinite integral twice:

[Eq. 6.20]

[Eq. 6.21]

Constants of integration C1 and C2 are determined by applying the geometric boundary
conditions of the beam. A boundary condition must be at a specific location x along the
beam where the beam slope or deflection is known. For example, at a wall, the slope and
deflection are both zero; at a pin the deflection is zero (but the slope is not known).

1
R x( )
-----------  d

2v

dx2
-------- 1 dv

dx
------ ⎝ ⎠

⎛ ⎞2
+

3 2/–
=

1
R x( )
----------- d2v

dx2
--------=

M x( ) EI
R x( )
-----------=

d2v

dx2
-------- M x( )

EI
------------=

v′ x( ) dv
dx
------ θ x( )  M x( )

EI
------------ xd∫ C1+= = =

v x( )   M x( )
EI

------------ xd∫ xd∫ C1x C2+ +=

Figure 6.13.  Geometry of beam 
deflection v(x), slope dv/dx, and 
curvature 1/R(x).
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Variable θ, usually used for an angle, is used as an alternative variable for the slope.
The tangent of an angle is the slope, tanθ = Δy/Δx. For small angles, tanθ = θ. Because the
deflection and thus slope of a beam are small, the slope (tangent) is equal to the angle of
the elastic curve: .

Example 6.4   Deflection of a Cantilever Beam under Tip Load

Given: A cantilever beam under a tip
load P (Figure 6.14). The moment of
inertia I is constant over beam length L.
The elastic modulus is E.

Required: Determine (a) the slope and
deflection of the beam as a function of x,
(b) the slope and deflection at the point
of application of the load, and (c) the
stiffness of the cantilever beam loaded at
its tip.

Solution: Step 1. To find the equation of
the elastic curve, first determine the
moment M(x). Consider the FBD of
Figure 6.14c. Taking moments about
point D (at the cut), the moment as a
function of x is:

so that:

Integrating the curvature gives the slope:

Integrating again gives the deflection:

Constants C1 and C2 are determined by applying the geometric boundary conditions. At
x = 0, the beam is built-in (fixed) to the wall, so the slope and deflection are both zero:

v′ x( ) θ x( )=

M x( ) P L x–( )=

d2v

dx2
-------- M x( )

EI
------------ P L x–( )

EI
--------------------= =

v′ P
EI
------ Lx x2

2
----- –⎝ ⎠

⎛ ⎞ C1+=

v x( ) P
EI
------ Lx2

2
--------- x3

6
----- –⎝ ⎠

⎛ ⎞ C1x C2+ +=

v′ x 0=( ) C1 0==

v x 0=( ) C2 0==

Figure 6.14.  (a) Cantilever beam under tip 
load. (b) FBD of entire beam. (c) FBD of 
length x from left end. (d) Shear and moment 
diagrams. (e) Elastic (deflection) curve.
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CAUTION: C1 and C2 are not always zero.

The expressions for the slope and deflection are then:

Answer: 

Answer: 

At the point of application of the load P, where x = L, the slope and deflection are:

Answer: 

Answer: 

The stiffness K is the ratio of the load to the deflection. The stiffness of a cantilever beam
under tip load is:

Answer: 

Notice that the stiffness is inversely proportional to L3; the beam’s stiffness decreases
rapidly with length.

Example 6.5   Atomic Force Microscope

Given: A cantilever beam is the key
component in an atomic force
microscope (AFM). A representative
beam is L = 140 μm long and, for
simplicity, is taken to have a
rectangular cross-section 12 μm × 3 μm
(b×d, Figure 6.15). The cantilever is
manufactured from silicon carbide
(SiC) for which E = 450 GPa. The
applied upward force at the tip is
P = 100 μN, and causes a positive
moment everywhere along the beam.
Note that AFM forces and dimensions
are very small since they are used to
measure small displacements. 

v′ x( ) P
EI
------ Lx x2

2
----- –⎝ ⎠

⎛ ⎞=

v x( ) P
EI
------ Lx2

2
--------- x3

6
----- –⎝ ⎠

⎛ ⎞=

v′ L( ) θ L( ) PL2

2EI
----------= =

v L( ) δ PL3

3EI
----------= =

K P
δ
--- 3EI

L3
---------= =

Figure 6.15.  (a) AFM with rectangular cross-
section. (b) Deflection of beam.
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Required: Determine (a) the tip slope (rotation), (b) the tip displacement, and (c) the
beam stiffness for tip loading.

Solution: Step 1. The moment of inertia is:

Step 2. The slope at the tip of the cantilever is:

Answer: 

Step 3. The tip deflection is:

Answer: 

The stiffness is:

Answer: 

which is typical for such devices.

The maximum bending stress occurs where the moment is maximum, which here occurs at
x = 0 (Mmax = PL):

The stresses in micro-devices are often high.

Example 6.6   Simply-Supported Beam, Uniformly Distributed Load

Beams in bridges and buildings are designed to carry uniformly distributed loads.

Given: A simply-supported beam of length L is subjected to a uniformly distributed load
w (force per unit length) in the negative y-direction (Figure 6.16a). The moment of inertia
is I and the modulus is E. Point x = 0 corresponds to the left support of the beam.

Required: Develop expressions for (a) the slope v'(x), (b) the deflection v(x), and (c) the
maximum deflection δmax .

Solution: Step 1. Due to the symmetry of the loading and of the geometry, the vertical
reaction at each support is R = wL/2 (Figure 6.16b). Considering the FBD of Figure 6.16c,
equilibrium requires that:

I bd3

12
--------- 12

6–×10  m( ) 3
6–×10  m( )3

12
---------------------------------------------------------------- 27.0

24–×10  m4= = =

v′ x( ) PL2

2EI
---------- 100

6–×10  N( ) 140
6–×10  m( )2

2 450
9×10  Pa( ) 27

24–×10  m4( )
--------------------------------------------------------------------------= =

v′ x( ) 0.0806 rad 4.6°= =

δ PL3

3EI
---------- 100

6–×10  N( ) 140
6–×10  m( )3

3 450
9×10  Pa( ) 27

24–×10  m4( )
--------------------------------------------------------------------------= =

δ 7.53
6–×10  m 7.53 μm= =

K P
δ
--- 100

6–×10  N

7.53
6–×10  m

-------------------------------= =

K 13.3 N/m=

σmax

Mmax d 2⁄( )

I
----------------------------- 100

6–×10  N( ) 140
6–×10  m( )[ ] 1.5

6–×10  m( )

27
24–×10  m4

------------------------------------------------------------------------------------------------------------- 778 MPa= = =

Mz∑ 0:   M x( ) Rx– wx
x
2
---⎝ ⎠

⎛ ⎞+ 0= =
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The bending moment as a function of x is
then:

Step 2. Applying Equation 6.19:

and integrating twice gives:

and

The values for C1 and C2 are found by
applying the geometric boundary conditions
that the displacements are zero at both ends
of the beam, x = 0 and L:

The slope and displacement of the beam are then:

Answer: 

Answer: 

By symmetry of the load and geometry, the maximum displacement is at the center:

Answer: 

The calculated displacement is negative, which means that the beam deflects downwards
as expected. 

Due to the symmetry of the applied loading and of the geometry, the slope must be zero at
the center, i.e., v'(L/2) = 0; this condition could have been used to determine C1.

M x( ) wL
2

-------⎝ ⎠
⎛ ⎞ x  wx2

2
--------- –⎝ ⎠

⎛ ⎞+ w
2
---- Lx x2–( )= =

d2v

dx2
-------- M

EI
------ w

2EI
--------- Lx x2–( )= =

v′ x( ) w
2EI
--------- Lx2

2
--------- x3

3
----- –⎝ ⎠

⎛ ⎞ C1+=

v x( ) w
2EI
--------- Lx3

6
--------- x4

12
------ –⎝ ⎠

⎛ ⎞ C1x C2+ +=

v 0( ) C2 0==

v L( ) w
2EI
--------- L L( )3

6
-------------- L( )4

12
---------- – C1 L( )+ 0= = C1

wL3

24EI
------------–=→

v′ x( ) w–
24EI
------------ 4x3 6Lx2– L3+( )=

v x( ) w
24EI
------------ x4 2Lx3– L3x+( )–=

δmax v L 2⁄( )  5wL4

384EI
---------------–= =

Figure 6.16. (a) Simply supported beam 
under uniformly distributed load. (b) FBD 
of entire system. (c) FBD of length x 
from left.
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Example 6.7   Bridge on Simple-Supported I-beams

Given: The deck of a bridge
(Figure 6.17) is L = 10 m long
and B = 4.8 m wide, and carries
a uniformly distributed area load
p = 25 kN/m2. The deck is
supported by four metric S510-
141 beams that are L = 10 m
long, and spaced so that each
beam supports 1/4 of the
roadway (Figure 6.17b). Beams
with such cross-sections are
known as I-beams since their
cross-sections are shaped like
the letter “I” (Figure 6.17c). The
properties of I-beams are listed
in tables (see Appendix C for
some US I-beams). 

For the US metric S510–128 I-
beam (S 20×86 in US units):

b = 179 mm; d = 516 mm; 

I = 658×106 mm4

Required: Determine (a) the
maximum deflection δmax , and
(b) the maximum bending stress
σmax .

Solution: Step 1. Determine the load on each beam. Each beam supports one-fourth of the
total load on the deck. The total load is:

Since the beams each support one-fourth of the load, the load on each beam is 300 kN.
Alternatively, the tributary area At of each beam (the area of the road that each beam
supports) is:

so the load on each beam is:

This load is not applied at a point, but is uniformly distributed over the length of the beam.
The distributed load on each beam is the load it supports divided by its length:

W pLB 25 kN/m2( ) 10 4.8× m2( ) 1200 kN= = =

At L( ) B 4⁄( ) 10 m( ) 1.2 m( ) 12 m2= = =

F pAt 25 kN/m2( ) 12 m2( ) 300 kN= = =

Figure 6.17.  (a) A bridge roadway under a uniformly 
distributed area load is supported by 4 I-beams. 
(b) End view of roadway. The I-beams are spaced so 
that each supports 1/4 of the roadway. (c) I-beam 
cross-section. (d) Side view of a single beam under 
uniformly distributed load w = p(B/4).
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Or, since each beam has a tributary area of B/4 wide, then: 

Step 2. The maximum deflection δmax occurs at the center of the beam:

Answer: 

As an aside, the ratio of the maximum deflection δmax to the span L is: 

Assuming the allowable deflection index is f = δ/L = 1/240, the deflection is acceptable.

Step 3. Maximum bending stress. The maximum bending moment occurs at the center of
the beam, and is: 

The maximum stresses occur at the top and bottom of the cross-section:
. The maximum bending stress at the top and bottom are,

respectively:

Answer: 

Due to the positive moment, the top of the beam is in compression (σ = –142 MPa at
y = +254 mm), while the bottom is in tension (σ = +142 MPa at y = –254 mm).

Variation of Moment Equation Over the Length of the Beam
When the bending moment equation changes over the length of the beam, the same

methods to find the slope and deflection may be used. Consider the beam in Figure 6.18; it
has a different moment equation over each segment, AB, BC and CD. Different moment,
slope, and displacement equations are valid over each segment, as shown in Table 6.2.

The elastic curve – the deflected shape of the neutral axis – must be smooth and
continuous (Figure 6.19). Smooth requires that there be no kinks in the beam; at the x-
position where two slope equations meet, they must have the same value. Continuous
requires that the beam stays together; at the x-position where two deflection equations
meet, they must have the same value.

w W 4⁄( ) L⁄ 300 kN( ) 10 m( )⁄ 30 kN/m= = =

w pB
4
--- 25 kN/m2( ) 4.8 m( )

4
------------------ 30 kN/m= = =

δmax  5wL4

384EI
---------------–  5 30

3×10  N/m( ) 10 m( )4

384 200
9×10  Pa( ) 658

6–×10  m4( )
---------------------------------------------------------------------------------–= =

δmax 0.0297 m– 29.7 mm–= =

δmax

L
----------- 0.0297

10.0
---------------- 1

337
---------= =

M wL2

8
---------- 30

3×10  N/m( ) 10 m( )2

8
-------------------------------------------------------- 375 kN·m= = =

c d 2⁄± 254 mm±= =

σmax  Mc
I

--------–   375
3×10  N·m( ) 0.254 m±( )

670
6–×10  m4

-------------------------------------------------------------------–= =

σmax 142 MPa+−=
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The values of slope and displacement
where two segments meet are generally not
known beforehand. However, applying the
smooth and continuous conditions between
two segments gives two geometric boundary
conditions at each point.

For the beam in Figure 6.18, integrating
the three moment equations results in six
constants (Table 6.2). The built-in end gives
two boundary conditions: the slope and
displacement are both zero. That the beam be
smooth and continuous gives two boundary
conditions at point B: θAB = θBC and
vAB = vBC , and two more boundary
conditions at point C: θBC = θCD and
vBC = vCD . These six total boundary
conditions are used to determine constants
C1 through C6.

Table 6-3 gives a few common zero-
value boundary conditions.

Table 6.2.  General equations for beam in Figure 6.18. When the moment
equation changes, integration is still used to determine the slope and
displacement equations. The slopes and displacements of adjacent beam
segments must equal each other at their common point. Constants C1 through C6
are solved using the kinematic boundary conditions (geometric constraints at the
supports, and matching slopes and deflections at common points).

Eqn Valid over AB Valid over BC Valid over CD

M(x)

EIθ(x)

EIv(x)

MAB x( ) MBC x( ) MCD x( )

MAB∫ dx C1+ MBC∫ dx C3+ MCD∫ dx C5+

MAB∫ dx∫ dx C1x C2+ + MBC∫ dx∫ dx C3x C4+ + MCD∫ dx∫ dx C5x C6+ +

Table 6-3.  Common boundary conditions with zero value.

End Conditions Zero Value Boundary Conditions

Unloaded pinned support M = 0, v = 0 Reaction moment and displacement

Built-in support v = 0, θ = 0 Displacement and slope

Unloaded free end M = 0, V = 0 Reaction moment and reaction shear

Figure 6.18. A beam that requires three 
moment equations, MAB(x), MBC(x), and 
MCD(x), to describe the moment over its 
entire length.

Figure 6.19. (a) Continuous but not 
smooth. (b) Smooth but not continuous.
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Example 6.8   Cantilever Beam with Intermediate Point Load

Given: Cantilever beam ABC of length L
supports intermediate load P (Figure 6.20a).
Load P is applied at point B, distance a from
the wall. The beam extends beyond point B
by distance b. The moment of inertia is I and
the modulus is E.

Required: Determine the deflection and
slope (a) at the point of application of the
load, δB and θB, and (b) at the tip of the
cantilever beam, δC and θC .

Solution: Step 1. Determine the moment
equation over segment AB (length a). A FBD
from 0 to x (x < a, Figure 6.20c) is loaded in
the same manner as the tip-loaded cantilever
of length L studied in Example 6.4. With x
measured from the left of the beam, as in
Example 6.4, the work has already been
done. Substituting a for L, the slope and
deflection over segment AB are:

Hence the slope and deflection at point B (at
x = a) are:

Answer: 

Answer: 

Step 2. Determine the moment equation over
segment BC (Figure 6.20d). Segment BC
carries no bending moment, so its curvature
is:

θAB x( ) P
EI
------ ax x2

2
----- –⎝ ⎠

⎛ ⎞=

vAB x( ) P
EI
------ ax2

2
-------- x3

6
----- –⎝ ⎠

⎛ ⎞=

θB θAB a( ) Pa2

2EI
---------= =

δB vAB a( ) Pa3

3EI
---------= =

d2v

dx2
--------

MBC x( )

EI
------------------- 0= =

Figure 6.20.  (a) Cantilever beam under 
intermediate point load. (b) FBD of entire 
beam. (c) FBD for 0 < x < a. (d) FBD for 
a< x < a+b. (e) Shear and moment 
diagrams. (f) Deflection curve.
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Integrating gives the expressions for the slope and deflection over segment BC:

C3 and C4 are the constants of integration for the deflection curve for a < x < a+b. Since
the curvature of BC is zero, its slope is constant; BC is a straight line. Constants C3 and C4
are found by matching the slopes and deflections of AB and BC at point B (x = a):

and

The slope of BC is therefore:

Because the slope of BC is constant, the displacement at any value of x > a is related to the
deflection and slope at B:

The deflection of point C is the deflection of point B, δB , plus the slope of BC, θC ,
multiplied by the length of BC, b.

Answer: 

Answer: 

To summarize the equations:

Eqn Segment AB: Segment BC: 

M(x) (no curvature)

θ(x) (constant slope)

v(x)

θBC x( ) C3=

vBC x( ) C3x C4+=

θAB a( ) θBC a( )       C3→ Pa2

2EI
---------= =

vAB a( ) vBC a( )=

Pa3

3EI
--------- C3a C4        C4

P– a3

6EI
-------------=→+=

θBC x( ) Pa2

2EI
---------=

vBC x( ) δB θB x a–( )+ Pa3

3EI
--------- Pa2

2EI
--------- x a–( )+= =

θC
Pa2

2EI
---------=

δC
Pa3

3EI
--------- Pa2b

2EI
-------------+ Pa2

6EI
--------- 2a 3b+( )= =

0 x a≤ ≤ a x a b+≤ ≤

MAB x( ) P a x–( )= MBC x( ) 0=

θAB x( ) P
EI
------ ax x2

2
----- –⎝ ⎠

⎛ ⎞= θBC x( ) Pa2

2EI
---------=

vAB x( ) Px2

6EI
--------- 3a x–( )= vBC x( ) Pa3

3EI
--------- Pa2

2EI
--------- x a–( )+ Pa2

6EI
--------- 3x a–( )= =
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6.3  Statically Indeterminate (Redundant) Beams

The following two examples illustrate two methods of analyzing beams with
redundant supports. These beams cannot be analyzed by the methods of Statics alone.
Such systems are statically indeterminate or redundant. Compatibility – the necessary
deflection of the beam – is used to complete the solution.

In Example 6.9, the problem is broken up into two statically determinate beams, and
the deflection of each beam is calculated. Using the method of superposition (discussed
further in Chapter 7), the deflections of the two individual cases are summed; the total
deflection is the deflection of the original beam, assuming that the system remains linear–
elastic. In Example 6.10, the deflection of a beam is studied to determine where its
curvature – and thus moment – must be zero.

Example 6.9   Redundant Support

Given: Beam AB, of length L and moment of
inertia I, is built-in at one end and simply
supported at the other end (Figure 6.21). It is
loaded by uniformly distributed load w. The
modulus is E.

Required: Determine (a) the reactions at the
wall and the roller support, (b) the
expression for the beam deflection v(x), and
(c) the bending moment in the beam with the
maximum magnitude and its location.
Assume the system remains linear–elastic.

Solution: Step 1. From equilibrium of the
entire beam (Figure 6.21b):

There are two equilibrium equations for
three unknowns: RA, RB, and MA . Hence, the
system is redundant. Selecting RB = R as the
redundant force, then:

Fy∑ 0:   RA RB wL–+ 0= =

Mz A,∑ 0:   M– A RBL wL2

2
----------–+ 0= =

RA wL R–=

MA RL= wL2

2
----------–

Figure 6.21. (a) Fixed-pinned beam 
under uniformly distributed load w. 
(b) FBD of beam. (c) Deflection of 
cantilever under UDL. (d) Deflection of 
cantilever under tip load R. (e) Deflected 
shape of fixed-pinned beam.
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Step 2. Force–displacement. Consider the displacement at point B caused by each load
acting separately.

Due to a downward uniformly distributed load w acting alone (Figure 6.21c), the tip
displacement of a cantilever beam of length L can be found to be:

Due to an upward point load R (Figure 6.21d), the tip displacement of a cantilever is:

Step 3. Compatibility. Since point B is pinned, its total displacement is zero.
Superimposing (adding) the tip displacements due to each load gives:

Thus:

Answer: 

Solving for the reactions at the wall:

Answer: and

Step 4. With the end forces known, the derivation of the deflection follows the procedure
outlined above. The moment at any section x is:

Starting with the moment–curvature relationship (Equation 6.19) and integrating:

The slope at x = 0 is zero, so C1 = 0.

The deflection at x = 0 is zero, so C2 = 0. Thus:

Answer: 

δw
wL4

8EI
----------–=

δR
RL3

3EI
----------=

δ δq δR+ 0 wL4

8EI
----------– RL3

3EI
----------+= = =

R RB
3wL

8
-----------= =

RA
5wL

8
-----------= MA

wL2

8
----------–=

M x( ) MA– RAx wx2

2
---------–+ wL2

8
----------– 5wLx

8
-------------- wx2

2
---------–+= =

EIv″ x( ) M x( ) wL2

8
----------– 5wLx

8
-------------- wx2

2
---------–+= =

EIv′ x( ) wL2x
8

-------------– 5wLx2

16
---------------- wx3

6
---------– C1+ +=

EIv x( ) wL2x2

16
----------------– 5wLx3

48
---------------- wx4

24
---------– C2+ +=

v x( ) wx2

48EI
------------ 3L2 5Lx– 2x2+( )–=
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Step 5. Check. At x = L, v(L) = 0.

Step 6. Maximum bending moment. The moment with the maximum magnitude occurs at
the wall, MA , or where the derivative of the moment is zero:

At x = 5L/8:

which is smaller in magnitude than the moment at the wall (x = 0). Therefore:

Answer:  

Example 6.10   Fixed-Fixed Beam under Central Point Load

Given: Beam AB, of length L and moment of
inertia I, is built-in at both ends
(Figure 6.22). A central deflection δ is
impressed at the center of the beam, point C,
by force P. This arrangement is often used in
MEMs devices.

Required: Determine (a) the force P
necessary to cause displacement δ, and
(b) the reactions at each wall.

Solution: Step 1. Since the load and
geometry are both symmetric about the
center, the reactions at each end are equal:
RA = RB =  P/2 and MA = MB (Figure 6.22b).
However, the moments can take on any value
and still satisfy equilibrium. The system is
redundant. 

Step 2. Compatibility. Consider the
deflection. Due to symmetry of the load and
geometry, the displacement must be
symmetric (Figure 6.22c). Furthermore, the
deflection of each half-span is anti-
symmetric about the quarter-points (point
D). The curvature at the quarter-points is
zero (they are inflection points), so the
moment at those points is also zero. Since
half the applied force is carried by each half
of the beam, the problem is reduced to a

dM
dx
-------- 5wL

8
----------- wx– 0 x⇒ 5

8
---L= = =

M 5 8⁄ L( ) 9
128
---------wL2=

Mmax
wL2

8
----------=   at x 0=

Figure 6.22. (a) Beam built-in at both 
ends under central load P. (b) FBD of 
beam. (c) The deflected shape of beam 
is symmetric about the center, and each 
half is anti-symmetric about the quarter-
points. (d) The problem reduces to a 
cantilever beam of length L/4 under tip 
load P/2. 
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cantilever beam of length L/4 subjected to a tip load of P/2 (Figure 6.22d).

Step 3. The displacement of point D, Δ, is half of the impressed deflection δ
(Figures 6.22c, d). The force–deflection relationship for the reduced cantilever beam AD
(Figure 6.22d) is:

The force P to cause central displacement δ is:

Answer: 

The stiffness of the beam for a central point load is: 

Since stiffness is inversely proportional to L3, a great range of stiffnesses is possible.

The magnitude of the reactions at either wall is taken from the FBD of the quarter-length
cantilever beam:

Answer: and

By anti-symmetry of the half-beam, the internal bending moment at the center, MC , also
has a magnitude of PL/8, but is positive.

6.4  Shear Stress

Average Shear Stress
In addition to bending moments, beams

must support shear forces V (Figure 6.23).
Shear forces cause shear stresses. The
average shear stress acting on a cross-
section of area A is:

[Eq. 6.22]

An assumption that might follow from
this equation is that the shear stress is
constant over the cross-section. However,
the top and bottom surfaces of the beam are
free of shear stress (τ = 0). Complementary
shear stress requires that at any point the

Δ δ
2
--- P 2⁄( ) L 4⁄( )3

3EI
--------------------------------- 1

384
---------PL3

EI
----------= = =

P 192EI

L3
---------------δ=

K 192EI

L3
---------------=

RA RB
P
2
---= = MA MB

PL
8

-------–= =

τave
V
A
---=

Figure 6.23.  (a) Beam under uniformly 
distributed load. (b) In general, a beam 
carries shear force V(x) and bending 
moment M(x).
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shear stresses on perpendicular planes are equal. Thus, the shear stress on the cross-section
at the top and bottom of a beam must be zero. Shear stress cannot be constant over the
cross-section.

A more detailed understanding of the shear stress distribution is required. How shear
stress varies on a beam’s cross-section is investigated below.

Distribution of Shear Stress
Consider a beam of constant

cross-sectional area under a general
distributed load w(x) (Figure 6.24a).
The cross-section has any shape that
is symmetric about its vertical y-axis
(the axis along which the shear force
is applied). 

A differential element dx of the
beam, CDFE, with its loads, is
shown in Figure 6.24b. Length dx is
so small that w(x) is constant over
dx; the changes in shear force and
bending moment, dV and dM, are
also very small. 

Moment equilibrium about any
point on the left face of CDFE
gives:

[Eq. 6.23]

Since the terms dx, dV, and dM are very small, any such terms multiplied together are
negligible. Equation 6.23 reduces to:

[Eq. 6.24]

or

[Eq. 6.25]

Equation 6.24 (or Equation 6.25) states that whenever there is a non-zero shear force,
there is a change in bending moment.

The bending stress for a given moment is:

[Eq. 6.26]

M– M dM+( ) V dV+( )dx w dx( ) dx
2

------⎝ ⎠
⎛ ⎞+ + + 0=

dM V dx–=

dM
dx
-------- V–=

σ y( )   My
I

--------–=

Figure 6.24.  (a) Beam under a general 
distributed load.   (b) Element of beam CDFE, 
length dx, at distance x from the left support. All 
loads on dx are drawn positive.
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The bending stresses on each cross-sectional
face, CE and DF, are shown in Figure 6.25a,
drawn in their positive senses. 

Moment M acts on CE and M+dM acts on
DF. Due to the change in moment with x, there is
a change in bending stress dσ. 

An isolated part of the beam element,
CDHG, is shown in Figure 6.25b. Internal plane
GH is distance y1 above the neutral axis and
y2 = ymax . Figure 6.25 shows only the stresses
acting on CDHG in the x-direction. 

For equilibrium of CDHG, a shear stress τ must act on GH. The area over which τ acts
is [t(y1) dx], where t(y1) is the width of the beam (into the paper) at height y1. Shear stress
τ is drawn to the left in its positive sense (negative y-face, negative y-direction). 

Applying equilibrium in the x-direction on CDHG:

[Eq. 6.27]

where t(y)dy = dA is the increment of area on the cross-section at y (Figure 6.26).
Substituting the bending stress equation (Equation 6.26) into Equation 6.27 :

[Eq. 6.28]

σ y( )t y( ) y   τ y1( ) t y1( )dx[ ] –  σ y( ) σ y( )d+[ ]t y( ) yd
 y1

 y2

∫+d
 y1

 y2

∫– 0=

M
I
----- ⎝ ⎠

⎛ ⎞ y t y( ) y  d
 y1

 y2

∫   τ y1( ) t y1( )dx[ ]    M Md+
I

------------------- ⎝ ⎠
⎛ ⎞ yt y( ) yd

 y1

 y2

∫– 0=–

Figure 6.25.  (a) Due to the shear force V, the bending moment and bending 
stresses change over length dx. (b) CDHG isolated. For equilibrium in the x-
direction, shear stress τ must act on GH to counter the net force due to the 
change in bending stress. The stresses are drawn in the positive sense, e.g., 
positive face, positive direction; and negative face, negative direction. 

Figure 6.26.  General cross-section 
symmetric about the y-axis. The 
dark differential area is dA = t(y)dy.
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Since the integrals are over the same limits, and t(y)dy = dA is the same at each cross-
section (the cross-section is constant), the two integrals can be combined:

[Eq. 6.29]

Dividing by [t(y1) dx], and taking dM out of the y-integral as M is only a function of x:

[Eq. 6.30]

Since dM/dx = –V, the shear stress at y = y1 is:

[Eq. 6.31]

This equation gives the shear stress τyx acting on GH, a y-face, x-direction stress. The
initial intent was to solve for the shear stress on the cross-section τxy , an x-face, y-
direction stress. Recall that at any material point, complementary shear stresses are equal.
Hence, Equation 6.31 also gives the shear stress on the cross-section τxy at y = y1.

The integral in Equation 6.31 is the first moment of area of the region on the cross-
section bound by y = y1 and y = y2, with the moment taken about the centroidal z-axis of
the entire cross-section, i.e., through y = 0. The first moment of area of a finite region is
non-zero except when the moment of area is taken about an axis through the region’s own
centroid (e.g., the first moment of area of the cross-section about its own centroid is zero).

The first moment of area locates the centroid of an area. It is convenient to rewrite the
integral:

[Eq. 6.32]

where A* is the area bound by y = y1 and
y = y2 = ymax , and y* is the vertical distance
from the centroid (neutral axis) of the entire
cross-section to the centroid of A* (Figure 6.27).
The first moment of area y*A* is often given the
symbol Q.

Finally, replacing y1 with y, the equation that
gives the shear stress at distance y above the
neutral axis is:

[Eq. 6.33]

where variables A*, y*, and t are defined in
Figure 6.27. Force V is the shear force supported

τ y1( ) t y1( )dx[ ] Md
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It y1( )
-------------- y Ad
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 y2
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τ y1( ) V
It y1( )
-------------- y Ad

 y1

 y2

∫=
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 y2

∫ y∗A∗ Q= =

τ y( ) VA∗y∗
It

---------------- VQ
It

--------= =

Figure 6.27.  Trapezoidal cross-
section showing pertinent geometry 
to find shear stress at y.



www.manaraa.com

6.4 Shear Stress 193

by the cross-section, and I is the moment of
inertia of the entire cross-section. Both V
and I are constant at a given cross-section
along the beam.

It is vital to remember that y* is not the
distance to the y-value where the shear stress
is to be determined. y* is the distance from
the centroid of the entire cross-section to the
centroid of area A*, which is bound by y and
ymax .

To find the shear stress at a negative
value of y, the same equation is used. Area
A* now crosses over the centroidal z-axis,
bound by y and the positive ymax.
Alternatively, A* would be bound by the
negative y and the negative ymax; both A*
and y* would then be negative, since A* is
completely below the centroid. The sign of
the shear stress is still that of the shear force.

Example 6.11   Rectangular Cross-Section

Given: A rectangular cross-section b wide
and d deep is subjected to an upward vertical
shear force V on the positive x-face
(Figure 6.28).

Required: Determine (a) the shear stress on
the cross-section as a function of y and
(b) the maximum shear stress.

Solution: Step 1. The geometry of a
rectangular cross-section is: 

Equation 6.33 is the shear stress equation:

The beam width t = b is constant. A* and y* as functions of y are:

A bd   I; bd3

12
---------= =

τ y( ) VA∗y∗
It

----------------=

A∗ b d
2
--- y–⎝ ⎠

⎛ ⎞    y∗; 1
2
--- d

2
--- y+⎝ ⎠

⎛ ⎞= =

Figure 6.28.  Rectangular cross-section. 

Review of Thought Process used in 
Deriving Equation 6.33

1. A shear force V acting on a cross-
section causes a change in bending 
moment dM over length dx.

2. dM causes the bending (normal) 
stress to change, which means a 
differential force dF is developed 
acting over area A*. This force acts 
parallel to the neutral axis.

3.  dF must be resisted by a shear force 
at y parallel to the beam axis. Thus, 
a shear stress τyx(y) is developed 
parallel to the neutral axis.

4. At any point, τxy = τyx , and the 
problem is solved. τxy(y) is the 
shear stress acting on the cross-
section (on the x-face in the y-
direction) at height y.
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The shear stress as a function of y is then:

Answer: 

The shear stress distribution is parabolic (Figure 6.29a).

Step 2. The shear stress on a rectangular cross-
section has a maximum value at y = 0, where
A* = bd/2 and y* = d/4:

Answer: 

Note: At the top of the cross-section, A* = 0, so:

This result is consistent with the physics of the
problem. The top of the beam is a free surface
where no shear stress acts. By complementary
shear stress, τxy = τyx , so the shear stress at the
top of the cross-section is zero.

At the bottom, A* = bd, but y* = 0, so:

The bending stress and shear stress
distributions for a rectangular cross-section are
shown in Figure 6.29. The bending stress is
linear, maximum at the top and bottom, and zero
at the centroidal axis. The shear stress is
quadratic (parabolic), maximum at the centroid,
and zero at the top and bottom.

Example 6.12   Laminated Beam

In modern architecture, beams are often formed by laminating several wooden planks
together. The glue holding the planks together must be sufficiently strong to prevent
failure in shear.

Given: A simply supported beam is made from four pieces of lumber, each 2.0 by 4.0 in.
in cross-section, and laminated together as shown in Figure 6.30. The beam is L = 10 ft
long, and is to support a central point load of P = 12.0 kips.
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V b d
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⎛ ⎞ 1
2
--- d

2
--- y+⎝ ⎠
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⎛ ⎞ b( )
--------------------------------------------------------- 12

2
------ V

bd3
--------- d2

4
----- 1 2y

d
------–⎝ ⎠

⎛ ⎞ 1 2y
d

------+⎝ ⎠
⎛ ⎞= =

τ y( ) 3
2
---V

A
--- 1 2

d
--- ⎝ ⎠

⎛ ⎞ 2
y2–=

τmax τ y 0=( ) 3
2
---= V

A
--- 3

2
---τave= =

τ y +d 2⁄=( ) 0=

τ –d 2⁄( ) 0=
Figure 6.29.  (a) Bending stress and 
shear stress distributions on a 
rectangular cross-section. 
τmax = 1.5V/A. (b) At point O (on the 
neutral axis), only shear stress acts. 
At point F (at the bottom or top) only 
bending (normal) stress acts. At 
general point K, both stresses act. 
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Required: (a) Determine the required shear
strength of the glue, using a factor of safety
of FS = 3.0. (b) Determine the stress in the
upper glue layer.

Solution: Step 1. The maximum shear force
in a simply-supported beam loaded by a
central point load is half of that load:

For a rectangular cross-section, the shear
stress is maximum at y = 0:

Applying the factor of safety, the glue must
have a shear strength of:

Answer: 

If the shear stress at the glue exceeds its
shear strength, the laminate will no longer
act as a single piece.

Step 2. At the upper glue level, y = 2 in.,
A* = (2×4 in.2), y* = 3 in. and t = 4 in.
(Figure 6.30c). The shear stress is:

Answer: 

Maximum Shear Stress Values for Common Sections
Table 6.4 gives the maximum shear stresses for basic cross-sections caused by shear

force V. The maximum stress on these cross-sections occurs at the horizontal axis through
the centroid, i.e., at the height of the neutral axis.

Vmax
P
2
--- 6000 lb= =

τmax
3
2
---

Vmax

A
------------ 3

2
--- 6000 lb( )

4 in.( ) 8 in.( )
--------------------------------= =

281 psi=

τf FS τmax( ) 3 281 psi( )= =

τf 843 psi=

τ y 2=( ) VA∗y∗
It

----------------=

6000 lb( ) 2 4 in.2×( ) 3 in.( )
4 8× 3( ) 12⁄  in.4[ ] 4 in.( )

-------------------------------------------------------------------=

τ 211 psi=

Figure 6.30.  (a) Simply supported beam 
under central load P. (b) Cross-section of 
laminated beam built of four 2×4s (true), 
glued together. (c) A* and y* to find 
shear stress in upper glue layer.
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Shear Flow
A useful concept in shear stress analysis is shear flow q. Mathematically, shear flow is

the product of the shear stress τ(y) and beam width t(y) at height y above the neutral axis.
From Equation 6.33:

[Eq. 6.37]

Shear flow is independent of beam width t. Thus, while the cross-section may have abrupt
changes in its width, causing discontinuities in the calculated shear stress, the shear flow is
continuous over the cross-section. A comparison of shear stress and shear flow is given in
Example 6.13.

Shear stress τ(y) also acts along the beam, parallel to the neutral axis (i.e., the
complementary shear stress). Consider a length of beam Δs. At height y, the beam width is
t and the shear stress τ(y) acts on a material plane that is parallel to the neutral plane. The
force FS that acts over area tΔs is:

[Eq. 6.38]

Note that force FS is not equal to the shear force V. Force FS is parallel to the neutral axis,
and depends on the length of the beam Δs being considered. Shear force V is perpendicular
to the neutral axis and acts on the beam cross-section.

Shear flow q can then be interpreted as the shear force per unit beam length acting
along the axis of the beam at height y: 

[Eq. 6.39]

Example 6.14 illustrates shear flow as it pertains to force per length parallel to the neutral
axis.

Table 6.4.  Maximum Shear Stress due to shear force V for rectangular, 
solid circular and hollow circular cross-sections of area A.

Cross-sectional Shape Geometry Maximum Shear Stress Equation No.

Rectangle [Eq. 6.34]

Solid Circle [Eq. 6.35]

Hollow Circle
R = Outer radius
Ri = Inner radius

[Eq. 6.36]

3
2
---V

A
---

4
3
---V

A
---

4
3
---V

A
---

R2 RRi Ri
2+ +

R2 Ri
2+

-----------------------------------

q y( ) τ y( )t y( ) VA∗y∗
I

----------------= =

FS τ t Δs( ) qΔs= =

q τt
FS

Δs
------= =



www.manaraa.com

6.4 Shear Stress 197

Example 6.13   Shear Stress versus Shear Flow

Given: The built-up I-beam is subjected to
an upward shear force of V = 30 kips on its
cross-section (Figure 6.31a).

Required: Calculate and plot (a) the vertical
shear stress τ(y) and (b) the vertical shear
flow q(y) over the cross-section. 

Solution: Step 1. The cross-section is doubly
symmetric so the neutral axis is centered
vertically and horizontally. The moment of
inertia about the z-axis, using the parallel
axis theorem for the two flanges, is:

Step 2. The vertical shear stress is parabolic,
and is given by:

At the top and bottom of the beam, τ = 0. 

Just above and below the upper flange–web
intersection, the calculated shear stresses
τ(y) are:

See Inset concerning the shear stress just above the flange–web intersection, τ( 2+ in.).

At the centroid:

Step 3. The vertical shear stress is plotted in Figure 6.31b. The calculated shear stress is
discontinuous due to the abrupt change in beam width. The shear stress in the web is

I 2( ) 4( )3

12
------------------ 2 6 2( )3

12
------------- 6 2×( ) 3( )2++  in.4=

234.7 in.4=

τ y( ) VA∗y∗
It

----------------=

τ 2+( ) 30
3×10  lb( ) 6 2 in.2×( ) 3 in.( )
234.7 in.4( ) 6 in.( )

--------------------------------------------------------------------------=

0.767 ksi=

τ 2–( ) 30
3×10  lb( ) 6 2 in.2×( ) 3 in.( )
234.7 in.4( ) 2 in.( )

--------------------------------------------------------------------------=

2.30 ksi=

τ 0( ) 30
3×10( ) 6 2×( ) 3( ) 2 2×( ) 1( )+[ ]

234.7( ) 2( )
------------------------------------------------------------------------------------- 2.56 ksi= =

Figure 6.31. (a) Built-up I-beam. 
(b) Vertical shear stress distribution.
(c) Vertical shear flow distribution.
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nearly constant, varying by less than
6% from its middle value of 2.43 ksi. 

Step 4. The vertical shear flow is also
parabolic since q(y) = τ(y)t(y).
Performing the calculations gives the
shear flow at key y-values:

Shear flow is continuous, e.g.,
. Shear flow does not

experience a jump when the beam
width is discontinuous (Figure 6.31c).

Example 6.14   Built-Up T-beam under Shear Force

Given: The wooden beam of
Example 6.3 is again considered, with
the two planks that make up the beam
joined by two alternate methods. In
Case 1, the planks are glued together
(Figure 6.32a). In Case 2, the planks
are nailed together with nail spacing
Δs (Figure 6.32b). 

The beam is to support a maximum
shear force of V = 2000 N. The cross-
sectional dimensions are: 

b = d = 200 mm
w = h = 50 mm 

as shown in Figure 6.32c.

Required: (a) For Case 1, estimate the
shear stress τ that the glue must
support. (b) For Case 2, assuming that
the allowable shear force in each nail
is Fallow = 1200 N, specify the
maximum allowable nail spacing
Δsmax . 

q 2+( ) 4.60 kips/in.=

q 2–( ) 4.60 kips/in.=

q 0( ) 5.11 kips/in.=

q 2+( ) q 2–( )=

Shear Stress at Flange–Web Intercept
In Example 6.13, two-thirds of the bottom of

the upper flange (y = 2 in.) is actually stress-
free (it is a free surface). The vertical shear
stress at those locations must be zero due to
complementary shear. The shear stress
equation thus gives the average value of the
vertical shear stress at y.

The top and bottom surfaces of a flange are
stress free; any vertical shear stress that
develops in the flange is therefore small. When
an I-beam’s flange is thin (not necessarily the
case here), it does not contribute significantly
to supporting the vertical shear force. I-beams
are generally designed assuming that only the
web supports shear.

Figure 6.32. (a) Isometric view of planks glued 
together. (b) Isometric view of planks nailed 
together. (c) Cross-section of beam.
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Solution: Step 1. Using the results of
Example 6.3, the neutral axis is 162.5 mm
above the foot of the “T,” and the moment of
inertia is:

Step 2. Force parallel to neutral axis. The
two planks are joined together to act as a
single beam. The glue or nails now must act
in the same way that an interior material
plane would act if the beam was made of one
solid piece.

Whenever there is a shear force in a beam,
there is a change in moment over length Δs.
This change in moment causes a bending
stress differential dσ on the cross-section,
and thus a force FdM (Figures 6.32e, f). For
equilibrium of the upper plank, the glue must
provide a shear stress τ over area t Δs, or the
nail must provide a shear force FS over
length Δs (Figures 6.32e, f). If the glue or
nails fail, the planks will no longer act as a
single unit.

Case 1: Step 3. Shear stress in glue (Figure 6.32e). The shear stress at any height y is:

The shear stress acts on the cross-section, as well as along the axis of the beam
(complementary shear stress). 

The glue is at y = 37.5 mm, where t = 50 mm (Figure 6.32d), and:

For the maximum shear force, the shear stress in the glue is:

Answer: 

The glue must be able to support a shear stress of 220 kPa. If the glue is not strong enough,
the two planks will no longer be joined together, and will slide with respect to each other.
The beam will no longer act as a single unit.

I 113.5
6–×10  m4=

τ VA∗y∗
It

----------------=

A∗y∗ 50 200×( ) 62.5( )×  mm3=

625
3×10  mm3=

τ 2000 N( ) 625
6–×10  m3( )

113.5
6–×10  m4( ) 0.050 m( )

-------------------------------------------------------------------=

τ 220 kPa=

Figure 6.32. (d) Geometry of cross-
section required to calculate τ or q at 
the plank interface. (e) Change in 
bending stress dσ must be resisted by 
shear stress τ in the glue, or (f) by a 
shear force FS in the nail.
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Case 2: Step 3. Shear force in nail (Figure 6.32f). Each nail is Δs apart and the width of the
plank interface is t. The shear force in each nail FS is the product of the shear stress τ that
would act at the plank interface and the area that each nail supports t Δs:

For the maximum shear force, the shear flow at the plank interface is:

A force of 11.0 N must be transferred in shear for every millimeter along the beam.

The equation that gives the nail spacing is:

Since each nail is allowed to carry no more than 1200 N, the maximum nail spacing is:

Answer: 

The nails should be spaced no more than 109 mm apart.

In general, shear force V, and thus shear flow q, vary. In theory, if the shear force
distribution is exactly known, nail-spacing may vary accordingly. However, attempting to
actually implement this is problematic (and costly). In practice, nails are evenly spaced
considering the worst case load. Building codes specify the maximum nail spacing for
structural components under various conditions; nail spacing is especially important in
high-wind regions.

Note that the effective shear stress at the joint is the shear flow divided by the thickness t
of the joint:

Distribution of Shear Stress in Channels and I-Beams
Figure 6.33 shows a channel cross-section, breadth b, depth d, flange thickness f, and

web thickness w. In general, the flange and web thicknesses are much less than the breadth
and depth of the cross-section.

Although the channel section is not symmetric about the vertical (y-)axis, the bending
stress is assumed to be calculated as before (Equation 6.13) and distributed as shown in
Figure 6.33b. The shear stress can be calculated to a good approximation from the shear
force using Equation 6.33, repeated here:

FS τ t Δs[ ] q Δs= =

q VA∗y∗
I

---------------- 2000 N( ) 625
3×10  mm3( )

113.5
6×10  mm4

--------------------------------------------------------------- 11.0 N/mm= = =

Δs
FS

τt
------

FS

q
------= =

Δsmax

FS

q
------ 1200 N 

11.0 N/mm
---------------------------= =

Δsmax 109 mm=

τ q
t
--- 11.0 N/mm

50 mm
--------------------------- 220 kPa= = =
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[Eq. 6.40]

Shear Stress in the Web

In channel sections and I-beams,
the top and bottom surfaces of each
flange are free surfaces; i.e., stress-
free. Thus, the vertical shear stresses
on the cross-section at the top and
bottom of each flange are zero. The
flange thickness is small, so any
vertical shear stress that develops in
the flange is also small and does not
contribute significantly to supporting
a vertical shear force V.

The shear force supported by the
web is therefore taken to be equal to
the applied shear force V. To find the
shear stress in the web, a cut is taken
at any point, e.g., point D in
Figure 6.33c. Area A* is the area
above the cut:

[Eq. 6.41]

Although y* is the distance to the
centroid of A*, it need not be exactly
determined since it is the product
A*y* – the center of area equation –
that is required:

[Eq. 6.42]

Like the shear stress in a rectangular
member, the shear stress in the web
varies parabolically with y.
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Figure 6.33. (a) Cross-section of channel. 
(b) Due to the shear force, a differential bending 
stress acts over beam length dx. (c) A* and y* to 
determine shear stress in the web. (d) A* and y* 
to determine shear stress in the flange. 
(e) Volume cut from flange, showing net stresses 
in x-direction – the unbalanced average bending 
stress dσ, and the shear stress τ. (f) FBD of 
flange volume. (g) Complementary shear 
requires that the shear stress on the cross-
section of the flange equal that in the flange 
along the x-direction.
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Shear Stress in the Flange

The shear stress in the flange is derived using the same arguments used to develop the
original shear stress equation (Equation 6.40). Vertical cuts are taken in the flange, e.g.,
point F in Figure 6.33d. Such cuts must be perpendicular to the thin flange; the resulting
shear stress on the cross-section is horizontal. Because the flange is thin, the horizontal
shear stress is taken as constant across the flange thickness f.

Consider a volumetric element cut from the upper flange at point F (Figures 6.33d,e),
where l is measured from the right (free) end of the flange and dx is measured along the
axis of the beam. When shear force V acts at a cross-section, the moment changes with x,
causing a differential bending stress dσ(y) over distance dx (Figures 6.33b,e). 

The differential bending stress causes a net force dFb on A* = f l (Figure 6.33f). This
net force must be resisted by the material on the left side of the flange element with shear
force dFs = τ [f  dx]. All of the other flange surfaces are free surfaces, so they cannot resist
the differential bending stress.

Shear stress τ is developed in the flange along the axis of the beam (the x-axis),
distance l from the free end (Figure 6.33f). Due to complementary shear stress, a
horizontal shear stress is also developed on the cross-section in the flange (Figure 6.33g).
The resulting shear stress in the flange is given by Equation 6.40. The shear stress is taken
as constant across the thickness of the thin flange. 

With l as the distance from the free-end of the flange to a cut at point F, then:

[Eq. 6.43]

The shear stress in the flange acts horizontally, and is equal to:

[Eq. 6.44]

The shear stress varies linearly with distance
l; it is zero at the free end of the flange, and
reaches a maximum at the intersection with
the web (at l = b):

[Eq. 6.45]

Since the shear stress in the flange is linear,
the effective horizontal force in the flange is
the product of the average shear stress in the
flange (half the maximum value) and the
flange area:

[Eq. 6.46]
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2I

---------= = =

τmax f,
Vbd
2I

----------=

Ff τaveAf
Vbd
4I

---------- bf( )= =
Figure 6.34. Qualitative response of 
shear stress on channel cross-section. 
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Shear Stress Distribution

The shear stress distribution on the channel cross-section is qualitatively shown in
Figure 6.34. In each flange, the horizontal shear stress is linear since A*y* is linear
(A* = fl is linear, y* is constant). In the web, the vertical shear stress is quadratic since A*
and y* are both linear. If the flange and web thicknesses are different, then at the flange–
web junction, the flange and the web shear stresses are different.

I-Beams

I-beams are doubly symmetric, so their centroid is centered on the cross-section
horizontally and vertically. I-beams are essentially two channel sections back-to-back. The
shear stress distribution in an I-beam is determined using the same method used for a
channel section. The shear stress is horizontal and linear in the flanges, and vertical and
quadratic in the web.

Example 6.15   Shear Stress and Shear Flow in an I-beam

Given: The built-up I-beam cross-section in
Figure 6.35 is subjected to a 15-kip shear force
applied upward on the cross-section.

Required: Due to the applied shear force, plot (a) the
horizontal shear stress in the flange and the vertical
shear stress in the web and (b) the corresponding
shear flow.

Solution: Step 1. Cross-section. The moment of
inertia is:

Step 2. Shear Stress. At the end of the flange, the shear stress is zero. The shear stress is
linear in the flange and quadratic in the web. Plotting the shear stress requires finding the
stress at the web–flange intersection (cuts A and B) and at the centroid (C), and sketching
the appropriate shape of the stress. The shear stress is:

The shear stresses at cuts A and B are:

I 0.3( ) 7( )3

12
----------------------- 2 6 0.5( )3

12
------------------ 6 0.5×( ) 3.75( )2++=

93.08 in.4=

τ y( ) VA∗y∗
It

----------------=

τA
15 000 lb,( ) 3 0.5 in.2×( ) 3.75 in.( )

93.08 in.4( ) 0.5 in.( )
------------------------------------------------------------------------------------ 1.813 ksi= =

τB
15 000 lb,( ) 6 0.5×  in.2( ) 3.75 in.( )

93.08 in.4( ) 0.3 in.( )
------------------------------------------------------------------------------------ 6.04 ksi= =

Figure 6.35. (a) I-beam. 
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For cut C: 

so:

The shear stress is plotted in Figure 6.35b.

Step 3. The shear flow is q = τt, so:

The shear flow is plotted in Figure 6.35c. 

At the flange–web junction, the shear flow in
the web is the sum of the shear flows of each
half of the flange:

Like water, the flow that enters a junction
must leave that junction. This is generally
not true for the shear stress since the flange
and web thicknesses are usually different.

Note: If the shear stress in the web is calculated by simply dividing the applied shear force
by the web area (neglecting the flanges), then:

This value is slightly larger than that calculated above at the centroid. I-beams are
generally designed assuming only the web supports the shear force, and this
straightforward calculation often provides a reasonable approximation for the maximum
shear stress in an I-beam.

Shear Center
If the applied shear force V acts through the centroid of the channel section as

shown in Figure 6.36, the beam rotates or twists about its axis. Rotation occurs
because the moment caused by the applied force and the resisting shear stress in the web,
and the moment caused by the shear stresses developed in the flanges, both act in the same
direction (counterclockwise in Figure 6.36). To prevent twisting, the applied force must

A∗y∗ 6 0.5×( ) 3.75( ) 0.3 3.5×( ) 1.75( )+=

13.09 in.3=

τC
15 000 lb,( ) 13.09 in.3( )

93.08 in.4( ) 0.3 in.( )
--------------------------------------------------------- 7.03 ksi= =

qA 0.907 kips/in.=

qB 1.81 kips/in.=

qC 2.10 kips/in.=

qB qA qA+=

τweb
V

Aweb
------------ 15 000 lb,

0.3 in.( ) 8 1–( ) in.[ ]
-------------------------------------------------- 7.14 ksi= = =

Figure 6.35. (b) Distribution of shear 
stress. (c) Distribution of shear flow.
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be moved a distance e away from the
channel’s centroid.

The shear center of a cross-section is the
point that an applied shear force must pass
through so that the beam does not twist.
When the cross-section has an axis of
symmetry, the shear center lies on that axis.
A rectangle, a circle, an I-beam, etc., all have
two axes of symmetry; they are doubly
symmetric. The shear center is at the centroid
of a doubly symmetric shape.

The channel section has only one axis of
symmetry; the shear center does not coincide
with the cross-section’s centroid. An
example of finding the shear center is given
below.

Example 6.16   Shear Center of a Channel Section

Given: The channel section in
Figure 6.37a has dimensions:

b = 6.0 in., d = 12.0 in.,
f = w = 0.5 in. 

Distance b is the width of the flange
from its free end to the centerline of
the web, and d is the distance
between the centerlines of the
flanges. Distances f and w are the
thicknesses of the flanges and web,
respectively. The flange and web
thicknesses are considered small
compared to the overall dimensions.
The shear force is V.

Required: (a) Determine the expression for the location of the shear center e from the
centroid as a function of b, d, w, and f. (b) For the values given above, determine e.

Solution: Step 1. Take the applied shear force to act at the shear center, distance e to the
left of the centroid (Figure 6.37b). To balance the counterclockwise moment due to the
shear forces in the flanges, the applied force must act to the left of the web. The total shear
force in the web is equal to the applied force V.

Step 2. The shear force in each flange is (Equation 6.46):

Figure 6.37. (a) Channel cross-section. 
(b) Locating the shear center of the cross-
section.

Figure 6.36.  A length of a channel 
beam subjected to a shear force acting 
through the centroid of the rear cross-
section. The resisting shear stress on 
the front cross-section has the 
qualitative response shown. The applied 
force and the resisting shear stresses 
cause the beam to twist.
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where I is the moment of inertia of the entire cross-section about the z-axis. Here:

The counterclockwise moment caused by the shear in the flanges is:

Step 3. The applied force and the reacting force in the web cause a clockwise moment:

where zc is the distance from the web-centerline to the centroid of the cross-section. For
the channel:

(prove this for yourself)

For this channel, zc = 1.50 in.

Step 4. Equating the moments and solving for e algebraically:

Answer: 

Step 6. Substituting the values:

Answer: 

The shear center is 3.75 in. to the left of the centroid, or 2.25 in. to the left of the web,
outside of the channel (Figure 6.37b). 

That the shear center is outside the channel has an interesting consequence. To lift a
channel beam without causing it to twist, the shear force must be applied through the shear
center. Since the shear center is outside the structure of the cross-section, external
framework is needed to properly apply the force. Consider the difficulty in lifting a long
and large channel-section beam (say d = 10 ft tall), that would make up the support
structure of the walkway on either side of a large bridge.
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I wd3

12
---------- 2 bf 3

12
--------- bf d 2⁄( )2++ 288.13 in.4= =
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Vb2d2f

4I
-----------------= =

MV V e zc–[ ]=

zc
b2f

dw 2bf+
----------------------=

V e zc–[ ] Vb2d2f
4I

-----------------   =    e zc
b2d2f
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-------------+=→

e b2f
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4
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12
---------- 2 bf 3

12
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1–
+=
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Figure 6.38. (a) Deflection of 
a cantilever beam due to 
bending. (b) Deflection of a 
cantilever beam due to shear 
force.

Comparison of Bending and Shear: Deflection and Stress
Deflection

The deflection v(x) due to bending moment M(x) was determined in Section 6.2. The
deflection due to shear force was not considered, the reason for which is discussed below.

Consider a cantilever beam, under tip load P. The cross-section is rectangular, with width b
and depth d. The material moduli are E and G. For a homogeneous, isotropic material G ~3E/8.

The tip deflection of the beam due to bending (Figure 6.38a) is:

The tip deflection due to shear (Figure 6.38b) is:

The ratio of the bending and shear deflections is:

The value of L/d for beams is generally L/d ~ 10. The
ratio of the deflections is then:

For most beams, the deflection due to shear is
negligible. Very short beams (small L/d) are affected
more by shear.

Stress
The maximum bending stress in the cantilever beam

is:

The maximum shear stress in a beam of rectangular cross-section is:

The ratio of the normal and shear stresses is, taking L/d ~ 10:

 

The ratio of the normal yield strength to shear yield strength for ductile metals is:
. The ratio of the stresses is greater than the ratios of the strengths. Thus, the

bending stress dominates and causes failure in most beams. The shorter the beam, the more
susceptible it is to failure by shear. 
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6.5  Shape: Section Modulus and Shape Factor

Throughout the discussion of beams, it becomes apparent that cross-sectional shape is
an important factor in determining beam stresses and deflections. The response of a beam
depends on how well its cross-sectional area is distributed about the axis of bending. For
beams, the relevant property of the cross-section is the moment of inertia I. The moment
of inertia is a measure of how stiff a cross-section is with respect to bending about an axis
in the plane of the cross-section through its centroid. For shafts in torsion, the analogous
property is the polar moment of inertia J, a measure of how stiff a cross-section is with
respect to twisting about the axis of the shaft (perpendicular to the cross-section). 

Two additional geometric properties of a beam cross-section are introduced here: the
section modulus and the shape factor.

Section Modulus
The bending stress in a beam is given by the formula:

[Eq. 6.47]

where y is measured from the centroidal axis. The bending stress increases with y so that
the magnitude of the maximum stress on the cross-section is:

[Eq. 6.48]

In general, the most important value of the bending stress is its maximum value. 

It would be useful to have an equation similar to that for the normal stress in an axial
member, where the stress on a cross-section is simply the load divided by a single cross-
sectional property:

[Eq. 6.49]

For a given cross-section, I and ymax are both constant geometric properties; thus, their
ratio is also a constant property. The section modulus Z of a cross-section is defined as:

[Eq. 6.50]

The magnitude of the maximum bending stress can then be written:

[Eq. 6.51]

For a given moment M, as section modulus Z is increased, the maximum bending stress
decreases. The units of section modulus are length cubed (in.3, m3, mm3).

σ My
I

--------–=

σmax

Mymax

I
----------------- Mc

I
--------= =

σ P
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---=

Z I
ymax
----------- I

c
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M
Z
-----=
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Formulas for the section modulus of common shapes are given in Table 6.5 on
Page 212. Section moduli for selected I-beams are given in Appendix C.

Example 6.17   Solid Circular Cross-Section

Required: Determine (a) the section modulus for a solid circular cross-section of radius R
and (b) the maximum bending stress due to moment M.

Solution: For a solid circle: ; .

The section modulus is:

Answer: 

The maximum bending stress is:

Answer: 

Example 6.18   Rectangular Cross-Section

Required: Determine (a) the section modulus for a rectangular cross-section of depth d
and width b and (b) the maximum bending stress due to moment M.

Solution: For a rectangle: ; .

The section modulus is:

Answer: 

The maximum bending stress is:

Answer: 

Example 6.19   An S510-141 I-beam

Given: A metric I-beam shape, S510-128, has a moment of inertia
I = 658 ×106 mm4 and a total depth d = 516 mm (Figure 6.39).

Required: Determine (a) the section modulus of the I-beam and
(b) the maximum bending stress due to moment M = 200 N·m.

Solution:

Answer: 

I πR4 4⁄= ymax R=

Z I
ymax
-----------

πR4 4⁄
R

----------------- Z πR3

4
----------=⇒= =

σmax
M
Z
----- 4M

πR3
----------= =

I bd3 12⁄= ymax d 2⁄=

Z I
ymax
----------- bd3 12⁄

d 2⁄
-------------------= =

Z bd2

6
---------=

σmax
M
Z
----- 6M

bd2
---------= =

Z I
d 2⁄
---------- 658

6×10  mm4

258 mm
-----------------------------------= =

Z 2.55=
6×10  mm3

Figure 6.39. General 
shape of an I-beam.
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Answer: 

The section modulus of I-beams is generally included in tables of their geometric
properties (see Appendix C).

Shape Factor for Elastic Bending
The following discussion is based on very innovative ideas developed by Prof.

Michael F. Ashby at the University of Cambridge in the United Kingdom. Details may be
found in his book, Materials Selection in Mechanical Design (1992, 1999).

Desire for improved fuel efficiency in automobiles and the power limitations of rocket
engines used to launch space vehicles are examples where lightweight components are
necessary. Ashby’s elastic shape factor for bending is a useful concept in lightweight design. 

The shape factor for bending stiffness – the elastic shape factor – is defined as:

[Eq. 6.52]

where I is the moment of inertia of the beam cross-section and A is its area. The shape
factor is dimensionless, and is a single variable that combines two important geometric
properties of the cross-section, I and A.

The shape factor is a measure of the stiffness of the cross-section I per its cross-sectional
area squared A2 (weight squared when comparing cross-sections of the same material). The
constant 4π is introduced so that the shape factor of a solid circle is unity (1.0).

The greater the shape factor , the more efficient the cross-section is in terms of its bending
stiffness to weight ratio. For the same material and area A (weight), the greater the shape factor,
the greater the value of I, the greater the bending stiffness EI, and the smaller the deflection.

Formulas for the elastic shape factor for bending stiffness of some common cross-
sections are given in Table 6.5.

A shape factor for bending strength can also be developed, but will not be discussed in
this treatment. The reader is referred to the work of Prof. Ashby.

Example 6.20   Solid Circular Cross-Section

Required: Determine the shape factor of a solid circle.

Solution:

Answer: 

σmax
M
Z
----- 200 N·m

2.55
6–×10  m3

----------------------------------= =

σmax 78.4 MPa=

φB
e 4πI

A2
---------=

φB
e

φB
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A2
--------- 4π πR4 4⁄( )

πR2( )2
----------------------------= =

φB
e 1.0=
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Example 6.21   Rectangular Cross-Section

Required: Determine the shape factor of a rectangular cross-section of depth d and width b.

Solution:

Answer: 

The ratio d/b defines the shape factor for a rectangular cross-section. Note that the
absolute size of the cross-section does not matter; the factor is based only on the shape of
the cross-section. 

Example 6.22   American Standard Metric S510-128 I-beam

Given: A metric I-beam shape, S510-128, has a moment of inertia of I = 658×106 mm4

and a cross-sectional area of 16.32×103 mm2.

Required: Determine the shape factor of the I-beam.

Solution: 

Answer: 

Typical values for the shape factor  of I-beams range from 15 to 35. For rectangular

cross-sections, the shape factor is . A deep rectangular beam is a 2 by

12, which gives a shape factor of . Based on typical shape factor values, the

efficiency of the I-beam over the rectangle in carrying bending loads is readily seen.
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Table 6.5.  Geometric properties of shapes subject to bending: 
Area, Moment of Inertia, Section Modulus and Elastic Shape Factor.

Shape
Area, A
(length2)

Moment of Inertia 
about horizontal axis 

at Centroid, I
(length4)

Section 
Modulus,

Z
(length3)

Elastic
Shape
Factor

Rectangle,
Square

Hollow
Rectangle

(d is total depth)

Circle,
solid

Circle, 
thick
wall

Circle,
thin-
wall

Triangle

Built-up
I-beam

(d is total depth)

Space
Frame;
Truss

A
(total cross-

sectional area) (d is distance between 
chord centroids)
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6.6  Design of Beams

Strength and Stiffness
Beams are generally designed to satisfy two requirements:

1. Strength: when subjected to load, the maximum stress should not exceed an 
allowable stress determined by the material strength and the factor of safety.

2. Stiffness: when subjected to load, the maximum deflection should not exceed an 
allowable amount. The allowable deflection is given in terms of the beam span 
or length L. The deflection index f is:

[Eq. 6.53]

The allowable deflection index is usually small. Building codes give the maximum
allowable deflection index for structural members as fA = 1/240 (about 0.4%). For
plastered ceilings, the allowable deflection index is less: fA = 1/360. For automobile
chassis, the allowable deflection index is approximately fA = 1/240.

The following examples illustrate basic design concepts, and selecting beam materials
and cross-sectional shapes for light-weight design.

Example 6.23   Maximum Allowable Load

Given: A simply-supported beam of length
L is subjected to a central point load P
(Figure 6.40). The cross-section is doubly
symmetric (e.g., a rectangle, I-beam, etc.)
with depth D and moment of inertia I. The
material properties are yield strength Sy and
modulus E. the allowable bending stress is
based on a factor of safety of 2.0 against
yielding. The allowable deflection index is
fA = 1/240.

Required: Based on bending strength and deflection requirements, determine how the
allowable load PA varies with span L.

Solution: Step 1. Allowable load based on strength. For a simply supported centrally
loaded beam, the maximum moment is at the center:

The maximum bending stress is:

 f deflection
span of beam
-------------------------------- δ

L
---= =

Mmax
PL
4

-------=

Figure 6.40. Simply-supported beam 
subjected to central load P.
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From the factor of safety requirement, the allowable stress is:

The allowable load based on strength is:

Answer: 

where Z is the section modulus of the cross-section.

Step 2. Allowable load based on deflection. The central deflection for a simply supported
centrally loaded beam is:

The deflection index and allowable deflection are:

The allowable load based on stiffness is:

Answer: 

Step 3. Allowable load. Both strength and stiffness requirements must be satisfied, so:

Answer: 

Step 4. The shear stress, generally considered a secondary load, should also be checked
against its allowable value to ensure a safe structure.

Example 6.24   Effect of Length on Allowable Loads for Structural Steel and
Aluminum

Given: The simply-supported center-loaded beam of Example 6.23 and Figure 6.40. The
cross-section is the metric I-beam S510-128: 

I = 658×10–6 m4, D = 0.516 m, Z = 2.55×10–3 m3

Required: For structural steel and structural aluminum, plot the allowable load PA for
both strength and deflection against beam length L. For steel: Est = 200 GPa and
Sy,st = 250 MPa; for aluminum: Eal = 70 GPa and Sy,al = 240 MPa (structural metals Steel
A36 and Aluminum 6061-T6 have about the same yield strength). For strength, use a
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factor of safety of 2 against yielding.
For the allowable deflection factor,
take fA = 1/240.

Solution: Step 1. For simplicity, the
strength Sy of both metals is taken to
be the same (250 MPa), the
allowable load based on strength,
including the factor of safety, is:

Step 2. The moduli of the two
materials are different, so the
allowable loads based on deflection
are, from Example 6.23:

and

Step 3. The allowable loads for the S510-128 beam are plotted against length in
Figure 6.41.

For the S510-128 steel beam, the allowable load is limited by its strength for L < 20.6 m,
which is very long for a beam that is only 0.5 m deep. Steel has a high modulus so
deflection is rarely a major concern in practical systems. 

For the aluminum beam, the load is limited by strength for L < 7.2 m. Longer aluminum
beams are limited by deflection. It is especially important to consider both strength and
deflection criteria in aluminum structures. While replacing steel with aluminum of the
same cross-section (here, S510-128) reduces the weight (the density of aluminum is about
one-third that of steel), deflection can become the failure mode. 

In aluminum design, the yield strength of Aluminum 6061-T6 is generally taken as the
minimum expected from manufacture, which is Sy = 240 MPa. Thus, for a given cross-
section, regardless of length and neglecting self-weight, structural steel beams can support
more or equal load than structural aluminum beams of the same cross-sectional geometry.

Example 6.25   Selection of an I-beam

Given: A 10 ft long steel I-beam is to support a tip load of P = 5.0 kips (Figure 6.42).
The allowable stress in bending is σA = 15 ksi, the modulus is E = 30,000 ksi, and the
allowable deflection index is fA = δ/L = 1/240. The beam is to be made of an S-shape
beam.

PA σ,

2SyZ

L
------------=

PA δ st, ,

EstI

5L2
---------=

PA δ al, ,

EalI

5L2
----------=

Figure 6.41. Allowable central point load plotted 
against beam length for allowable stress and 
allowable deflection. Beam cross-section: 
S510-128.
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Required: Specify the required I-
beam cross-section from the S-
shapes listed in Appendix C. Select
the shape that gives the least weight
while satisfying the stress and
deflection requirements.

Solution: Step 1. For a cantilever
beam under tip load, the maximum
moment is:

so the maximum bending stress is:

To satisfy the allowable stress:

Step 2. The deflection due to a tip load is:

The allowable deflection is:

To satisfy the allowable deflection:

Step 3. Referring to Appendix C, the smallest S-shape I-beam that satisfies the strength
requirement is S12×40.8. The smallest I-beam to satisfy the deflection requirement is
S12×31.8. Since both requirements must be met:

Answer: Select: S12×40.8

Step 4. After the cross-section is selected, the system must be reanalyzed to include the
weight of the beam itself. In this case, a uniformly distributed load w = 40.8 lb/ft must be
applied in addition to the point load. If the applied load and self-weight causes the stress or
deflection to exceed the allowables, a new cross-section must be selected, usually the next
largest area of the same depth. In this case, S12×40.8 does support the applied load and its
own weight without exceeding either the allowable stress or the allowable deflection.
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I
PL3

3EδA
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------------------------------------------------------- 192 in.4= =

Figure 6.42. Cantilever beam of length L 
subjected to tip load P.
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Minimum Weight Design
After strength and stiffness, a third design consideration is weight. Weight reduction

has always been of great concern for aeronautical and aerospace engineers. In addition,
lighter automobiles increase fuel efficiency; lighter building materials reduce shipping
costs and make construction easier; lighter golf shafts and tennis rackets give sports
enthusiasts at least a perceived advantage. An efficient engineering structure uses less
material. This makes the structure lighter and cheaper, and minimizes the requirements
placed on natural resources.

In the next two examples, equations are developed that determine the minimum
weight of a rectangular beam that must support a given load or have a certain stiffness.
This development is also based on the ideas of Michael Ashby (Materials Selection in
Mechanical Design, 1992, 1999).

Example 6.26   For a Given Load, Design a Rectangular Beam of Minimum
Weight

Given: A cantilever beam of length L with
rectangular cross-section of breadth b and
depth 2b is to be subjected to tip load P
(Figure 6.43). The material has weight
density γ, yield strength Sy, and modulus E.
Neglect the weight of the beam on the load,
i.e., W << P.

Required: For a given load P, develop an
expression that can be used to design a beam
(i.e., select the material) to minimize its
weight. The length of the beam is specified
to be L.

Solution: Step 1. The weight of the beam is:

The maximum moment for a tip-loaded cantilever is:

The maximum stress for the b×2b rectangular beam is:

from which:

Step 2. Substituting b into the weight equation, and setting the maximum stress to the yield
strength, gives:

W γAL γ b 2b×( )L 2γb2L= = =

M PL=

σmax

Mymax

I
----------------- Mb

b 2b( )3 12⁄
--------------------------- 3

2
---PL

b3
-------= = =

b 3
2
--- PL

σmax
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 3/

=

Figure 6.43. Cantilever beam of length L 
subjected to tip load P.
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Answer: 

The expression for weight can be described as follows:

The required strength P is given and length L is usually constrained by overall geometric
requirements. The only term that can be modified is the material properties term. Thus, to
minimize the weight of the beam, a material should be selected that has a low value of

 ( ), or a high value of .

The cross-sectional area A does not appear in the result as it was eliminated by the
math. The actual size of the rectangular cross-section is not known, only that it has an
aspect ratio (depth:height) of 2. After a material is chosen, the beam will have to be sized
with strength and stiffness calculations to ensure it is of reasonable dimension.

Example 6.27   For a Given Stiffness, Design a Rectangular Beam of
Minimum Weight

Given: A cantilever beam of length L with rectangular cross-section of breadth b and
depth 2b, is to be subjected to tip load P (Figure 6.43). The material has weight density γ,
yield strength Sy, and modulus E. Neglect the weight of the beam on the load.

Required: For a given stiffness K = P/δ, develop an expression that can be used to design
a beam (i.e., select the material) to minimize its weight. The length of the beam is fixed.

Solution: Step 1. The weight of the beam is:

The maximum deflection of a cantilever is:

Solving for b2:

Step 2. Substituting b2 into the weight equation gives:

W 2γ 3
2
--- PL

σmax
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2 3/

L 2  3
2
---⎝ ⎠

⎛ ⎞ 2 3/
P2 3/

γ
Sy

2 3/
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

L5 3/= =

W 2  3
2
---⎝ ⎠

⎛ ⎞ 2 3/
P2 3/

γ
Sy

2 3/
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

L5 3/=

W constant strength
term

material properties
term

length
term=

γ Sy
2 3/⁄ γ3 2/ Sy⁄ Sy γ3 2/⁄

W γAL 2γb2L= =

δ PL3

3EI
---------- PL3

3E
b 2b( )3

12
-----------------

------------------------------ PL3

2Eb4
-------------= = =

b2 PL3

2Eδ
---------- ⎝ ⎠

⎛ ⎞1 2/
=

W 2γ PL3

2Eδ
---------- ⎝ ⎠

⎛ ⎞1 2/
L=
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Answer: 

The expression for weight is given by:

The required stiffness P/δ is given and the length L is usually constrained by overall
geometric requirements. The only term that can be modified is the material properties
term. To minimize the weight of the beam, a material should be selected that has a low
value of , or a high value of . Once a material is chosen, the cross-sectional
dimensions will need to be sized.

Performance Index
In Examples 6.26 and 6.27, the weight of a cantilever beam of cross-section b×2b was

given by a general function:

[Eq. 6.54]

The system response or performance is the required strength or stiffness of the beam. By
analyzing other beams, it can be shown that the constant term depends on the type of load,
the support system, and the chosen cross-sectional shape. 

The material properties ratio is the performance index. Once a beam system (load,
supports, and cross-section) is selected, to minimize beam weight, the appropriate material
performance index must be minimized (or maximized) as shown in Table 6.6.

Table 6.7 compares the appropriate
ratios for minimum weight design for
various materials using representative
values. The cross-sectional shape of each
system must be the same, but not
necessarily the size. For a given stiffness,
the lightest beam has properties that
maximize the performance index .
For a given strength, the lightest beam
maximizes .

Table 6.7 indicates that a wooden
beam compares favorably to a structural
steel beam of the same cross-sectional
shape. For stiffness calculations, the

W 21 2/ P
δ
--- ⎝ ⎠

⎛ ⎞1 2/ γ2

E
----- ⎝ ⎠

⎛ ⎞1 2/
L5 2/=

W constant stiffness
term

material properties
term

length
term=

γ2 E⁄ E γ2⁄

W constant
system response
or perfomance

term

material properties
term

length
term=

E γ2⁄

Sy γ 3 2/⁄

Table 6.6.  Performance Indices for 
minimum weight beams; same 
cross-section and length.

For a given Minimize Maximize

Strength , , 

Stiffness , , 

γ3 2/

Sy
---------- ρ3 2/

Sy
----------

Sy
γ3 2/
----------

Sy
ρ3 2/
----------

γ2

E
----- ρ2

E
------

E
γ2
----- E

ρ2
------

γ: weight per unit volume, γ = ρg
ρ: mass per unit volume
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performance index E/γ2 of wood is 13 (=4.71/0.37) times as great a steel. Similarly, for the
same load carrying capacity, the performance index Sy/γ

3/2 of wood is 9.6 (=2.29/0.24)
times greater than steel. Aluminum is also superior to structural steel. A higher
performance index means a lighter system. Aluminum was the primary material used in
the development of the aircraft industry, which requires light structures. It should be noted
that stronger steels can be made (A36 is a structural steel used in common construction
applications).

The ceramic SiC would seem to be a good choice for a lightweight beam. However,
this engineering ceramic is brittle. Large beams of ceramic materials are not feasible since
there is a large probability of the system having a crack large enough to cause fracture.
Small ceramic beams are used in micro-devices, and ceramic fibers (~100 μm in diameter)
are used in composites; smaller volumes of a brittle material are less likely to fail under a
given stress.

Lastly, composites such as carbon fiber reinforced polymers (CFRP) have great
advantages. While the modulus and strength given in Table 6.7 are for the uniaxial-only
direction, which exaggerates the typical performance index of CFRP, the general trend is
illustrated. The structural efficiency of composites – their high strength-to-weight and
high stiffness-to-weight ratios – is why they are widely used in the aerospace industry. 

Minimum Weight Design using Shape Factors
Applied loads and overall geometry (length) are often specified values in a design. In

addition to material selection, the cross-sectional shape is usually a design choice. Ashby’s
elastic shape factor  for beam bending (Equation 6.52, provides the most effective
single-variable description of a cross-section for minimum weight stiffness problems. The
shape factor relates the moment of inertia I (the bending stiffness due to the shape of
the cross-section) to the cross-sectional area A (~weight):

φB
e

Table 6.7.  Representative Performance Indices for Minimum Weight Design. 
The last two columns are calculated directly from the numbers in the first three; 
for simplicity, units are not included.

Material
γ 

(lb/in.3)
E

(Msi)

Sy or 
Su (ksi)

For Stiffness, 
maximize

For Strength, 
maximize

Steel A36 (structural) 0.284 30 36 0.37 ×103 0.24 ×103

Aluminum 6061-T6 (structural) 0.098 10 40 1.04 ×103 1.30 ×103

Wood, Douglas Fir (parallel to grain) 0.019 1.7 6 4.71 ×103 2.29 ×103

Ceramic, silicon carbide, SiC 0.116 65 200 4.83 ×103 5.06 ×103

Composite, CFRP (fiber direction) 0.058 20 300 5.94 ×103 21.5 ×103

E γ 2⁄ Sy γ 3 2/⁄
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[Eq. 6.55]

A shape factor can also be developed for strength problems (as well as for torsion
problems, etc.), but only beam deflection problems are considered in this presentation.
The elastic shape factor will simply be written φ.

The shape factor method is demonstrated by repeating Example 6.27 (a cantilever
requiring a given stiffness). However, the cross-sectional shape is not specified. 

Example 6.28   For a Given Stiffness, Design a Beam of Minimum Weight

Given: A cantilever beam of length L is to be subjected to tip load P (Figure 6.43). The
material has weight density γ, yield strength Sy, and modulus E.

Required: For a given stiffness K = P/δ, develop an expression that can be used to design
a beam of minimum weight. The length of the beam is fixed. The beam material and cross-
sectional shape can be selected.

Solution: 

The weight of the beam is:

The maximum deflection of a cantilever is:

The shape factor is:

Solving for the moment of inertia from the deflection and shape factor equations:

The area can be rewritten:

Substituting the area into the expression for the weight, and rearranging, gives:

Answer: 

Replacing weight density γ with mass density ρ gives the mass of the beam:

Answer: 

φB
e 4πI

A2
---------=

W γAL=

δ PL3

3EI
----------=

φ 4πI

A2
---------=

I PL3

3Eδ
---------- φA2

4π
---------= =

A PL3

3Eδ
----------4π

φ
------ ⎝ ⎠

⎛ ⎞1 2/
=

W
4π
3

------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
P
δ
---

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
γ2

E
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
 1 
φ

------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/

L5 2/=

m
4π
3

------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
P
δ
---

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
ρ2

E
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/
 1 
φ

------
⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2/

L5 2/=
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The weight equation just derived is more general than that found in Example 6.27. The
general form of the equation now has five terms:

[Eq. 6.56]

The constant depends on the beam loading and its supports; the required stiffness
(performance) and length are generally given. The materials and cross-sectional shape
have yet to be determined. The area of the cross-section does not appear in the equation,
but is incorporated in the shape factor φ. 

To minimize beam weight for a given stiffness, the following expression is minimized:

or  [Eq. 6.57]

or, the following expression is maximized: 

or  [Eq. 6.58]

Using Examples 6.57 or 6.58, a designer can choose material and shape to achieve
the most efficient design. A low value of E/γ2 can be compensated for with a high value of φ. 

For example, based only on
Table 6.8, steel is less desirable than
either aluminum or wood. However,
steel is often formed into a very
efficient cross-section, the I-beam (a
shape factor of φ ~ 15 – 30), while
wood has traditionally had a
rectangular cross-section (φ = 1.05 d/b).
Appropriate choices of material and
shape can result in a very efficient
structural system, as illustrated in the
following example.

W constant stiffness
term

material properties
term

cross-section
term

length
term=

γ2

E
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞  1 

φ
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ ρ2

E
------

⎝ ⎠
⎜ ⎟
⎛ ⎞  1 

φ
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

E

γ2
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞

 φ ⎝ ⎠
⎛ ⎞ E

ρ2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

 φ ⎝ ⎠
⎛ ⎞

Table 6.8.  Material properties for minimum 
weight design based on beam stiffness (SI 
units).

Material
ρ

(kg/m3)
E

(GPa)

Steel, A36 7.9 200 3.2

Aluminum, 6061-T6 2.7 70 9.6

Wood, Douglas Fir 0.6 12 33.3

E
γ 2
-----
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Example 6.29   Wood Rectangular Beam vs. Steel I-beam

Given: A wooden beam with a rectangular
cross-section (aspect ratio d/b = 2) and a steel
I-beam (φ = 25) are being considered for an
application requiring a given stiffness P/δ
(Figure 6.44).

Required: Determine which combination of
material and cross-sectional shape will give the
lightest beam. For the material properties, use
Table 6.8.

Solution: Step 1. The shape factor for a
rectangle with an aspect ratio of 2 is:

Step 2. To minimize weight, the following expression must be maximized:

For the wooden beam:

For the steel I-beam, φ = 25:

Since the expression for the steel I-beam is greater than that for the wooden rectangular
beam:

Answer:  the steel beam system is lighter

This is why steel is manufactured into I-beams with large values of φ. 

In recent years, wood has also begun to be manufactured as I-beams, with wooden
flanges and plywood webs. The I-beam shape makes a wooden beam a more efficient
system, allowing less of this natural and increasingly expensive material to be consumed.

φ 1.05d
b
--- 1.05 2( ) 2.1= = =

E

ρ2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

φ ⎝ ⎠
⎛ ⎞

E

ρ2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

φ ⎝ ⎠
⎛ ⎞ 33.3( ) 2.1( ) 70= =

E

ρ2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

φ ⎝ ⎠
⎛ ⎞ 3.2( ) 25( ) 80= =

Figure 6.44. Wooden beam of 
rectangular cross-section and 
steel I-beam.
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Chapter 7 Combined Loading

7.0  Introduction

In Chapters 4–6, the following components were analyzed:

• Axial members that support axial forces that cause axial (normal) stresses;
• Torsional members that support torques that cause shear stresses;
• Pressure vessels that contain fluids under pressure that cause biaxial (normal) 

stresses;
• Beams that support bending moments and shear forces that cause bending (normal) 

stresses and shear stresses, respectively.

For convenience, these structural components with their loadings, stresses, and strains are 
summarized in Table 7.1. The various loads cause only two types of stresses: normal 
stresses σ and shear stresses τ.

In practice, a system and its 
loadings can be quite complex. 
Many situations arise that cause 
a   component to be loaded
simultaneously by axial, torsional, 
shear, and/or bending loads. Such is 
the case for the support mast of 
the highway sign introduced in
Chapter 2, and shown again in 
Figure 7.1. The mast acts as:

• an axial member supporting 
the weight of the sign and its 
own weight;

• a torsional member supporting 
a torque due to the wind 
force acting on the sign;

• a beam supporting a shear force 
due to the wind, and bending 
moments about two axes due 
to the weight of the sign (M1) 

and the wind force (M2).

Figure 7.1. (a) A highway sign under wind load.  
(b) Considering the wind load (FW) and the 
weight of the structure (WS + WM), the support 
mast acts as an axial member, a torsional 
member, and a beam in shear and in bending 
(about two axes).
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At first glance, the analysis of a system subjected to several loads can be daunting. 
However, the solution method for linear systems is, in general, straightforward. The 
stresses and strains caused by each load acting alone are first determined. The total effect 
is found by combining the results due to each load.

Breaking a complex problem into a number of simpler problems, solving the simpler 
problems, and then adding the individual solutions together to get the total response, is 
called the method of superposition. This method is a very powerful tool for solving linear 
systems. For stresses, strains, and displacements, the method of superposition only works 
when the material remains within the linear–elastic range everywhere, i.e., the material 

Table 7.1.  Components and their Loads, and resulting Stresses and Strains.

Member and Load Resulting Stress
Maximum

Stress and Strain

Bar, Rod, Column: axial force P
Normal (axial) 

Stress σa
[Eq. 7.1]

Shaft in Torsion: torque T
Shear Stress

 τT
[Eq. 7.2]

Pressure Vessel: pressure p Normal (biaxial) 
Stress

cylindrical: σH, σL;

spherical: σS
[Eq. 7.3]

Beam: moment M

Normal (bending) 
Stress

σb [Eq. 7.4]

Beam: shear force V

Shear Stress
 τV

[Eq. 7.5]

σa
P
A
---   ε; P

AE
-------= =

τT
TR
J

-------   γ; TR
JG
-------= =

σH
pR
t

-------   εH; pR
2Et
--------- 2 νd–( )= =

σL
pR
2t
-------   εL; pR

2Et
--------- 1 2ν–( )= =

σS
pR
2t
-------   εS; pR

2Et
--------- 1 ν–( )= =

σb
Mc

I
--------   ε;– Mc

EI
--------–= =

τV
VA∗y∗

It
----------------   γ; VA∗y∗

GIt
----------------= =
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does not yield. If the stress anywhere exceeds the material yield strength (in tension or 
compression), plastic deformation occurs, and the stress–strain relationship is no longer 
linear. If yielding is predicted to occur, the component will likely need to be redesigned.

Stresses generally vary from point-to-point in a system. It is therefore important to 
find the stresses that act at critical points due to each load. A clear and orderly solution 
method is necessary to avoid confusion. 

7.1  Superposition Examples

The method of superposition is illustrated with a series of examples.

Example 7.1  Axial Loads

Given: Two weights, W1 and W2, hang from 
a bar of cross-sectional area A and length L 
(Figure 7.2). The modulus of the bar is E. 
Assume the material remains elastic.

Required: Consider the weights separately 
(Figure 7.2a, center, right), and use 
superposition to determine the (a) stress and 
(b) strain states at point C, and (c) the 
elongation of the bar under both loads.

Solution: Step 1. The stress, strain, and 
elongation due only to W1 are:

The stress, strain, and elongation due only to 
W2 are:

Step 2. Superimposing (summing) the results 
for the bar loaded separately by W1 and W2
gives:

σ1

W1

A
-------    ε1

W1

AE
-------    Δ1;=;

W1L

AE
-----------= =

σ2

W2

A
-------    ε2

W2

AE
-------    Δ2

W2L

AE
-----------=;=;=

σ σ1 σ2+
W1

A
-------

W2

A
-------+

W1 W2+

A
---------------------= = =

ε ε1 ε2+
W1

AE
-------

W2

AE
-------+

W1 W2+

AE
---------------------= = =

Figure 7.2.  (a) A bar under load  
W1 + W2 is equivalent to the 
superposition of the bar loaded 
separately by W1 and W2. (b) The 
stress state at point C is the 
superposition of the stresses caused 
by the weights individually.
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These results agree with those found by simply taking the total load, W1 + W2, and solving 
immediately for the stress, strain, and elongation:

Answer:   ;   ;   

Summary. This trivial example shows the process of superimposing like-stresses at a point 
due to separate loads. Here, the stresses are constant everywhere. In general, stresses vary 
with location, such as in beams that carry a non-constant bending moment.

Again, the method of superposition works if, and only if, the system remains linear; 
i.e., the material continues to obey Hooke’s Law, σ = Eε. To find strain and elongation by 
superposition, the normal stress due to one type of load, as well as the combined values of 
stress, must remain less than the yield strength Sy:

[Eq. 7.6]

Example 7.2  Superposition of Axial Force and Torque

Given: A steel shaft of solid circular cross-
section (R = 1.0 in.) is subjected to an axial 
force P = 5000 lb, and transmits a torque 
T = 4000 lb-in. (Figure 7.3).

Required: Determine the stresses acting on 
element B on the surface of the shaft.

Solution: Step 1. The area and polar moment 
of inertia of the cross-section are:

Step 2. The stresses caused by force P and 
torque T are considered separately 
(Figures 7.3b and c).

The normal stress is:

Answer:    

The shear stress is:

Δ Δ1 Δ2+
W1L

AE
-----------

W2L

AE
-----------+

W1 W2+( )L

AE
------------------------------= = =

σ
W1 W2+( )

A
--------------------------= ε

W1 W2+( )

AE
--------------------------= Δ

W1 W2+( )L

AE
------------------------------=

σ1 Sy≤    σ2; Sy    σ Sy≤;≤

A πR2 π 1.0( )2 3.142=  in.2= =

J πR4

2
---------- π 1.0( )4

2
------------------ 1.571 in.4= = =

σ P
A
--- 5.0 kips

3.142 in.2
------------------------= =

σ 1.59 ksi=

Figure 7.3.  (a) A shaft under tensile 
load P and torque T. (b) The shaft as an 
axial member only. (c) The shaft as a 
torsion member only. (d) The stress 
state at point B due to the superposition 
of stresses.
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Answer:    

The stresses acting on element B – the 
state of stress or stress state at point B – 
are shown in Figure 7.3d; the two 
stresses are superimposed on the 
element. 

Note that these stresses are not added 
numerically because although they act at 
the same point, they are different kinds 
of stresses: a normal stress and a shear 
stress.

Examples 7.1 and 7.2 are trivial 
examples, showing how to superimpose:

1. like-stresses acting on the same 
face of an element, and 

2. unlike stresses acting on an 
element.

The following examples are a survey of 
various types of combined loading.

Example 7.3  Cantilever Beam Under Point Load and Its Own Weight

Given: A cantilever beam of length L is 
loaded by a uniformly distributed load w due 
to its own weight, and a tip load P. The 
moment of inertia is I and the modulus is E
(Figure 7.4).

Required: Using superposition, determine 
(a) the moment everywhere along the beam 
M(x), (b) the deflection everywhere along the 
beam v(x), and (c) the tip deflection.

Solution: The beam is analyzed by 
considering each load separately.

Step 1. For the point load P, the moment and 
displacements along the cantilever beam are 
known from previous work (Figure 7.4b):

τ TR
J

------- 4.0 kip-in.( ) 1.0 in.( )
1.571 in.4

--------------------------------------------------= =

τ 2.55 ksi=

Figure 7.4.  (a) Beam under uniformly 
distributed load w and tip load P.

The Principle of Superposition is 
Valid when Systems Remain Linear

If a and b are valid inputs to a function 
f(x), then for superposition to work, the 
function must be linear; i.e., if f(x) is linear, 
then: 

f(a+b) = f(a) + f(b)

This is demonstrated with the following two 
functions, one linear and one nonlinear:

g(x) = 2x   and   h(x) = x2

Checking superposition for inputs a and b:

Function g(x) is linear and thus the Method 
of Superposition works. Function h(x) is 
nonlinear, and superposition does not work.

For Strength of Materials, the implication 
is that the stresses must remain in the linear-
elastic range for superposition to be valid.

g x( ):   2 a b+( ) 2 a( ) 2 b( )  +=

h x( ):    a b+( )2 a( )2 b( )2+≠
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For a uniformly loaded cantilever 
(Figure 7.4c):

Step 2. If the system remains linear elastic, 
and the overall deflections are small, then the 
method of superposition is valid 
(Figure 7.4d). The moment along the beam is:

Answer:  

              

The deflection is:

Answer:  

=

Finally, the tip deflection is:

Answer:   

MP x( ) P L x–( )–=

vP x( ) Px2

6EI
--------- 3L x–( )–=

vP tip,
PL3

3EI
----------–=

Mw x( ) w L2

2
------ Lx– x2

2
----- +⎝ ⎠

⎛ ⎞–=

vw x( ) wx2

24EI
------------ 6L2 4Lx– x2+( )–=

vw tip,
wL4

8EI
----------–=

M x( ) MP x( ) Mw x( )+=

M x( )

P L x–( )– w L2

2
------ Lx– x2

2
----- +⎝ ⎠

⎛ ⎞–=

v x( ) vP x( ) vw x( )+=

v x( )

x2

6EI
--------- P 3L x–( ) w

4
---- 6L2 4Lx– x2+( )––

vtip vP tip, vw tip,+=

vmax
L3–

EI
--------- P

3
--- wL

8
-------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Figure 7.4.  (b) Beam under tip load 
only. (c) Beam under UDL only. 
(d) Superposition of individual 
solutions.
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Example 7.4  Eccentrically Loaded Axial Member

Background: Successful masonry (stone, 
concrete, etc.) structures are designed so 
that the masonry carries only 
compressive stresses. The tensile 
strength of such brittle materials is so 
small that any tensile stress is assumed 
to cause failure by cracking. Columns
are axial members in compression. 
When the axial force is not applied 
through the centroid of the column’s 
cross-section, both an axial force and a 
bending moment must be considered.

Given: A statue of weight P sits on a 
column of rectangular cross-section 
b × d (Figure 7.5a, not to scale). The 
statue is placed off-center, so the column 
is loaded by an off-axis load P applied 
on the +y-axis, distance e from the 
centroid. Distance e is the eccentricity of 
the load (Figure 7.5b). Neglect the 
weight of the column in the calculations.

Required: Determine (a) the stress on 
the column cross-section as a function of 
y and (b) the maximum magnitude of e
to avoid tension in the column.

Solution: Step 1. Load P acts on the y-
axis at y = e. This loading is statically 
equivalent to force P acting through the 
centroid and a moment acting about the 
centroidal z-axis (Figure 7.5c):

Step 2. The axial stress due to force P is 
constant throughout the system 
(Figure 7.5d, left):

Mz Pe=

σa  P
bd
------–=

Figure 7.5.  (a) A statue* on a masonry 
pedestal. (b) Statue weight P applied with 
eccentricity e. (c) The eccentric force is 
equivalent to force P applied through the 
centroid, and moment Mz = Pe about the z-
axis. (d) Stresses due to the axial force and 
bending moment, σa and σb , respectively.

* G.K. Warren, Chief Engineer of the Union 
Army of the Potomac, summer, 1863. His 
statue actually is on the rocks of Little 
Round Top at Gettysburg, Pennsylvania. 
Photo by Don Wiles, ©2006.
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Step 3. The bending stress due to Mz varies with the y-coordinate (Figure 7.5d, right):

Step 4. Superimposing the stresses that act on the cross-section gives the total normal 
stress at any y-value:

Answer:

Step 5. Determine the magnitude of e to avoid tension in the column. As drawn in 
Figure 7.5d, the bending stress is tensile for y < 0 and is maximum at y = – d/2. The total 
normal stress at y = –d/2 is:

For no tension to occur on the cross-section, the compressive stress due to the axial force 
must be greater in magnitude than the maximum tensile stress due to bending:

   or   

Thus, to avoid tension:

Answer: 

Provided that , regardless of 
the magnitude of compressive force 
P, the stress everywhere on the 
cross-section is compressive
(Figure 7.6e). 

For rectangles, provided that 
force P is applied on the y-axis in the 
middle third of the cross-section 
( ), then there can be no 
tensile stress on the cross-section. 
This is known as the Middle Third 
Rule (Figure 7.6a). Likewise, if the 
load is applied on the z-axis only, it 
must fall within the middle third 
( ), i.e., . 

σb y( )  
Mzy

Iz
----------–  Pe( )y

bd3 12⁄
-------------------–  12Pey

bd3
----------------–= = =

σ y( ) σa σb y( )+  P
bd
------–   12Pey

bd3
----------------–= =

σ y( ) P
bd
------ 1 12e

d2
---------y+–=

σ d– 2⁄( )  P
bd
------ 1 6e

d
------––=

 
P
bd
------  

12Pe d 2⁄( )
bd3

----------------------------≥ 1 6e
d

------– 0≥

e d
6
---≤

e d 6⁄≤

y d 6⁄≤

z b 6⁄≤ ez b 6⁄≤

Figure 7.5.  (e) Depending on the value of the 
eccentricity e, the cross-section may or may not 
be subjected to tensile stress. For e < d/6, no 
tensile stress is developed on the cross-section.
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The Kern

Load P may be placed anywhere 
on a column’s cross-section, causing 
moments about both the y- and z-
axes. An axial stress and two 
bending stresses therefore contribute 
to the stress at any point.

To avoid developing tension in a 
a column of rectangular cross-
section, the compressive axial force 
must be applied within the shaded 
diamond shown in Figure 7.6b. This 
area is known as the kern, which for 
a rectangle is a diamond with 
diagonals equal to one-third of each 
side of the rectangular cross-section.

Conversely, if a tensile axial 
force is applied through the kern, no 
compressive stresses will develop on 
the cross-section. 

The kern for a solid circular cross-section is a circle of radius 0.25R. Check this 
statement using the method demonstrated in Example 7.4.

Example 7.5  Pipe Tightened with a Wrench

Given: A pipe of length L is tightened with a pipe wrench (Figure 7.7). Force P is applied 
perpendicular to the wrench handle, distance d below the pipe axis, and the pipe has 
stopped turning. The pipe has inner radius Ri and outer radius R.

Required: Consider cross-section ABCD at x = 0, where the pipe is fixed to the wall. 
(a) Determine the expression for the stresses on the surface of the pipe at the front (point 
A), top (B), back (C), and bottom (D) of the pipe, in terms of force P, and lengths d, L, Ri,
and R. Neglect the weights of the pipe and wrench. (b) Draw the stress element at each 
point as viewed from the outside.

Solution: Step 1. Determine the forces acting at section ABCD. Equilibrium requires the 
following internal loads (reactions) at section ABCD (the right side of the FBD in 
Figure 7.7b):

• a torque about the x-axis: T = Pd;

• a shear force along the y-axis: V = P; and

• a bending moment about the z-axis: M = PL.

The loads have been drawn in the directions in which they physically act on the pipe.

Figure 7.6. (a) If a compressive force is  
applied on the y-axis in the middle third of the 
cross-section, no tension will develop on the 
cross-section. (b) Provided a compressive  
force is applied within the kern – a diamond  
for a rectangular cross-section – no tensile stress 
will develop on the cross-section.
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Table 7.2.  Maximum Stresses acting at surface of pipe at section ABCD.

Load at ABCD Magnitude of Maximum Stress 
at Surface of Pipe

Stress acts at Points

Shear force, V = P
B and D

(at axis of bending)

Torque, T = Pd
A, B, C and D

(at all surface points)

Moment about 
z-axis, M = PL

A and C
(at top/bottom of beam)

τV
4
3
---P

A
---

R2 RRi Ri
2+ +

R2 Ri
2+

----------------------------------- Cs
P
A
---= =

τT
Pd( )R

J
---------------=

σx
PL( )R

I
----------------=

Step 2. The geometric properties of 
the cross-section are:

For simplicity, these geometric 
terms are represented by A, J, and I
below.

Step 3. The maximum stresses 
caused by the loads, and the critical 
points at which they act, are given in 
Table 7.2.

Consider the effects of the various 
loads on a single point. At point A, 
the stresses are due to the moment
and the torque, as drawn on the 
stress element in Figure 7.7c. Point 
A is viewed from the front of the 
pipe and the stress arrows are drawn 
in their positive senses with respect 
to the x–y–z coordinate system (i.e., 
positive-face, positive-direction). A 

A π R2 Ri
2–( )=

J π
2
--- R4 Ri

4–( )=

I π
4
--- R4 Ri

4–( )=

Note: The shear stress τV is the maximum shear stress that acts on a 
hollow circular cross-section due a shear force P.

Figure 7.7. (a) Pipe wrench tightening a pipe.  
(b) FBD of pipe.
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negative sign indicates that the stress 
physically acts opposite drawn. 

Points A, B, C, and D, as viewed from the 
outside, are shown in Figure 7.7d. Take care to 
note the direction of the x-axis in each figure. 
The value of Cs is, from Table 7.2:

Note also that the shear stresses at point B act 
opposite each other; those at point D act in the 
same direction.

Example 7.6  Highway Sign under Wind Load and its own Weight

Given: The highway sign introduced in Chapter 2 is 
subjected to a wind load (Figure 7.8). The wind 
force is taken as the product of the wind pressure and 
the sign area FW = pA. The weight of the sign is WS 
and the weight of the mast is WM .

Required: Consider the cross-section of the mast cut 
at plane ABCD, distance h below the top of the mast 
(assume the height of the center of the sign is at the 
top of the mast). 

(a) Determine the stress states in the x–y–z coordinate 
system acting at plane ABCD, at points A, B, C, and 
D (Figures 7.8b, c). Point A is on the windward side 
(facing the wind); point C is on the leeward side 
(back side, away from the wind); and points B and D 
are on the left and right sides, respectively. (b) Draw

Cs
4
3
---

R2 RRi Ri
2+ +

R2 Ri
2+

-----------------------------------= Figure 7.7. (c) Stresses acting on 
point A, viewed from the front. The 
bending stress is tensile and thus 
positive; the shear stress acts 
opposite drawn, and is thus negative.

Figure 7.7. (d) Points A (viewed from front), B (from top), C (from back), and D (from 
bottom). Stress arrows are drawn in their positive senses (note the axes); a negative value 
indicates the stress acts opposite drawn.

Figure 7.8.  (a) A highway 
sign under wind load.
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the stress states on 2D stress elements that 
are viewed from the outside of the mast.

Solution: Step 1. Determine the equivalent 
loads being applied to the mast, and the internal 
loads that they cause at cross-section ABCD. 

The wind force and weight of the sign act with 
respect to the mast as shown in Figure 7.8d. A 
FBD of the mast above ABCD is shown in 
Figure 7.8e. 

The internal loads at ABCD, viewing the cross-
section from above, are (Figure 7.8f):

• due to wind force FW : 

– a clockwise torque about the +x-axis 
of the mast, Tx; 

– a shear force in the +y-direction, Vy; 

and
– a bending moment about the +z-

axis, Mz . 

• due to the weight of the sign WS :

– a compressive force in the mast, WS ; and

– a bending moment about the –y-axis, My . 

• due to the weight of the mast itself WM :

– a varying axial force in the mast, WM(x) = WM(–h) at ABCD. For simplicity, take 

the weight of the mast above x = –h as WM. 

Figure 7.8.  (d) The force of the wind 
pressure and the weight of the sign act 
at the centroid of the sign. (e) A FBD of 
the mast cut at section ABCD, including 
the weight of the mast above ABCD. 
Reactions at ABCD drawn in the 
direction in which they act.

Figure 7.8. (d) Geometry of cross-section at ABCD.  
(e) Elements A, B, C, and D.
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The loads acting on cross-section ABCD are 
summarized in Figure 7.8f and Table 7.3.

Step 2. The geometric terms needed to find the 
stresses are (Figure 7.8d):

where R is the outer radius and Ri is the inner 
radius. The moments of inertia about the y- and 
z-axes are Iy and Iz , respectively.

Step 3. With the loads and geometry known, the 
stresses are summarized in Table 7.3.

Step 4. Consider how each internal load affects 
point A, at the windward side (front) of the mast. 
The y–z coordinates of point A are y = –R and 

A π R2 Ri
2–( )=

J π
2
--- R4 Ri

4–( )=

Iy Iz
π
4
--- R4 Ri

4–( )= =

Figure 7.8. (f) Internal loads acting 
on the cross-section at ABCD.

Note: The shear stress τV is the maximum shear stress that acts on a hollow circular cross-

section due to a shear force V.

Table 7.3.  Loads at cross-section ABCD and the Stresses that they cause.

Load at 
ABCD

Magnitude
of Load

Caused by Action
Stress at Surface

of Mast
Acts at 
Points

Torque
about
x-axis

Tx = FW (a/2) Wind
Twists mast 
clockwise 

about +x-axis

A, B, C 
and D

Shear force 
along 
y-axis

Vy = FW Wind
Shear in 

direction of 
wind (+y)

B and D
(y = 0)

Moment 
about 
z-axis

Mz = FW h Wind

Bends mast in 
the direction of 
wind, about +z-

axis

A and C
(y = ±R)

Moment 
about 
y-axis

My = WS (a/2) Weight of sign
Bends mast 
towards left, 
about –y-axis

B and D
(z = ±R)

Axial force
along x-axis

W(x=–h)
= [WS+WM]

Weight of sign 
+ weight of 
mast above 

ABCD

Compresses 
mast along x-

axis

A, B, C
and D

τT

TxR

J
---------=

τV

4Vy

3A
---------

R2 RRi Ri
2+ +

R2 Ri
2+

----------------------------------=

σx  
Mzy

Iz
----------–=

σx  
Myz

Iy
---------–=

σx  W
A
-----–=
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z = 0. Stress element A is in an x–z plane and is 
subjected to three stresses:

1. a shear stress due to torque; 
2. a normal (tensile) stress due to bending about 

the z-axis; and 
3. a normal (compressive) stress due to the weight 

of the system above section ABCD. 

The stress equations are given in Table 7.3, and the 
stresses at point A are shown in Figure 7.8g. The 
stresses are drawn in the positive sense. 

Step 5. Each of the remaining elements, B, C, and D, 
are considered in turn. Point C has the same stresses as 
point A, but the bending stress is now compressive 
(σ = –MzR/Iz).

Points B and D also carry the compressive stress due to the weight, and the shear stress due 
to torque. The bending stress due to the wind force is zero at both B and D because B and 
D lie on the axis about which that moment acts. However, points B and D are subject to the 
bending stress due to the weight of the sign causing bending about the y-axis 
(σmax = ±MyR/Iy), compressive at point B and tensile at point D. Also, a shear stress due to 
the shear force of the wind acts at both points B and D.

Figure 7.8h summarizes the stresses acting at the various points A, B, C, and D. All of the 
elements are viewed from the outside of the support mast. In Figure 7.8h, the value of 
constant Cs is:

Cs is the stress concentration factor with respect to the average shear stress caused by a 
shear force acting on a beam of hollow circular cross-section. 

Shear stress notes. Shear stress τT due to torque T acts on every surface element, and 
constantly changes its direction with respect to the x–y–z coordinate system. Shear stress 
τV due to shear force Vy varies with y, is zero at points A and C, and maximum at B and D.

At point B, the two shear stresses act in the same direction, reinforcing each other. At point 
D, the shear stresses act in opposite directions.

Critical points. Points B and C are likely the most critical points in the mast. Point B is 
where two normal stresses act in the same direction, as well as the two shear stresses. 
Point C is where two normal stresses act in the same direction, along with one shear. To 
ensure that the mast is of sufficient strength, points B and C (and other critical points) 
should be checked using the methods discussed in the following chapters.

Cs
4
3
---

R2 RRi Ri
2+ +

R2 Ri
2+

-----------------------------------=

Figure 7.8. (g) The stress state 
at point A.
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Figure 7.8. (h) Stresses at points A, B, C, and D, as viewed from the 
outside of the mast. The stresses are drawn in their positive senses. A 
negative value for a stress indicates that it acts opposite drawn.

Point A : Normal stress: Compression (negative) due to weight;  
Tension (positive) due to bending caused by wind;  

Shear stress: Positive due to torque caused by wind.

Point B : Normal stress: Compression due to weight;  
Compression due to bending caused by sign;  

Shear stress: Positive due to torque caused by wind; 
Positive due to shear force caused by wind. 
Shear stresses act in same direction.

Point C : Normal stress: Compression due to weight;  
Compression due to bending caused by wind;  

Shear stress: Negative due to torque caused by wind.

Point D : Normal stress: Compression due to weight;  
Tension due to bending caused by sign;  

Shear stress: Negative due to torque caused by wind; 
Positive due to shear force caused by wind. 
Shear stresses act in opposite directions.
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Example 7.7  Bending about Two Axes

Given: A column has a rectangular cross-section 
b = 8.0 in. wide by d = 12.0 in. deep 
(Figure 7.9a). Compressive force P = 96 kips is 
applied through the point on the cross-section 
(y, z) = (3.0, –2.0) in., so that the moments are 
positive about the z- and y-axes.

Required: (a) Determine the stress at each corner 
of the cross-section, A, B, C, and D and (b) draw 
the stress distribution on the cross-section. 

Solution: Step 1. The equivalent load on the 
cross-section is axial force P acting through the 
centroid, and moments Mz and My acting about 
the z- and y-axis, respectively (Figure 7.9b):

The relevant cross-sectional properties are the 
area A and the section moduli about the z- and y-
axes, Zz and Zy (Z = I/c, where c = d/2 for a 
rectangle of height d):

Step 2. Individual stresses. The axial compressive stress everywhere on the cross-section 
is:

The maximum bending stress about each axis is:

  (tension at points A, D; compression at B, C)

  (tension at A, B; compression at C, D)

P 96 kips (compression)=

Mz 96 3( ) 288 kip-in.= =

My 96 2( ) 192 kip-in.= =

A 96 in.2=

Zz

Iz

d 2⁄
---------- bd2

6
--------- 8( ) 12( )2

6
--------------------- 192 in.3= = = =

Zy

Iy

b 2⁄
---------- db2

6
--------- 12( ) 8( )2

6
--------------------- 128 in.3= = = =

σa
96 kips–

96 in.2
--------------------- 1.0–  ksi= =

σb z,
Mz

Zz
-------± 288

192
---------± 1.5±  ksi= = =

σb y,

My

Zy
-------± 192

128
---------± 1.5±  ksi= = =

Figure 7.9. (a) Compressive force P 
applied at (y, z) = (3.0, –2.0) in.  
(b) Equivalent load: force P applied 
through the centroid, and moments 
Mz = 3P and My = 2P.
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Step 3. Superposition. At any corner point, the total normal stress is the sum of the axial 
and bending stresses at that point:

Point A:  

Answer: 

Point B:  

Answer: 

Point C:  

Answer: 

Point D:  

Answer: 

The corner stresses are plotted in Figure 7.9c.

Step 4. The stress at any point (y, z) on the cross-section is:

where:

Note that the third term in the general stress equation is positive, since for My > 0, the 
resulting bending stress is tensile (positive) for z > 0.

Step 5. Plot (Figure 7.9c). The stress σ (y, z) at any point is the superposition of a constant and 
two linear functions. Since the corner stresses are known, the plot of σ   (y, z) is made by 
constructing lines between the corner points on each side of the rectangular cross-section, 
taking care to note that the stress should 
go to zero between stresses of opposite 
sign (e.g., points F and H). Plotting along 
each side of the rectangle fixes the value 
of one of the linear functions.

The location of zero stress on an edge is 
found using similar triangles. The line 
that joins the edge zero-stress points, FH, 
is the locus of points on the cross-section 
where the stresses sum to zero.

Since tension exists on the cross-
section, force P has been applied 
outside the kern.

σA σa σb z A, , σb y A, ,+ + 1–( ) 1.5( ) 1.5( )+ += =

σA +2.0=  ksi

σB σa σb z B, , σb y B, ,+ + 1–( ) 1.5–( ) 1.5( )+ += =

σB 1.0–=  ksi

σC σa σb z C, , σb y C, ,+ + 1–( ) 1.5–( ) 1.5–( )+ += =

σC 4.0–=  ksi

σD σa σb z D, , σb y D, ,+ + 1–( ) 1.5( ) 1.5–( )+ += =

σD 1.0–=  ksi

σ y z,( )
P–

A
------

Mzy

Iz
----------–

Myz

Iy
----------+=

A 96 in.2=

Iz
bd3

12
--------- 8( ) 12( )3

12
--------------------- 1152 in.4   and   Iy

db3

12
--------- 12( ) 8( )3

12
--------------------- 512 in.4= = == = =

Figure 7.9. (c) Stress distribution on cross-
section. Line FH, on the cross-section, is the 
locus of points having zero stress, and is the 
intersection of the planes labeled FEH and FGH.
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Chapter 8 Transformation of Stress and Strain

8.0  Introduction

Consider a plate with a cross-sectional 
area A subjected to axial load P (Figure 8.1a). 
The plate is made of two pieces joined 
together by a diagonal weld. The direction 
normal to the weld, x', is at angle θ
counterclockwise from the x-axis 
(Figure 8.1b). The stress in the applied load 
direction is σx = P/A (stress element B, 
Figure 8.1c). 

To ensure that the weld is strong enough, 
it is necessary to determine the stresses that 
act perpendicular and parallel to the weld line: 
normal stress σx' and shear stress τx'y'
(element C, Figure 8.1d). These stresses are 
caused by the normal and shear components, 
N and V, of applied force P (Figure 8.1b). 

The normal and shear forces, N and V, and 
the area of the weld, Aw , are:

 

[Eq. 8.1]

The negative sign for shear force V indicates 
that it acts in the opposite direction drawn. For 
this load condition, the normal and average 
shear stresses that act on the weld depend on 
angle θ as follows:

[Eq. 8.2]

N P θ   V;cos P θ( )   Aw;sin– A
θcos

------------= = =

σx′
N

Aw
------- P θcos2

A
------------------ σx θcos2= = =

τx′y′
V

Aw
------- P – θ  θcossin

A
------------------------------------ σ– x θ  θcossin= = =

Figure 8.1.  (a) A plate under axial load 
P ; a weld holds the two parts of the 
plate together. (b) The left-side of the 
plate, with exposed weld area Aw ; the 
forces on Aw are drawn in the positive 
directions. (c) Stress Element B oriented 
with the x–y axes. (d) Stress Element C 
oriented with the x'–y' axes, normal-
parallel to the weld line.
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These new stresses – the 
transformed stresses – are 
compared against the allowable 
normal and shear stresses of the 
weld material (SA, τA) to ensure 
that the system can support the 
applied loading.

The weld problem is one 
example of the need to 
calculate stresses in directions 
other than the directions of the 
applied loads. As the stress 
element – and thus the 
coordinate system that defines 
the stresses at that point – is 
rotated, the stresses are 
transformed (Figure 8.1d ).

A second reason to rotate the stress element (coordinate system) is to find the 
maximum and minimum normal stresses and the maximum shear stress that occur at a 
material point. These maximum stresses are generally oriented at angles different from the 
coordinate system used to determine the original stresses. 

For example, consider a solid circular shaft under applied torque T (Figure 8.2). Due 
to the torque, shear stress τ acts on surface element B, causing it to elongate along the +45° 
diagonal and shorten along the –45° diagonal (Figure 8.2b). The pure shear stress state in 
the original orientation of the element is equivalent to a biaxial state of stress on the 
element rotated by 45°. For this particular case, both of the normal stresses on the rotated 
element have a magnitude of στ   = τ, one stress being tensile (here, oriented at +45°) and 
the other being compressive (oriented at –45°). 

If the torsion member is made of a brittle material (e.g., a ceramic, chalk, etc.), the 
maximum (most tensile) normal stress σmax is compared to the ultimate tensile strength Su
of the material to ensure that it does not fail. If the torsion member is made of a ductile 
material (e.g., steel, aluminum, etc.), one method of assessing if the material yields is to 
compare the maximum shear stress τmax to the shear yield strength τy . Failure theories are 
introduced in Chapter 9.

The stress transformation equations, and the equations to determine the maximum and 
minimum normal stresses and the maximum shear stress, are developed below. While the 
transformed stresses have different values than the original stresses, the transformed
stresses represent the same state of stress as the original stresses. The stresses that act on a 
material point are simply described in a rotated (transformed) coordinate system.

Figure 8.2.  (a) A shaft under torque T. (b) The pure 
shear stress τ due to a torque-only load is equivalent 
to a biaxial state of stress (στ = τ ) on the element 
rotated by 45°.
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8.1  Stress Transformation (Plane Stress)

Consider a 3D stress 
element subjected to a general 
state of plane stress: σx , σy  , 
and τxy (Figure 8.3a); there are 
no out-of-plane (z-direction) 
stresses. Recall the convention 
for the positive sense of stress: 
a positive stress physically acts 
on a positive face in a positive 
direction, or on a negative face 
in a negative direction; otherwise
the stress is negative. Being 
consistent with the sense of 
stress is key when applying the stress transformation equations. Also, recall that 
complementary shear stresses are equal, i.e., τxy = τyx .

The goal is to find the in-plane transformed stresses that act on the (2D) element 
when it is rotated in the x–y plane by angle θ (positive counterclockwise about the z-axis). 
The stresses on the rotated element are σx', σy' and τx'y' (Figure 8.3b). 

The stress transformation equations are:

[Eq. 8.3]

[Eq. 8.4]

[Eq. 8.5]

The transformation equations are derived using equilibrium, as presented below. 

The following derivation of the stress transformation equations is only valid for plane 
stress conditions, and one additional case. An out-of-plane normal stress σz may exist if no 
shear stresses act out-of-plane, i.e., τxz = τyz = 0. When this is the case, the transformation 
equations in the x–y plane may still be used, with σz remaining constant with rotation θ 
about the z-axis, and the out-of-plane shear stresses remaining zero.

Stresses on New x'-Face
The new x'-axis is oriented at angle θ counterclockwise from the original x-axis. The 

x'-axis is perpendicular to the positive x'-face. The stresses acting on the x'-face are σx' and 
τx'y' . To derive the new stresses, each of the original stresses σx , σy  , and τxy , is considered

σx′ θ( )
σx σy+

2
------------------

σx σy–

2
------------------  2θ τxy 2θsin+cos+=

σy′ θ( )
σx σy+

2
------------------

σx σy–

2
------------------  2θ τxy 2θsin–cos–=

τx′y′ θ( )              
σx σy–

2
------------------–  2θ τxy 2cos θ+sin=

Figure 8.3. (a) A 3D element under a state of plane 
stress, oriented with the x–y axes. (b) The element 
rotated by angle θ and oriented with the x'–y' axes.
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in turn. The results from each analysis 
are then superimposed.

Stresses on x'-Face Due to Stress σx

A stress element aligned with the 
x–y–z axes and subjected to only 
normal stress σx is shown in 2D in 
Figure 8.4a (in the x–y plane). A cut is 
taken through the element, creating a 
triangular wedge and exposing diagonal 
surface having area dA (Figure 8.4b). 

The new x'-axis is normal to dA; the 
new y'-axis is parallel to dA. The new 
x'-axis is oriented at angle θ (positive 
counterclockwise) from the original x-
axis. Normal and shear stresses σx' and 
τx'y'  act on dA. From trigonometry, the 
left (negative) x-face of the wedge has 
area dA cos θ, and the bottom 
(negative) y-face has area dA sin θ.

Equilibrium of forces in the x'-direction, normal to dA (Figure 8.4c), gives:

[Eq. 8.6]

Equilibrium in the y'-direction, tangent to dA, gives:

[Eq. 8.7]

Hence, due to σx only, the new stresses σx' and τx'y' acting on the x'-face are:

[Eq. 8.8]

As the element, loaded by σx only, is rotated by θ, the maximum magnitude of the 
shear stress occurs when θ = 45°. The normal and shear stresses at θ = 45° are:

    [Eq. 8.9]

When σx is positive, then the transformed shear stress on the x'-face for θ = 45° is 
negative; i.e., τx'y' physically acts on the positive x'-face in the negative y'-direction. At an 
angle of θ  = 135° (with x'-face normal to the θ  = 135° direction), the shear stress is 
positive; i.e., it acts on the positive x'-face in the positive y'-direction. 

Fx′ 0 σx′= =∑  dA σx dA  θcos( )[ ] θcos–

Fy′ 0=∑ τx′y′=  dA σx dA  θcos( )[ ] θsin+

σx′ σx θcos2=

τx′y′ σ– x  θ  θsincos=

σx′ 45°( )
σx

2
------;= τmax τx′y′ 45°( )

σx–

2
---------= =

Figure 8.4.  (a) A 2D stress element under 
normal stress σx only. (b) Wedge showing 
stresses acting on the x-, y-, and x'-faces.  
(c) Forces on each face.
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Stresses on x'-Face Due to Stress σy

Consider the stresses on the x'-face due 
only to normal stress σy (Figure 8.5). 
Equilibrium of forces acting on the wedge 
in the normal (x'-) and tangential (y'-) 
directions gives:

 

[Eq. 8.10]

Due to σy , the stresses acting on the x'-face 
are:

[Eq. 8.11]

As the element, loaded by σy only, is 
rotated by θ, the maximum magnitude of 
the shear stress occurs when θ = 45°. The 
normal and shear stresses at 45° are:

[Eq. 8.12]

Stresses on x'-Face Due to Shear 
Stress τxy

Consider the stresses on the x'-face due 
only to shear stress τxy (Figure 8.6). 
Equilibrium of forces acting on the wedge 
in the normal (x'-) and tangential (y'-) 
directions gives:

[Eq. 8.13]

Due to τxy , the stresses acting on the x'-face are:

Fx′ 0 σx′= =∑  dA σy dA  θsin( )[ ] θsin–

Fy′ 0=∑ τx′y′=  dA σy dA θsin( )[ ] θcos–

σx′ σy θsin2=

τx′y′ σy θsin  θcos=

σx′ 45°( )
σy

2
------=

τmax τx′y′ 45°( )
σy

2
------= =

Fx′ 0 σx′= =∑  dA τxy dA  θcos( )[ ] θ τxy dA θsin( )[ ] θcos–sin–

Fy′ 0 τx′y′= =∑  dA τxy dA θcos( )[ ] θ τxy dA θsin( )[ ] θsin+cos–

Figure 8.6. (a) A stress element under 
shear stress τxy only. (b) Wedge with 
stresses on the x-, y-, and x'-faces.  
(c) Forces on each face.

Figure 8.5. (a) A stress element under 
normal stress σy only. (b) Wedge with 
stresses on the x-, y-, and x'-faces.  
(c) Forces on each face.
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[Eq. 8.14]

As the element, loaded by τxy only, is rotated by θ, the maximum normal stress occurs 
when θ = 45°. The normal and shear stresses at 45° are:

;   [Eq. 8.15]

This is the first step of showing that the simple shear stress state (τxy , σx = σy = 0) is 
equivalent to a biaxial state of stress at 45° (σx'  = –σy'  = τxy , τx'y'  = 0, Figure 8.2).

Superposition of Stresses on x'-Face

Superimposing the stress transformation results for the three individual stresses (σx , 
σy , τxy ) gives the appropriate stress values on the new x'-face. For example, the normal 
stress in the new x'-direction is:

[Eq. 8.16]

Stresses on New y'-Face

Stresses on y'-Face Due to Stress σx

An element aligned with the x–y axes 
and subjected to only axial stress σx is 
shown in Figure 8.7. A cut is taken 
through the element, exposing diagonal 
surface dA. In this case, the normal to the 
surface is the new y'-axis, oriented θ from 
the original y-axis, θ  +90° from the original 
x-axis, and 90° from the new x'-axis. The 
x'-axis is parallel to exposed area dA. 
The stresses on dA are normal and shear 
stresses, σy' and τy'x' , respectively. From 
trigonometry, the right x-face of the wedge 
has area dA sin θ, and the bottom y-face 
has area dA cos θ.

Force equilibrium in the tangential (x'-)
and normal (y'-) directions gives:

[Eq. 8.17]

Due to σx , the stresses acting on the y'-face are:

σx′ 2τxy θ θcossin=

τx′y′ τxy θ θsin2–cos2( )=

σmax σ=
x′ 45°( ) τxy= τx′y′ 45°( ) 0=

σx′ θ( ) σx θ σy+cos2 θsin2 2τxy θ θcossin+=

Fx′ 0 τy′x′= =∑  dA σx dA θsin( )[ ] θcos+

Fy′ 0 σy′= =∑  dA σx dA θsin( )[ ] θsin–

Figure 8.7. (a) A stress element under 
normal stress σx only. (b) Wedge 
showing stresses acting on the x-, y-, and 
y'-faces. The normal to the inclined face 
is the new y' axis,  θ+90° from the 
original x-axis. (c) Forces on each face.
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[Eq. 8.18]

Recall that at a point shear stresses on normal planes are equal, i.e., τx'y' = τy'x' . The 
expression for τy'x' in Equation 8.18 is the same as that for τx'y' in Equation 8.8.

Stresses on y'-Face Due to Stress σy and Shear Stress τxy

Similar equilibrium calculations may be made on the wedge exposing the y'-face 
(Figure 8.7) with only σy and then only τxy applied. With these two final contributions (not 
derived here), the equations for the new stresses with respect to the x'–y' axes are found 
using superposition.

Summary of Stress Transformation Equations
The stress components in the x'–y' coordinate system, and the original stress 

components in the x–y system that give rise to them, are given in Table 8.1. The 
transformed stresses are:

[Eq. 8.19]

[Eq. 8.20]

[Eq. 8.21]

In matrix form, the transformation equations may be written:

[Eq. 8.22]

The square matrix is the transformation matrix T, used to rotate the coordinate system by 
angle θ. In short form, the matrix equation is:

σy′ σx θsin2=

τy′x′ τx′y′ σ– x θ θsincos= =

σx′ θ( ) σx θ σy+cos2  θsin2 2τxy θ θcossin+=

σy′ θ( ) σx θsin2 σy+  θcos2= 2τxy θ θcossin–

τx′y′ θ( ) σx θ θcossin–= σy θ θcossin τxy θcos2 θsin2–[ ]+ +

σx′
σy′

τx′y′

c2 s2 2sc

s2 c2 2sc–

sc sc c2 s2–

σx
σy
τxy

=         where  
c θcos=

s θsin=⎩ ⎭
⎨ ⎬
⎧ ⎫

Table 8.1.  Summary of transformed stresses due to original stresses.
The new coordinate system is rotated counterclockwise by angle θ.

Transformed
Stress

Due to 
Normal Stress σx

Due to 
Normal Stress σy

Due to 
Shear Stress τxy

σx′ σx θcos2 σy θsin2 2τxy θ θcossin

σy′ σx θsin2 σy θcos2 2– τxy θ θcossin

τx′y′ σx θ θcossin– σy θ θcossin τxy θcos2 θsin2–[ ]
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[Eq. 8.23]

where  and  are the 
original and transformed stress 
vectors, respectively.

Products or squares of 
trigonometric terms can be 
difficult to work with. The 
expressions for the transformed 
stresses can be rewritten using 
the following trigonometric 
identities:

[Eq. 8.24]

These identities are substituted into Equations 8.19 – 8.21 to give a more compact form. 

The plane stress transformation equations for a stress element rotated by angle θ
(positive counterclockwise, as shown in Figure 8.8) are:

[Eq. 8.25]

[Eq. 8.26]

[Eq. 8.27]

Recall that the x'-axis is at angle θ from the original x-axis, and that the y'-axis is at angle 
θ  +90° from the original x-axis.

If τx'y' > 0, then it physically acts on the positive x'-face in the positive y'-direction. If 
τx'y' < 0, then it acts on the positive x'-face in the negative y'-direction. Because shear 
stresses on perpendicular planes at a point are equal, τy'x' (θ) = τx'y' (θ). The direction of 
the shear stress on the new y'-face is in the +x'-direction if τx'y' is positive, and in the 
negative x'-direction if it is negative.

Invariance

The second and third terms of σx' and σy' (Equations 8.25 and 8.26) are equal 
but opposite. Adding the transformed normal stresses results in the following 
equation:

[Eq. 8.28]

σ ′ Tσ=

σ σ′

θcos2 1 2θcos+
2

------------------------    θsin2 1 2θcos–
2

------------------------    θ θsincos 2θsin
2

--------------=;=;=

σx′ θ( )
σx σy+

2
------------------

σx σy–

2
------------------ 2θ τxy 2θsin+cos+=

σy′ θ( )
σx σy+

2
------------------

σx σy–

2
------------------ 2θ τxy 2θsin–cos–=

τx′y′ θ( )               
σx σy–

2
------------------– 2θ τxy 2cos θ+sin=

σx′ θ( ) σy′ θ( )+ σx σy+=

Figure 8.8. (a) Stresses in the x–y system.  
(b) Stresses in the x'–y' system, rotated 
counterclockwise θ from the x–y system.
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Since σx and σy are given constants determined by the system geometry and applied loads, 
the sum of the normal stresses acting on an element is the same regardless of the 
orientation θ of the axes. This is called invariance. If any of the three normal stresses are 
known, the fourth is also known. Invariance also means that the average value of the 
normal stresses is the same no matter what direction the element is oriented.

A software module in the Online Notes automates the stress transformation equations.

Example 8.1  Stress Transformation

Given: A stress element (Figure 8.9a) is subjected 
to the following stresses: 

The negative sign means σy acts opposite drawn; it 
is compressive.

Required: If the element is rotated θ = 33°, 
determine the stresses on the element in the new 
orientation. Draw the stress element in its new 
orientation.

Solution: Apply the transformation equations 
(Equations 8.25 – 8.27 ). With 2θ = 66°:

Applying the other equations:

Thus:

Answer: 

The stresses are drawn in their positive sense on the rotated element (Figure 8.9b). The 
negative signs mean that σy' and τx'y' act opposite drawn.

σx 9.1 ksi   σy; 15.4 ksi   τxy;– 9.5 ksi= = =

σx′ 33°( ) 9.1 15.4–( )+
2

-------------------------------- 9.1 15.4–( )–
2

-------------------------------- 66°( )cos+=

               9.5( )+ 66°( )sin

 10.5 ksi=

σy′ 33°( ) 9.1 15.4–( )+
2

--------------------------------=

               
9.1 15.4–( )–

2
-------------------------------- 66°( )cos– 9.5( ) 66°( )sin–

 16.8 ksi–=

τx′y′ 33°( ) 9.1 15.4–( )–
2

-------------------------------- 66°( )sin–= 9.5( ) 66°( )cos+

 7.3–=  ksi

σx′ 10.5 ksi   σy′; 16.8 ksi   τx′y′;– 7.3 ksi–= = =

Figure 8.9. (a) The original 
stress state. The stress arrows 
are drawn in their positive 
senses. A negative stress 
physically acts in the opposite 
direction drawn, e.g., σy is 
compressive. (b) The rotated 
stress state.
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Note that since the y'-axis is +90° from the x'-axis, the stress in the y'-direction could have 
been found by evaluating σx' at θ = 33° + 90° = 123°:

Note also that the sum of the normal stresses is invariant:

Example 8.2  Plate with a Weld

Given: A welded plate is loaded by a force 
of P = 150 kN as shown in Figure 8.10a. 
The width of the plate is w = 200 mm and 
the thickness is t = 10 mm. The weld line is 
55° from the horizontal, and is assumed to 
have the same thickness as the plate.

Required: (a) Determine the normal stress 
and average shear stress in the weld. (b) If 
the weld’s yield strength is Sy = 280 MPa, 
and its shear yield strength is τy = 160 MPa, 
determine the factor of safety of the current 
loading condition with respect to failure of 
the weld.

Solution: Step 1. Determine the stress state 
in the x–y plane. Since the load is purely 
axial, only σx is non-zero (σy = τxy = 0, 
Figure 8.10b):

Step 2. Using the stress transformation 
equations, determine the stresses normal 
and parallel to the weld. The weld is 55°
from the horizontal. The angle that the 
weld’s normal direction (the x'-axis) makes 
with the x-axis is θ = +35°. The normal 
stress on the weld (on the x'-face) is σx' and 
the shear stress is τx'y' .

σy′ 33°( ) σ=
x′ 123°( )

 9.1 15.4–( )+
2

-------------------------------- 9.1 15.4–( )–
2

-------------------------------- 246°( )cos 9.5( ) 246°( )sin 16.8–=  ksi+ +=

σx σy+ 9.1( ) 15.4–( )+ 6.3–  ksi= =

σx′ σy′+ 10.5( ) 16.8–( )+ 6.3 ksi–= =

σx
P
wt
------ 150 103×  N

0.200 m( ) 0.01 m( )
----------------------------------------------- 75 MPa= = =

Figure 8.10. (a) Welded plate under 
axial load. (b) Stress state aligned with 
x–y axes. (c) Stress state aligned with 
axes normal and parallel to the weld.
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The stress transformation equations give the stresses on the weld (on the x'-face):

Answer:   

Answer:  

The transformed stress state is shown in Figure 8.10c. Stress σy' is not calculated; it does 
not act on the weld, but in the plate.

Step 3. The Factor of Safety for the weld is found by dividing the weld strengths by the 
actual stresses:

The governing factor of safety is the smaller value:  Answer: 

8.2  Principal Stresses

It is often necessary to determine the maximum (most tensile) and minimum (most 
compressive) values of the in-plane normal stress σx' (or σy') as the stress element is 
rotated through angle θ. These extreme values are the principal stresses. The principal 
stresses occur on planes, and thus in directions, that are 90° from each other. The direction 
of the maximum or minimum normal stress is found by taking the derivative of σx' (θ  ) 
(Equation 8.25) with respect to angle θ:

[Eq. 8.29]

Solving for θ, and renaming it θp for principal angle, results in:

[Eq. 8.30]

The tangent function repeats every 180°. Therefore, within 360°, there are two solutions to 
Equation 8.30, which are 2θp and 2θp+180°, or θp and θp+90°. These are the principal 
angles.

σx′ 35°( )
σx

2
------

σx

2
------ 2θcos+ 75

2
------ 1 70°( )cos+[ ]= =

σx′ 50.3 MPa=

τx′y′ 35°( )  
σx

2
------– 2θ  75

2
------– 70°( )sin[ ]=sin=

τx′y′ 35°( ) 35.2–=  MPa

FSnormal

Sy

σx′
-------

280 MPa
50.3 MPa
----------------------- FSnormal 5.6=⇒= =

FSshear

τy

τx′y′
----------

160 MPa
35.2 MPa
----------------------- FSshear 4.5=⇒= =

FS 4.5=

dσx′
dθ

----------  
σx σy–

2
------------------– 2 2θsin( ) 2τxy 2θcos+ 0= =

2θptan
2τxy

σx σy–
------------------=
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The principal angles correspond to an x'–y' set of axes where the normal stresses are 
the principal stresses:

[Eq. 8.31]

[Eq. 8.32]

The principal stresses are 90° apart, along the principal angles (directions), θp .

From Equation 8.30, the sine and cosine of θp can be written:

;   [Eq. 8.33]

By substituting these expressions into Equations 8.31 and 8.32, the principal stresses can 
be compactly written:

[Eq. 8.34]

[Eq. 8.35]

As a matter of convention, principal stress σI is the maximum (most tensile or most 
positive) normal stress, and σII is the minimum (most compressive or most negative) 
normal stress, that an element is subjected to as it is rotated. The principal stresses and 
their respective angles are shown in Figure 8.11.

The question of which angle, θp or
θp+90°, corresponds to which stress, σI
or σII, is not answered by Equations 8.34
and 8.35. With experience, which stress 
goes with which angle can often be 
readily seen. However, it is often best 
to substitute one of the principal angles
into the general stress-transformation 
equation for σx' (θ) (Equation 8.31). 
The resulting stress is matched to 
the substituted angle. The principal 
angles are denominated θ  I and θ  II
and are matched with their appropriate
principal stresses, σ   I and σ   II, respectively
(Figure 8.11).

σx′p
σx σy+

2
------------------

σx σy–

2
------------------ 2θp τxy 2θpsin+cos+=

σy′p
σx σy+

2
------------------

σx σy+

2
------------------ 2θp τxy 2θpsin–cos–=

2θpcos
σx σy–( ) 2⁄

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+

----------------------------------------------------= 2θpsin
τxy

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+

----------------------------------------------------=

σI

σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2++=

σII

σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+–=

Figure 8.11. (a) The original stress state.  
(b) The principal stresses and their 
directions.
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Equation 8.30 is also the condition for τx'y' = 0. Substituting the sine and cosine of 2θp
(Equation 8.33) into the shear stress transformation equation (Equation 8.27) results in a 
shear stress of zero:

[Eq. 8.36]

The shear stress corresponding to a principal angle is zero. In other words, when the 
normal stresses are principal stresses, the shear stress is zero.

The concept of principal stresses provides a compact way to represent any general 
state of plane stress σx , σy  , and τxy , with only two values σI and σII . Is this much easier 
to visualize and deal with the stress state at a point by using two principal stresses rather 
than three general stress components.

Example 8.3  Principal Stresses and Directions (Example 8.1)

Given: An element (Figure 8.12a) is subjected to 
the following stresses: 

Required: Determine the principal stresses and 
their directions.

Solution: Step 1. Find the principal angles:

The principal angles are 18.9° and 108.9°.

Step 2. Take the smaller angle, 18.9°, and substitute 
it into the general stress transformation equations 
for σx' and σy' (Equations 8.25 and 8.26):

Step 3. Taking σI as the maximum stress, the principal stresses and their respective angles 
are (Figure 8.12b):

τx′y′ θp( )
σx σy–

2
------------------ 2θp τxy 2θpcos+sin– 0= =

σx 9.1 ksi   σy; 15.4 ksi   τxy;– 9.5 ksi= = =

2θptan
2τxy

σx σy–
------------------ 2 9.5( )

9.1 15.4–( )–
--------------------------------= =

 2θp 37.8° 217.8°,=⇒

 θp 18.9° 108.9°,=⇒

σx′ 18.9°( )

 9.1( ) 15.4–( )+
2

------------------------------------- 9.1( ) 15.4–( )–
2

------------------------------------ 37.8°( ) 9.5( ) 37.8°( )sin+cos+ 12.35 ksi= =

σy′ 18.9°( ) σx′ 108.9°( )=

 9.1( ) 15.4–( )+
2

-------------------------------------= 9.1( ) 15.4–( )–
2

------------------------------------ 37.8°( ) 9.5( ) 37.8°( )sin–cos– 18.65 ksi–=

Figure 8.12. (a) The original 
stress state. (b) The Principal 
Stresses and their directions.
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Answer: 

Answer: 

Again, the sum of the normal stresses is constant (invariant): 

Note that the principal stresses could quickly have been found:

However, the directions of these stresses are not known until one of the angles (e.g., 18.9°) 
is substituted into σx' (θ), or if the angles can be matched to the stresses by observation.

Note also that the shear stress corresponding to either principal angle is zero:

Example 8.4  Principal Stresses and Directions

Given: An element (Figure 8.13) is subjected to the 
following stresses: 

Required: Determine the principal stresses and their 
directions.

Solution: Step 1. Find the principal angles:

         

Step 2. Substituting the angles (–36° and 54°) into 
Equations 8.25 and 8.26:

Step 3. The principal stresses and their angles are then:

Answer:   and   

σI 12.35 ksi  at  θI 18.9°= =

σII 18.65 ksi  – at  θII 108.9°= =

σI σII+ σx σy+ 12.35 18.65–( )+ 9.1 15.4–( )+ 6.3–  ksi= = = =

σI σII,
σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+±=

9.1( ) 15.4–( )+
2

-------------------------------------
9.1( ) 15.4–( )–

2
------------------------------------

2
9.5( )2+± 12.35 18.65 ksi–,= =

τx′y′ 18.9°( ) τx′y′ 108.9°( )  
9.1 15.4–( )–

2
--------------------------------–= 37.8°( ) 9.5( ) 37.8°( )cos+sin 0= =

σx 141 MPa   σy; 71 MPa   τxy; 108–  MPa= = =

2θptan
2τxy

σx σy–
------------------ 2 108–( )

141 71–
---------------------= =

θp 36.0– ° 54.0°,=

σx′ 36– °( ) 219.5 MPa=

σy′ 36– °( ) σx′ 54°( ) 7.5 MPa–= =

σI 220 MPa  at 36.0– °= σII 7.5–  MPa  at 54.0°=

Figure 8.13. (a) The original 
stress state. (b) The principal 
stresses and their directions.
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8.3  Maximum (In-Plane) Shear Stress

It is also useful to know the maximum in-plane shear stress that an element 
experiences as it rotates through angle θ in the x-y plane. The shear stress transformation 
equation τx'y' (θ  ) (Equation 8.27 ) is differentiated with respect to θ and the result set equal 
to zero to find the angle at which the in-plane shear stress is a maximum. The angle is 
given by:

[Eq. 8.37]

Angle θs defines the direction (x'-axis) perpendicular to the plane (x'-face) in which the 
maximum shear stress acts, not the direction of the shear stress itself (along the y'-axis). 
As is the case for the principal angles, there are two angles within the complete circle that 
satisfy Equation 8.37, θs1 and θs2 = θs1 + 90°. 

Equation 8.37 is the negative reciprocal of Equation 8.30, the equation that defines 
tan2θp . Since the tangent is the slope, and slopes that are negative reciprocals of each 
other define lines that are perpendicular, 2θs defines a direction ±90° from 2θp, meaning 
θs is ±45° from θp . Thus the maximum shear stresses occur on planes that are ±45° from 
the planes in which the principal stresses act.

The magnitude of the maximum shear stress can be shown to be: 

[Eq. 8.38]

Substituting τmax into the equations for the principal stresses σI and σII (Equations 8.34
and 8.35), and taking their difference, it can also be shown that the magnitude of the 
maximum shear stress in the x–y plane is half the difference of the principal stresses:

[Eq. 8.39]

The sense of the shear stress is 
found by substituting one of the 
values of θs into the shear stress 
transformation equation, τx'y' (θs) 
(Equation 8.27 ). This gives the 
direction of the shear stress acting 
on the face normal to the new x'-
axis (xs-axis), oriented θs from the 
original x-axis. If the shear stress is 
positive, it acts on the new x'-face 
in the positive y'-direction. 

2θstan  
σx σy–

2τxy
------------------–=

τmax

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+=

τmax

σI σII–

2
------------------=

Figure 8.14. (a) The original stress state.  
(b) The maximum shear stresses and the angle 
of the planes in which they act. The angle θs 
defines the direction of the plane’s normal vector.
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When the shear stress is maximum, the normal stresses, σx' (θs) and σy' (θs) are equal 
to each other, and are equal to the average normal stress:

[Eq. 8.40]

This last result again demonstrates the invariance of the normal stresses.

The maximum shear stress and their angles are shown in Figure 8.14. The axes that 
define the planes of maximum shear stress have been labeled xs–ys , located at θs1 and θs2
from the original x-axis.

The principal and maximum shear stress equations are summarized in Table 8.2.

Example 8.5  Maximum In-Plane Shear Stresses and Their Directions  
(Examples 8.1 and 8.3)

Given: An element (Figure 8.15a) is subjected to the following stresses: 

Required: Determine (a) the maximum in-plane shear stresses and the direction of the 
vectors normal to the planes in which they act and (b) the normal stresses when the shear 
stress is maximum.

Solution: Step 1. Find the angles that define the maximum shear stress (Equation 8.37):

σx′ θs( ) σy′ θs( )=
σx σy+

2
------------------

σI σII+

2
------------------- σave= = =

σx 9.1 ksi   σy; 15.4 ksi   τxy;– 9.5 ksi= = =

2θstan  
σx σy–

2τxy
------------------–  9.1( ) 15.4–( )–

2 9.5( )
------------------------------------–= =

 2θs 52.2– ° 127.8°,=⇒

Table 8.2.  Principal Stresses, Maximum (in-plane) Shear Stress, and their Angles.

Principal Stresses
Maximum In-plane

Shear Stress

Maximum
Stress(es)

Angle of 
normal vector 
(from x-axis)

Value of other 
Stress(es)

σI σII,

σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+±=

σave τmax±=

τmax

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+=

σI σII–

2
------------------=

θp
1
2
---

2τxy

σx σy–
------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

tan 1–= θs
1
2
---  

σx σy–

2τxy
------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

tan 1–=

τ 0= σx′ σy′ σave

σI σII+

2
-------------------= = =
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Answer:   

Note that these angles are ±45° from the 
principal angles found in Example 8.3. Recall 
that the angles θs are not the directions of the 
shear stresses, but the directions of vectors 
normal to the planes on which the shear stresses 
act.

Step 2. Substitute the smaller angle into the 
shear stress transformation equation:

Answer:   

θs = –26.1° is the direction of the x'-axis 
corresponding to a positive shear stress, i.e., the 
shear stress acts on the +x'-face in the +y'-
direction. These axes are labeled xs and ys in 
Figure 8.15b.

When the shear stress is maximum, the normal 
stresses are equal, and equal to the average of 
the normal stresses σx and σy :

Answer:   

Example 8.6  Shaft under Torque and Axial Force

Given: A propeller-driven boat moves forward at constant velocity against a drag force of 
120 kN. The solid drive shaft transmits 2500 kW of power to the propeller at 1000 rpm 
(revolutions per minute). The radius of the shaft is 100 mm (Figure 8.16a). 

Required: Determine (a) the stresses on a surface element oriented with the axis of the 
shaft, (b) the principal stresses, and (c) the maximum shear stress.

Solution: Step 1. Find the loads acting on the shaft. To move forward at constant velocity, 
the propeller pushes against the water with a force equal to the drag force. The water 
pushes against the propeller, so the shaft supports a compressive force having magnitude 
P = 120 kN.

The angular velocity of the shaft is:

θs 26.1– ° 63.9°,=

τx′y′ 26.1– °( )  9.1( ) 15.4–( )–
2

------------------------------------– 52.2– °( )sin=

     9.5( ) 52.2– °( )cos+

τmax +15.5 ksi=

σave

σx σy+

2
------------------ 9.1( ) 15.4–( )+

2
-------------------------------------= =

σave 3.15 ksi–=

Figure 8.15. (a) The original stress 
state. (b) The maximum shear 
stresses.
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The torque is related to the power as:

Step 2. Since the loads are an axial force 
and a torque, the relevant cross-sectional 
properties are:

Step 3. On surface element B, oriented with 
the axis of the shaft (the x-axis), the stresses 
are (Figure 8.16b):

Answer:   

and

Answer:   

Step 4. The principal stresses are:

Answer:   

Answer:   

The principal angles, without showing calculations, are θI = 48.6° and θII = 138.6° (or 
θII = –41.4°) (Figure 8.16c).

Step 5. The maximum shear stress is:

ω 1000 rev
min
---------⎝ ⎠

⎛ ⎞ 2π rad
rev

----------------⎝ ⎠
⎛ ⎞ 1 min

60 s
-------------- ⎝ ⎠

⎛ ⎞=

 104.7 rad/s=

T Power
ω

---------------- 2500
3×10  N·m/s

104.7 rad/s
----------------------------------------= =

 23.9 kN·m=

A πR2 π 0.1( )2 0.03142 m2= = =

J πR4

2
---------- π 0.1( )4

2
------------------ 0.1571

3–×10  m4= = =

σx
F
A
--- 120,000 N–

0.03142 m2
----------------------------- 3.820–  MPa= = =

σx 3.82 MPa–=

τxy
TR
J

------- 23.9
3×10  N·m( ) 0.1 m( )

0.1571
3–×10  m4( )

----------------------------------------------------------- 15.22 MPa= = =

τxy 15.22 MPa=

σI σII,
σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+±  1.91– 15.34 ksi±= =

σI 13.43=  MPa

σII 17.25 MPa–=

Figure 8.16. (a) Shaft under torque T 
and compressive force P. (b) Stresses in 
the x–y plane. (c) The principal stresses.
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Answer:   

The maximum shear stresses occur on planes that have normal vectors at θs = 3.6° and 
93.6° to the original x-axis, which are ±45° from the principal angles. The normal stresses 
on those planes are σxs = σys = σave = –1.91 MPa.

8.4  Mohr’s Circle

The plane stress stress transformation equations define a circle. Otto Mohr, a German 
engineer in the late 1800s, recognized these relationships and developed a useful 
engineering tool now known as Mohr’s Circle. 

Consider the plane stress transformation equations for σx' (θ) and τx'y' (θ), rearranged 
so that only trigonometric terms are on the right side:

[Eq. 8.41]

Squaring both sides of both equations, and adding them together, results in:

[Eq. 8.42]

This is the equation of a circle plotted on a normal stress–shear stress set of axes (σ–τ). 
Stresses σx , σy , and τxy are given values, and the center of the circle is at (σave , 0), where:

[Eq. 8.43]

The radius of the circle is equal to the maximum in-plane shear stress, τmax , the square 
root of the right side of Equation 8.42:

[Eq. 8.44]

The points on the circle, (σx' , –τx'y') and (σy' , τx'y'), represent the transformed stresses on 
the new x'- and y'-faces, as explained below. 

τmax

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+=

τmax 15.34=  MPa

σx′ θ( )
σx σy+

2
------------------–

σx σy–

2
------------------ 2θ τxy 2θsin+cos=

τx′y′ θ( )  
σx σy–

2
------------------– 2θ τxy 2cos θ+sin=

σx′
σx σy+

2
------------------–⎝ ⎠

⎛ ⎞ 2
τx′y′( )2+

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+=

σave

σx σy+

2
------------------=

τmax

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+=
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Constructing Mohr’s Circle
Mohr’s circle is constructed as 

follows (Figure 8.17):

1. Construct (on graph paper) an x–y
axis with the horizontal axis (the 
abscissa) labeled σ, and the vertical 
axis (the ordinate) labeled τ.

2. Plot two points: X(σx , –τxy) and 
Y(σy , +τxy). The points represent 
the stresses acting on the +x- and 
+y-faces of the element, respectively. 
The positive sense of stress follows 
the convention of this text 
(Figure 8.17a):

• Stress is positive if it acts: (a) on 
a positive face in a positive 
direction, or (b) on a negative 
face in a negative direction 
(e.g., shear stress is positive if 
it causes an upward shear 
stress on the positive x-face).

• Stress is negative if it acts: (a) on 
a positive face in a negative 
direction, or (b) on a negative 
face in a positive direction.

Just as with the transformation 
equations, maintaining sign 
convention is important.

3. Construct a line connecting X and Y. 
Line X–Y is the diameter of the 
circle and has a length of 2R = 2τmax . 
Where the line intercepts the σ-axis 
is the center of the circle, which is 
the average normal stress σave.

4. Construct the circle, with center at 
(σave, 0). The circle intercepts the 
σ-axis at the principal stresses σI and
σII . The radius of the circle is equal 
to the maximum shear stress, or 
half the difference of the principal 
stresses. τmax is the magnitude of 

Figure 8.17. Constructing Mohr’s circle. 
1. Construct the σ–τ axes. 
2. Plot X(σx , –τxy) and Y(σy , τxy). 
3. Construct the diameter X–Y. 
4. Construct Mohr’s circle.

Equation of a Circle

The general equation of a circle of radius 
R, with center at (a,0), in the x–y
coordinate system is:

The variables and constants used in 
Mohr’s Circle are:

x a–( )2 y2+ R2=

x y,( ) σx′ τx′y′–,( ) σy′ τx′y′,( ),=

a
σx σy+

2
------------------ σave= =

R
σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+ τmax= =
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the shear stress at the top and 
bottom of the circle. 

By constructing the circle to scale 
on graph paper with compass and ruler, 
these values can be read off the plot 
without any calculations required.

Using Mohr’s Circle
To find the stresses acting on a 

stress element when it is rotated by any 
angle θ from the original x–y coordinate 
system, rotate the X–Y diameter of 
Mohr’s circle by 2θ, positive 
counterclockwise (Figure 8.18). 

A counterclockwise rotation θ of 
the stress element corresponds to a 
counterclockwise rotation of 2θ in 
Mohr’s circle. With the rotation, Point X
moves to Point X', corresponding to 
(σx', –τx'y'); Point Y moves to Point Y', 
corresponding to (σy', τx'y'). 

Using a protractor to measure 2θ
locates the new diameter and points X'
and Y'. The stress values can be read directly off the plot. For more exact results, a few 
trigonometric calculations will give values for the new coordinates, or the transformation 
equations may be used.

The principal stresses correspond to the values where the Mohr’s circle intercepts the 
σ-axis (the abscissa, Figure 8.19). The principal stresses are the average of the normal 
stresses (the center of the circle), plus or minus the circle’s radius:

[Eq. 8.45]

When the diameter is horizontal, its endpoints are at (σI , 0) and (σII , 0). The 
horizontal diameter, XpI – YpI , corresponds to the principal stresses. The normal stresses 
are maximum and minimum, and the shear stress is zero (Figure 8.19).

The principal angles are found by determining the angles 2θI and 2θII that the original 
Mohr’s circle X–Y diameter must be rotated by so that the diameter is horizontal. This may 
be done by measuring with a protractor, or by performing trigonometric calculations from 
the circle geometry, e.g.:

σI II,

σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+±=

σave τmax±=

Figure 8.18. (a) The original stresses.  
(b) The transformed stresses on the element 
rotated by θ. (c) Mohr’s circle; demonstrating 
the rotation of the diameter by 2θ to the 
transformed stresses.
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[Eq. 8.46]

The maximum in-plane shear stress is the value of τ at the top and bottom of the circle, 
and is equal to the radius of the circle. When the Mohr’s circle diameter is vertical, its 
endpoints are at (σave , ±τmax).

The maximum shear stress angles θs1 and θs2 are found in the same manner as the 
principal angles. In Figure 8.19, θs1 is associated with the x'-face in which the maximum 
shear stress is positive (the value of –τmax for Xs1 is negative, so τmax is positive).

Example 8.7  Using Mohr’s Circle (Examples 8.1, 8.3, and 8.5)

Given: An element (Figure 8.20a) is subjected to the following stresses: 

σx = 9.1 ksi;   σy = –15.4 ksi;  τxy = 9.5 ksi

Required: Using Mohr’s circle, determine (a) the stresses when the element is rotated by 
θ = 33°, (b) the principal stresses and their directions, and (c) the maximum shear 
stresses and their directions, and the normal stresses associated with the maximum shear 
stress.

2θItan
τxy

σx σave–
-----------------------

2τxy

σx σy–
------------------= =

Figure 8.19. (a) The original stresses. (b) Mohr’s circle with diameter X–Y 
rotated to the principal stress diameter XpI–YpI and the maximum shear 
stress diameter Xs1–Ys1. (c) The principal stresses and their directions. 
(d) The maximum shear stresses, their normal stresses, and directions.



www.manaraa.com

8.4 Mohr’s Circle 265

Solution: Step 1. Plot Mohr’s circle 
(Figure 8.20c). The endpoints of the 
original diameter are:

Step 2. Rotate the Mohr’s circle 
diameter, X–Y, by 2θ = 2(33°) = +66° to 
X'–Y', corresponding to a rotation of the 
stress element by 33°. This angle may 
be measured with a protractor. The new 
stresses are the coordinates of X' and Y' 
(Figures 8.20b, c).

Answer:   

Step 3. Mohr’s circle intercepts the σ-
axis at the principal stresses and may be 
read off the graph (Figure 8.20d). The 
angles 2θ  I and 2θ  II may be found by 
measurement, or using Equation 8.46:

Here, 2θ  I = 37.8° and 2θ  II = 217.8°. 

The principal stresses and their angles 
are:

Answer: 

Answer:

Recall that a rotation of 2θ in the circle 
is a rotation of θ in the stress element (Figure 8.20e).

Step 4. The maximum shear stress is the magnitude of τ at the top and bottom of the circle, 
equal to the radius:

Answer:   

X σx τxy–,( ) 9.1 9.5–,( ) ksi= =

Y σy τxy,( ) 15.4– 9.5,( ) ksi= =

σx′ 10.5 ksi=

σy′ 16.8 ksi–=

τx′y′ 7.3 ksi–=

2θptan
τxy

σx σave–
-----------------------

2τxy

σx σy–
------------------= =

σI 12.35 ksi  at θI= 18.9°=

σII 18.65 ksi–   at θII= 108.9°=

τmax 15.5 ksi=

Figure 8.20. (a) The original stress state.  
(b) The stresses on element rotated by θ = 
33°. (c) Mohr’s circle with diameter rotated 
by 2θ = 66°. (d) Mohr’s circle to determine 
the principal stresses and maximum shear 
stress.
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The direction of the vectors 
normal to the planes on which 
Maximum Shear Stresses act, 
θs , may be found by 
measurement, by trigonometry, 
or by using Equation 8.37:

The angles that define the 
planes on which maximum 
shear stresses occur are:

Answer:   

The maximum shear stress angles are ±45° from the principal angles (Figure 8.20f).

The normal stress that occurs on each face when the shear stress is maximum is:

Answer:   

8.5  Strain Transformation

It has been demonstrated 
that a general state of plane 
stress, σx , σy , and τxy , can be 
reduced to its principal stresses, 
σI and σII (with zero shear 
stress). Using two principal 
stresses, instead of three 
general stress state terms, 
simplifies the description of 
that state of stress.

With the condition that no out-of-plane shear strains exist (γzx = γzy = 0), strains may 
be transformed in a similar manner as the stresses (Figure 8.21). Simply substitute εx for 
σx and εy for σy . However, because of the way the mathematics works out, γxy  /2 is used 
for the shear component. The strain transformation equations are:

[Eq. 8.47]

[Eq. 8.48]

2θstan  
σx σy–

2τxy
------------------–=

θs1 26.1°  and  θs2 63.9°=–=

σave 3.15–  ksi=

εx′ θ( )
εx εy+

2
----------------

εx εy–

2
---------------- 2θ

γxy

2
------- 2θsin+cos+=

εy′ θ( )
εx εy+

2
----------------

εx εy–

2
---------------- 2θ

γxy

2
------- 2θsin–cos–=

Figure 8.20. (e) Stress element aligned with principal 
axes. (f) Element aligned with maximum shear stress 
axes.

Figure 8.21. (a) State of strain with respect to x–y 
axes. (b) State of strain with respect to x'–y' axes.
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[Eq. 8.49]

The principal strains – the maximum and minimum normal strains, εI and εII – and 
the maximum shear strain, γmax , and their angles, θsp-ε and θsε  , are found by 
differentiating the strain transformation equations. The maximum strains and their 
angles are summarized in Table 8.3. The transformation tool in the Online Notes may 
also be used.

Angles θpε correspond to the principal strain angles, and θsε to the directions of 
vectors normal to the maximum shear strain planes. Angles 2θpε and 2θsε are 90° apart; 
hence, θpε and θsε are 45° apart.

By adding Equations 8.47 and 8.48, the normal strains are shown to be invariant: 

[Eq. 8.50]

Example 8.8  Strain Transformation

Given: An element is subjected to the following strains: 

Required: If the element is rotated θ = 33° (2θ = 66°), determine the strains in the new 
coordinate system.

Solution: Apply the strain transformation equations (Equations 8.47 – 8.49); e.g.:

Applying the other equations:

γx′y′
2

---------- θ( )           
εx εy–

2
----------------– 2θ

γxy

2
------- 2cos θ+sin=

εx′ εy′+ εx εy+=

εx 91.0
6–×10   ε; y 154–

6–×10=   γxy 190–
6–×10=;=

εx′ 33°( ) 91 154–( )+
2

----------------------------- 91 154–( )–
2

----------------------------- 66°( ) 190–
2

------------⎝ ⎠
⎛ ⎞ 66°( )sin+cos+ 105

6–×10= =

Table 8.3.  Principal Strains, Maximum Shear Strains, and Angles.

Principal Strains
(Maximum Normal Strains)

Maximum In-Plane Shear Strain

Maximum 
Strain(s)

Angle of 
normal vector 
(from x-axis)

εI εII,

εx εy+

2
----------------

εx εy–

2
----------------⎝ ⎠

⎛ ⎞
2 γxy

2
-------⎝ ⎠

⎛ ⎞
2

+±=

γmax

2
-----------

εx εy–

2
----------------⎝ ⎠

⎛ ⎞
2 γxy

2
-------⎝ ⎠

⎛ ⎞
2

+=

εI εII–

2
----------------=

θpε
1
2
---

γxy

εx εy–
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

tan 1–= θsε
1
2
---  

εx εy–

γxy
----------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

tan 1–=
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Answer: 

Example 8.9  Principal Strains and Directions

Given: An element is subjected to the following strains: 

Required: Determine (a) the principal strains and their directions and (b) the maximum 
shear strain.

Solution: Step 1. Find the principal strain angles.

The principal angles are 19.3° and 109.3°.

Step 2. Take the smaller angle, 19.3°, and substitute it into the general strain 
transformation equations for εx' and εy' . Equivalently, substitute both angles into the strain 
transformation equation for εx' .

Step 3. Since εx' (19.3°) is greater than εy' (19.3°), setting εx' = εI gives:

Answer: 

Answer: 

Note that the sum of the normal strains is invariant: 

The principal strains could quickly have been found:

εx′ 105
6–×10   ε; y′ 168–

6–×10=   γx′y′ 147–
6–×10=;=

εx 400
6–×10   ε; y 600–

6–×10=   γxy 800
6–×10=;=

2θpεtan
γxy

εx εy–
---------------- 800

400 600–( )–
--------------------------------= =

2θpε→ 38.66° 218.66°,=

θpε→ 19.3° 109.3°,=

εx′ 19.3°( ) 400( ) 600–( )+
2

------------------------------------- 400( ) 600–( )–
2

------------------------------------ 38.66°( ) 800
2

--------- 38.66°( )sin+cos+ 540= =

εy′ 19.3°( ) εx′ 109.3°( )=

400( ) 600–( )+
2

------------------------------------- 400( ) 600–( )–
2

------------------------------------ 38.66°( ) 800
2

--------- 38.66°( )sin–cos– 740–= =

εI 540
6–×10   at  19.3°=

εII 740
6–×10–   at  109.3°=

εI εII+ 540 740–( )+[ ] 6–×10 200–
6–×10= =

εx εy+ 400 600–( )+[ ] 6–×10 200
6–×10–= =

εI εII,
εx εy+

2
----------------

εx εy–

2
----------------⎝ ⎠

⎛ ⎞
2 γxy

2
-------⎝ ⎠

⎛ ⎞
2

+± 540
6–×10 740

6–×10–,= =
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However, the directions of these strains are not known until one of the angles (e.g., 19.3°) 
is substituted into εx' (θ), unless the associations can be determined by observation.

The shear strain corresponding to either principal strain angle is zero:

Step 4. The maximum shear strain is:

Answer:   

8.6  Strain Gages

A strain gage is shown in Figure 8.22a 
(at four times its original size). Strain gages 
are typically about 10 mm in length. A gage 
consists of an electrical conductor (path) 
turned back upon itself several times and 
embedded in a flexible matrix material. In a 
mechanical test, the gage is bonded to a 
specimen, and then the gage is wired into an 
electronic circuit. When the specimen is 
strained, the gage is strained. As the 
conductor stretches (in the x-direction of 
Figure 8.22a), its length increases and its 
cross-sectional area decreases, which in 
turn increases its electrical resistance. By 
knowing how the resistance varies with 
strain, the circuit’s output voltage can be 
related to the gage’s strain.

Strain Gage Rosettes
A single strain gage can only measure 

strain in the direction of its axis. If only one 
gage is used on a specimen tested in 
tension, it must be perfectly aligned with 
the specimen, otherwise it measures an off-
axis strain.

γx′y′
2

---------- 19.3°( )  400( ) 600–( )–
2

------------------------------------– 38.66°( ) 800
2

---------⎝ ⎠
⎛ ⎞ 38.66°( )cos+sin 0= =

γmax

2
-----------

εI εII–

2
---------------- 540 740–( )–

2
-------------------------------- 1280

2
------------= = =

γmax 1280
6–×10=

Figure 8.22. (a) Pictorial of a typical 
strain gage (~4× original size). Electrical 
conductor (shown in black) on flexible 
backing. Large tabs are to solder gage 
into a circuit. The arrows help with 
aligning the gage on a specimen. The 
gage measures strain along the x-axis 
shown. (b) Configuration of a 0/45/90 
strain gage rosette.
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A strain gage rosette is a set of gages manufactured as a single unit. A common 
configuration is the so-called 0/45/90 rosette, which consists of three separate gages, as 
shown in Figure 8.22b. Here, the strain gages are labeled A, B and C. Each gage measures 
the strain in its own axial direction, εA , εB and εC , respectively. For mathematical 
convenience, strain gage A is taken to be aligned with the x-axis (0°), gage C with the y-
axis (90°), and gage B is at θ = 45°. Strain εA = εx is not necessarily in the direction of a 
Principal Stress.

Strains εx , εy and γxy can be determined from the normal strains measured in the three 
gage directions. From these strains, the principal strains and maximum shear strains can be 
calculated.

Here, strain gage A measures strain εx directly since it is aligned with the x-axis 
(θ = 0°). This is also shown using the transformation equation:

[Eq. 8.51]

Strain gage B measures εB (θ = 45°):

[Eq. 8.52]

Strain gage C measures εy directly since it is aligned with the y-axis. Hence, εC = εy . 

Substituting εx = εA and εy = εC into Equation 8.52 gives γxy in terms of εA , εB and 
εC . The strains εx , εy and γxy can then be written:

[Eq. 8.53]

Or, in matrix form:

[Eq. 8.54]

In practice, the readings εA , εB and εC can be directly fed into a computer and the strains 
in the x–y plane are then calculated.

Although using a strain gage rosette may seem to be extra work compared to a single 
gage, the rosette has several advantages. In a tensile test, if the axial member is properly 
aligned in the testing machine, then the maximum principal strain from the strain rosette 
should equal to the axial strain of the specimen, regardless of the rosette’s orientation on 
the specimen. The exact alignment of the strain rosette on a tensile specimen is not as 
critical as when only one gage is used. The minimum principal strain in a tensile test is due 
to the Poisson effect.
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Strain rosettes are also used in large-scale structures (e.g., bridges, buildings, 
airplanes, etc.) to measure the strains at key locations. The direction of the maximum 
strain can vary with time, but by using strain rosettes instead of a single gage, the principal 
strains and maximum shear strains at any point can be determined. If the material 
properties are known, the principal stresses and maximum shear stresses can be calculated 
to ensure that the structure remains within design limits. The structure’s load and 
displacement can also be monitored with strain gages.

Example 8.10  Strain Rosette

Given: The strain readings from a 0/45/90 strain rosette (Figure 8.22) are: 

Strain gage A is aligned with the x-axis, gage C with the y-axis and gage B is at θ = 45°.

Required: Determine (a) the strains in the x–y coordinate system and (b) the principal strains.

Solution: Apply the 0/45/90 transformation equations to the gage strains:

Answer: 

Answer: 

Answer: 

The principal strains are:

Answer:   

8.7  Three-Dimensional Stress

Although the stress transformation equations were developed for plane stress states 
(σz = τzx = τzy = 0), they can still be used if σz is non-zero (e.g., Figure 8.23a). As long as 
the out-of-plane shear stresses are zero (τzx = τzy = 0), then σz is a principal stress. If the 
stress element is constrained to rotate in the x–y plane about the z-axis, then σz remains 
constant, and the out-of-plane shear stresses and strains remain zero.
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We now consider the effect of 
the out-of-plane principal stress σz
on the maximum shear stress. We 
begin the discussion by considering 
Mohr’s circle for 3D.

First, the Mohr’s circle for the
in-plane (x–y plane) stresses is 
constructed as in Section 8.4. Then 
two additional Mohr’s circles are 
constructed. Each new circle is 
bound on the σ-axis by one of the in-
plane principal stresses and the out-
of-plane principal stress σz (e.g., 
Figure 8.23c).

The circles can be quickly drawn 
by finding the in-plane principal 
stresses:

 

[Eq. 8.55]

and knowing the out-of-plane
principal stress, σz = σIII. If desired, 
the principal stresses may be relabeled so that σI is the most positive (tensile) stress and σIII
is the most negative (compressive). Regardless, with the three principal stresses plotted on 
the σ-axis, three Mohr’s circles can be constructed as shown in Figure 8.23c.

The maximum shear stress of the stress element is the radius of the largest of the three 
Mohr’s circles:

[Eq. 8.56]

If σI and σIII are the maximum and minimum principal stresses, respectively, then half of 
their difference is the maximum shear stress. This shear stress may act in the x–y plane (in-
plane) or may act out-of-plane (if either σI or σIII is associated with σz). 

If the stress state is plane stress, then only the two in-plane principal stresses are non-
zero and the out-of-plane principal stress is zero (i.e., σz = σIII = 0), resulting in:

[Eq. 8.57]

σI σII,

σx σy+

2
------------------

σx σy–

2
------------------⎝ ⎠

⎛ ⎞
2

τxy( )2+±=

τmax max  
σI σII–

2
------------------  

σII σIII–

2
----------------------  

σI σIII–

2
--------------------  ,,=

τmax max  
σI σII–

2
------------------  

σI

2
-----  

σII

2
-------  ,,=

Figure 8.23. (a) The principal stresses in 3D. 
(b) The in-plane principal stresses only. (c) The 
3D Mohr’s circles.



www.manaraa.com

8.7 Three-Dimensional Stress 273

where σI and σII are in the x–y plane. For plane stress, if the in-plane principal stresses are 
of the same sign, the maximum shear stress is out-of-plane. If the in-plane principal 
stresses are of opposite sign, the maximum shear stress is in-plane.

Example 8.11  Cylindrical Pressure Vessel

Given: A cylindrical pressure 
vessel (Figure 8.24) contains a gas 
at 90 psi. The radius is R = 24 in. 
and the thickness is t = 0.40 in. The 
axes of the vessel are H-, L-, and r-, 
where H is around the cylinder 
(hoop-direction), L is along the axis 
of the cylinder (longitudinal), and r
is normal to the cylinder (radial). 

Required: Determine (a) the 
maximum in-plane shear stress in 
the cylinder wall (in the H–L
plane), and the angle at which it 
acts and (b) the maximum shear 
stress in the system, whether in-
plane or out-of-plane.

Solution: Step 1. The stresses 
acting on an element in the body of 
the vessel are found first. The wall 
is in a biaxial state of stress:

No shear stress acts on an element 
oriented in the H–L set of axis. The 
hoop and longitudinal stresses are 
the principal stresses in the 
cylinder’s wall (Figure 8.24c). The 
surface is free of stress, so σr = 0.

σH
pR
t

------- 90 psi( ) 24 in.( )
0.40 in.( )

--------------------------------------= =

 5.4 ksi σI==

σL
pR
2t
------- 2.7 ksi σII== =

σr 0 ksi σIII==

Figure 8.24. (a) Cylindrical pressure vessel.  
(b) Stress element on surface oriented with H–L–r 
axes. (c) A 2D element in H–L plane. 
(d) Maximum Shear Stress in H–L plane. (e) A 
2D element in H–r plane. (f) Maximum Shear 
Stress in H–r plane. (g) A 3D Mohr’s circles for 
surface element.
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Step 2. The maximum in-plane shear stress is half the difference of the in-plane principal 
stresses, σI and σII. Thus:

 

Answer:   

The normal stresses associated with the maximum in-plane shear stress are:

Step 3. The angle of the plane in which the in-plane maximum shear stress occurs is 
defined by:

But τxy = 0 in the original stress state, which means that tan(2θs) is undefined. Thus, 
2θs = ±90° or:

Answer:   

The direction of the shear stress (positive or negative) on the plane defined by θs = 45° can 
be found by applying the general shear stress transformation equation. The result is shown 
in Figure 8.24d.

Step 4. In 3D, the maximum shear stress is given by:

where σI and σIII are the most tensile (positive) and most compressive (negative) of the three 
principal stresses. Here, the maximum principal stress is the hoop stress, σH, and the minimum 
principal stress is the stress normal to the surface of the cylinder, σr = 0. One of these extreme 
stresses, σr , is out-of-plane, so the maximum shear stress is out-of-plane (Figure 8.24e).

The maximum shear stress is:

Answer:   

The out-of-plane maximum shear stress occurs on a plane oriented at 45° and 
passing through the hoop–radial (H–r) plane (Figure 8.24f). Not shown in this view 
is σL, which acts out of the plane of the paper. For a cylindrical pressure vessel, the 
maximum shear stress is out-of-plane, and is equal to half the hoop stress. The 3D 
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set of Mohr’s circles is shown in Figure 8.24g. It is made of three 2D Mohr’s 
circles. 

In general, when using the 3D Mohr’s circle for stress transformation, only one circle 
may be traveled on at a time, the element rotating about one of the principal axes. With σr , 
σH, and σL as the principal stresses:

• σr is kept constant while rotating the element in the H–L plane about the r-axis, to 

get general stresses, σH' , σL' , and τH'L' , in the H–L plane; or 

• σH is kept constant while rotating the element in the L–r plane about the H-axis, to 

get general stresses, σL' , σr' , and τL'r' , in the L–r plane; or 

• σL is kept constant while rotating the element in the H–r plane about the L-axis, to 

get general stresses, σr' , σH' , and τr'H' , in the H–r plane.

In general, 3D case, stresses are represented as tensors, and rotations in 3D space are 
developed using tensor mathematics. Such mathematics is beyond the scope of this text.
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Chapter 9 Failure Criteria

9.0  Introduction

In Chapter 3, two general classifications
of materials were introduced: brittle and
ductile (Figure 9.1). The stress criteria used
to determine if a brittle or ductile material
will fail are discussed in this chapter.

Brittle materials show little or no plastic
deformation before they fracture (break into
two parts, Figure 9.2a). Ceramics, chalk,
cast iron, and concrete are brittle. The small
amount of deformation beyond the
proportional limit provides little warning of
impending failure.

Ductile materials yield (permanently
deform) long after the strain reaches the
linear–elastic limit (Figure 9.2b). A paper
clip can be bent by a large amount, resulting
in a large permanent deformation, before it
breaks in two. Aluminum, steel, and copper
are ductile. The onset of yielding or plastic
deformation is frequently used as a design
limitation.

The question to be addressed in this
chapter is how to determine if a material fails
under a complex state of stress, such as a
general state of plane stress, σx , σy, and τxy .
In Chapter 8, it was learned that a plane
stress state can be reduced to two principal
stresses, σI and σII. It is much easier to
develop failure criteria based on principal
stresses and strains, and maximum shear
stresses, and this is indeed the approach
taken.

Figure 9.1. Representative stress–strain 
curves of brittle and ductile materials.

Figure 9.2. (a) Failure of a brittle (cast 
iron) tensile test specimen (0.5 in. 
diameter). Little plastic deformation 
occurs; the failure surface is flat. 
(b) Failure of a ductile (steel A36) tensile 
test specimen. Large plastic strains and 
necking occur before failure.
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9.1  Failure Condition for Brittle Materials

In a uniaxial tension test, a brittle material
fractures when the applied stress reaches the
ultimate tensile strength of the material, Su . In a
compression test, the material fails when the
compressive stress reaches the compressive
strength of the material, SC . For materials such as
concrete and ceramics, the magnitude of SC can
be approximately 10 times that of Su .

Maximum Normal Stress Criterion 
For many brittle materials, failure occurs

when the maximum normal stress in any direction
reaches either the tensile or compressive strength
of the material. Thus, finding the principal
stresses – the maximum (most tensile) and
minimum (most compressive) normal stresses – at
critical points is necessary to assess the integrity
of a brittle system.

For a plane stress condition, a material
element is subjected to stresses σx , σy and τxy .
The principal stresses, σI and σII, can be found
using the methods of Chapter 8. If either principal
stress equals or exceeds the strength of the
material, either Su in tension or SC in
compression, the material fails:

[Eq. 9.1]

This is called the maximum normal stress failure
criterion. No restriction has been made on the
relative values of σI and σII in Equation 9.1. 

The square-shaded region shown in
Figure 9.3 represents coordinates (σI , σII) for
which the normal stresses do not exceed the
failure condition. If the principal stresses at a
material point are plotted (σI , σII), and the plotted
point lies on or outside the strength boundary, the
material fails.

σI Su  or  σII Su≥≥

σI SC  or  σII SC≥≥

Figure 9.3.  Failure Map for 
Maximum Normal Stress Failure 
Criterion. When the calculated 
principal stress point (σI , σII) is 
plotted on the σI – σII axes, if it falls 
within the shaded region, there is no 
failure.

Figure 9.4. Pieces of chalk that 
have failed in torsion (left) and in 
bending (right). The analyses of 
these failures is given in 
Examples 9.1 and 9.2.
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Examples of brittle materials that follow the maximum normal stress failure criterion
are cast iron, cement, ceramics, and chalk (Figure 9.4).

Example 9.1  Twisting a Piece of Chalk

Given: Chalk is a brittle material that fails
according to the maximum normal stress
criterion. A piece of chalk is twisted with
torque T until it fractures (Figure 9.5).

Required: Determine the angle of the
fracture plane.

Solution: The torque causes a shear stress
τ on a surface element of the piece of
chalk in the x–y plane (parallel and normal
to the chalk’s axis). The state of stress is
pure shear (Figure 9.5b). 

The principal stresses are ±45° from the
x–y axes:

Failure occurs when the maximum
principal stress reaches the ultimate
tensile strength Su .

The maximum tensile stress occurs at
+45° from the x-axis, which defines the
fracture plane. Failure occurs along
the plane perpendicular to the maximum
tensile stress; a crack will open along the
–45°/+135° diagonal, normal to σI
(Figures 9.5c, d ). Due to the twisting
nature of the torsion load, the fracture
surface spirals about the chalk’s axis
(Figures 9.4, 9.5d). 

Example 9.2  Bending a Piece of Chalk

Given: A piece of chalk is loaded as a beam by bending moment M causing compression
at the bottom of the beam (a negative moment), as shown in Figure 9.6. 

Required: Determine the angle of the fracture plane.

σI +τ      σII τ–=;=

Figure 9.5. (a) A piece of chalk under torque 
T. A surface element is in a state of pure 
shear stress. (b) The element rotated 45° to 
the principal angles. (c) The tensile principal 
stress causes a crack to open along the 
–45°/+135° diagonal. (d) The fracture 
surface spirals about the chalk’s axis.
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Solution: In pure bending, the only
stresses acting in the piece of chalk are
bending stresses. Since there is no shear
stress, the maximum tensile bending stress
is the maximum principal stress, which
occurs at the top of the beam (Figure 9.6b):

Failure occurs when σI reaches Su.

The maximum tensile stress coincides with
the x-axis. The crack opens and runs
normal to the maximum tensile stress
(Figure 9.6c). The fracture surface is flat
and normal to the x-axis (Figure 9.4).

Example 9.3  Cast Iron

Given: Under an applied load, the principal
stresses at a critical point in a gray cast iron
diesel engine are calculated to be σI = 40 ksi
and σII = –90 ksi. Take the ultimate strength
of cast iron to be Su = 30 ksi and its
compressive strength to be SC = 120 ksi. 

Required: (a) Plot the maximum normal
stress criterion map. (b) Using the maximum
normal stress criterion, does the cast iron fail
under the applied state of stress? 

Solution: The shaded area in Figure 9.7 is
the region in which a set of principal
stresses, (σI , σII), does not cause failure. 

The maximum tensile stress is: 

σI = 40 ksi > 30 ksi = Su 

Since  σI > Su, the material fails in the I-
direction due to tension.

If σI is reduced below 30 ksi, the system will
not fail.

σI + MR
I

---------=

Figure 9.7.  Failure Map for the cast iron 
of Example 9.3. Principal stress point 
(σI , σII) lies outside the shaded area, 
and the material is predicted to fail.

Figure 9.6. (a) Piece of chalk under moment 
M. A surface element at the top is under a 
state of uniaxial stress. (b) The surface 
element viewed from the top; the stresses 
are principal stresses. (c) The fracture 
surface runs normal to the chalk’s axis.
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Example 9.4  Femur Bone

Given: The shaft of a femur (thigh bone) can
be approximated as a hollow cylindrical shaft
(Figure 9.8). The loads that tend to cause
femur bones to fracture are torques and
bending moments. 

A particular femur has an outside diameter of
D = 24 mm and an inside diameter of
Di = 16 mm. The ultimate tensile strength
of bone is Su = 120 MPa. During a strenuous
activity, such as skiing, the femur is subjected
to a torque of T = 100 N·m. 

Required: Under the applied torque,
determine the maximum bending moment M
that the bone can support without failure.
Consider only torsion and bending loads, and
assume the bone to be a brittle material.

Solution: Step 1. Since the bone is brittle, it
follows the maximum normal stress criterion.
If the calculated maximum principal stress is
greater than the material ultimate strength,
σI > Su , the bone fractures.

Step 2. The loading is a torque and a bending
moment, so the pertinent geometric terms for
the hollow cylinder (femur) are:

I π
64
------ D4 Di

4–⎝ ⎠
⎛ ⎞=

π
64
------ 0.024 m( )4 0.016 m( )4–=

13.1 10 9–×  m4=

J π
32
------ D4 Di

4–⎝ ⎠
⎛ ⎞=

π
32
------ 0.024 m( )4 0.016 m( )4–=

26.1 10 9–×  m4=

Figure 9.8. (a) Femur bone under torque 
T and moment M. (b) A length of femur 
modeled as a hollow cylindrical shaft. 
(c) Bone cross-section. (d) Stress 
element with the most tensile bending 
stress (on the left side).
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Step 3. Consider a stress element on the left side of the femur (Figure 9.8b); the element is
in the z–x plane. The maximum tensile bending stress occurs at this point, and combined
with the shear stress, this is likely the location of the maximum principal stress
(Figure 9.8d). The stresses on this element are:

The moment M that causes failure is to be determined.

The maximum principal stress in the x–z plane is:

At fracture, three of the variables in the principal stress equation are known:
σI = Su = 120 MPa, σz = 0, and τxz = 45.9 MPa. It remains to solve for σx , which is a
function of bending moment M. At failure:

Isolating the radical term and squaring both sides gives:

Solving for σx :

When the bending stress reaches 102.4 MPa, the femur will break. The moment to cause
fracture is:

Answer: 
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0.012 m( )
--------------------------------------------------------------------------= =

M 112 N·m=



www.manaraa.com

9.1 Failure Condition for Brittle Materials 283

Modified Maximum Stress Criterion
Some brittle materials, such as concrete

and rock, exhibit a more complex failure
criterion in which shear stress also has an
influence. This modifies the failure map as
shown in Figure 9.9. The principal stress
must now lie within the boundaries defined
by the normalized equations summarized in
Table 9.1.

When the in-plane principal stresses are
of opposite sign, the in-plane shear stress
becomes important in failure. Thus, the
diagonal modifications to Figure 9.3,
resulting in Figure 9.9. The source of the
sloped lines – shear failure – is discussed
further in Section 9.2. 

Figure 9.9. Modified maximum 
normal stress failure map for brittle 
materials that also fail by in-plane 
shear stress, i.e., when principal 
stresses are of opposite signs.

Table 9.1.  Conditions for modified maximum stress criterion.

Principal Stresses,
Quadrant

Failure Type
Equations that must be satisfied for 
Principal Stresses to lie within the 

Boundaries of Figure 9.9

σI > 0, σII > 0
1st Quadrant

Tensile [Eq. 9.2]

σI < 0, σII < 0
3rd Quadrant

Compressive [Eq. 9.3]

σI < 0, σII > 0
2nd Quadrant

Shear-dominated [Eq. 9.4]

σI > 0, σII < 0
4th Quadrant

Shear-dominated [Eq. 9.5]

σI

Su
----- 1    

σII

Su
------- 1<;<

σI

SC
-------- 1    

σII

SC
---------- 1<;<

σI

SC
--------

σII

Su
------- 1<+

σI

Su
-----

σII

SC
---------- 1<+
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9.2  Failure Condition for Onset of Yielding of Ductile Materials

In a uniaxial tension test, a ductile material begins to yield when the applied axial
stress reaches the yield strength Sy . In a compression test, a ductile material yields when
σ = –Sy . In a torsion test on a thin-walled shaft, the material yields when τmax = τy , the
shear yield strength. 

Stress states are usually more complicated than simple tension or pure shear. In plane
stress, a material point is subjected to a general state of stress, σx , σy, and τxy . The goal
here is to predict when a ductile material yields under a general state of stress. There are
two basic theories to determine when a ductile material yields: the Tresca and the von
Mises failure criteria.

Maximum Shear Stress Criterion (Tresca)
Based on experimental observations,

Tresca proposed that yielding occurs
when the maximum shear stress τmax
reaches the shear yield strength τy . In a
tension test, yielding occurs when the
applied stress σx reaches the uniaxial
yield strength Sy . The maximum shear
stress in a uniaxial test occurs on a plane
at 45° to the axial direction, and
τmax = σx/2 (Figure 9.10).

It, therefore, follows that the
relationship between the shear yield
strength and the axial yield strength is:

[Eq. 9.6]

The shear stress is parallel to an
interior surface. The direction of the
shear stress does not matter; when the magnitude of τmax reaches τy , the material yields.
Thus, for a compression test, the material yields at the same magnitude of stress as in
tension, i.e., |σx| = Sy or σx = –Sy (Figure 9.10b). 

For the plane stress condition (σz = τyz = τzx = 0), with principal stresses σI and σII in
the x–y plane, the maximum shear stress is:

 [Eq. 9.7]

Whenever τmax reaches τy , yielding occurs.

τy

Sy

2
-----=

τmax max  
σI σII–

2
---------------------

σI

2
--------

σII

2
---------- , ,=

Figure 9.10. The magnitude of the maximum 
shear stress is σx /2 for both (a) the uniaxial 
tension test, and (b) the uniaxial 
compression test. Per Tresca, yielding 
occurs when τmax = τy .
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The failure map for the
plane stress Tresca yield
criterion is shown in
Figure 9.11. The principal
stresses (σI , σII) at a critical
point are calculated and then
plotted on the map. Yielding
does not occur if the principal
stress point (σI , σII) lies within
the Tresca boundary.

The sloped boundary lines
each have a slope of unity (1.0);
the σII-intercepts are at Sy and
–Sy . The sloped lines correspond
to the maximum shear stress at a
material point being an in-plane
shear stress; σI and σII have
opposite signs. The normalized
equations of the boundaries for
the Tresca (maximum shear
stress) criterion are summarized
in Table 9.2.

Table 9.2.  Normalized equations for boundaries of Tresca Yield Criterion.

In-Plane Principal 
Stresses

Shear Failure
Equations that must be satisfied for 
Principal Stresses to lie within the 
Tresca boundaries (Figure 9.11)

σI > 0, σII > 0
1st Quadrant

Out-of-plane [Eq. 9.8]

σI < 0, σII < 0
3rd Quadrant

Out-of-plane [Eq. 9.9]

σI < 0, σII > 0
2nd Quadrant

In-plane [Eq. 9.10]

σI > 0, σII < 0
4th Quadrant

In-plane [Eq. 9.11]

σI

Sy
----- 1    

σII

Sy
------- 1<;<

σI

Sy
-------- 1    

σII

Sy
---------- 1<;<

σI

Sy
--------

σII

Sy
------- 1<+

σI

Sy
-----

σII

Sy
---------- 1<+

Figure 9.11. Failure Map of Plane Stress Tresca 
Yield Criterion. If the principal stress point (σI , σII) is 
plotted on the σI – σII axes, and it falls within the 
shaded hexagonal region, the material does not 
yield. The diagonal boundaries are due to in-plane 
shear stresses caused by the principal stresses 
being of opposite signs.
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von Mises Failure Criterion (Maximum Distortion Energy)
Another yield criterion, proposed by von Mises, is derived considering the strain

energy that develops at a material point. In the von Mises Criterion, the Equivalent Stress
or von Mises Stress, σo , is first calculated. In three-dimensions, the von Mises Stress is
defined in terms of the principal stresses as follows:

[Eq. 9.12]

When the von Mises Stress (Equivalent Stress) σo equals or exceeds the material yield
strength Sy , then the material yields. The underlying physics implies that if enough energy
is put into the system, then the material will yield.

For plane stress, one principal stress is
zero, so the von Mises stress reduces to:

[Eq. 9.13]

Yielding occurs when σo = Sy .

When plotted on the σI –σII axes, the
plane stress von Mises Yield criterion is an
ellipse that circumscribes the Tresca
criterion (Figure 9.12). Yielding does not
occur if the principal stress point (σI , σII)
lies within the elliptical boundary.

Experimental results suggest that the von
Mises criterion is more accurate than the
Tresca criterion for most ductile metals.
Computer stress analysis tools generally
include the von Mises stress and the
maximum shear stress as outputs.

The Tresca and von Mises failure
boundaries meet at six points: (±Sy , 0),
(0 , ±Sy), (Sy , Sy), and (–Sy , –Sy). Where the
von Mises ellipse intercepts the σI – σII axes
represents axial-only loading conditions, so
yielding occurs when σ = ±Sy .

It is of interest to note that in the von
Mises criterion, σI can exceed Sy when σII is

2σo
2 σI σII–( )2 σII σIII–( )2 σIII σI–( )2+ +=

σo

σI σII–( )2 σII σIII–( )2 σIII σI–( )2+ +

2
--------------------------------------------------------------------------------------------------=

σo σI
2 σIσII– σII+ 2

1 2/
=

Figure 9.12. Failure Map of Plane Stress 
von Mises Yield Criterion. If the Principal 
stress point (σI , σII) falls within the 
elliptical von Mises boundary, the 
material does not yield. The von Mises 
ellipse bounds the hexagonal Tresca 
boundary (dashed), and meets the 
Tresca boundary at six points. For the 
von Mises Criterion, a principal stress 
can exceed the yield strength Sy when 
the other principal stress has the same 
sign. This is due to the Poisson effect on 
the strain energy density.
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of the same sign (consider how the Poisson effect influences the strain energy density
when the stress element is subjected to biaxial tension).

General von Mises Criterion (Plane Stress)

For a general state of plane stress, σx , σy , τxy , the von Mises stress is:

[Eq. 9.14]

Yielding occurs when σo = Sy .

In a uniaxial tension test along the x-axis, σx = σI , and σII = σIII = τ = 0. The von
Mises stress is σo = σx , so yielding occurs when σx = Sy . Equation 9.14 for the uniaxial
yield case is confirmed.

In the pure shear test, σx = 0,  σy = 0 and τxy = τ. The von Mises stress is:

[Eq. 9.15]

When σo = Sy , the material yields. Thus the relationship between the shear yield strength
and axial yield strength, according to the von Mises criterion, is:

[Eq. 9.16]

This relationship was introduced in Chapter 3 when discussing the torsion test. This is a
different relationship than the Tresca assumption for the shear yield strength, where
τy = Sy /2.

Example 9.5  Yielding in a Cylindrical Pressure Vessel

Given: A thin-walled cylindrical pressure
vessel (Figure 9.13) contains a gas at
pressure p. The vessel radius is R and its
wall thickness is t. The axial yield strength
from tensile experiments performed on the
material is Sy .

Required: Determine the pressure at yield
using (a) the Tresca criterion and (b) the von
Mises yield criterion.

Solution: Step 1. The in-plane principal
stresses in a cylindrical pressure vessel are
the hoop and longitudinal stresses:

σo σx
2 σxσy– σy+ 2 3τxy

2+
1 2/

=

σo 3τxy
2

1 2/
3 τ= =

τy

Sy

3
-------=

σI σ=
H

pR
t

-------    σII σ=
L

pR
2t
-------=;=

Figure 9.13. Cylindrical pressure vessel.
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Step 2. Apply the Tresca criterion. Since both in-plane stresses are of the same sign, the
maximum shear stress is out-of-plane, and is given by:

In the Tresca criterion, yielding occurs when τmax = τy = Sy /2. The pressure to cause
yielding is:

Answer: 

Step 3. Apply the von Mises criterion. The equivalent stress is:

Yielding occurs when σo = Sy . The pressure to cause yielding is:

Answer: 

For this case, the von Mises Criterion predicts a yield pressure 15% greater than that
predicted using Tresca. Although the Tresca criterion is generally easier to apply than the
von Mises criterion, the von Mises criterion is generally in better agreement with the
actual response of most metals. The Tresca criterion gives conservative results as it usually
underestimates the strength of the system.

Example 9.6  Aluminum under a General State of Plane Stress

Given: A stress element in a component made of Aluminum 6061-T6 is subjected to the
following plane stress state:

σx = 10.0 ksi; σy = 6.0 ksi; τxy = –4.0 ksi

The axial yield strength of Aluminum 6061-T6 used in design is Sy = 35 ksi.

Required: Determine (a) the factor of safety using the Tresca criterion (assuming
τy = Sy /2 = 17.5 ksi) and (b) the factor of safety using the von Mises criterion.

Step 1. For plane stress states, the maximum shear stress at a point is:

The in-plane principal stresses are: 

τmax

σI

2
----- pR

2t
-------= =

py

2tτy

R
----------=

py
t
R
---Sy =

σo σI
2 σIσII– σII+ 2

1 2/ pR
t

-------⎝ ⎠
⎛ ⎞ 2 pR

t
-------⎝ ⎠
⎛ ⎞ pR

2t
-------⎝ ⎠
⎛ ⎞–

pR
2t
-------⎝ ⎠
⎛ ⎞+

2 1 2/ 3
4
---

pR
t

-------⎝ ⎠
⎛ ⎞= = =

py
4
3
--- t

R
--- ⎝ ⎠

⎛ ⎞ Sy=

py 1.15= t
R
---Sy

τmax max  
σI σII–

2
---------------------

σI

2
--------

σII

2
---------- , ,=
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The in-plane principal stresses are of the same size sign, thus the maximum shear stress is
out-of-plane:

Step 2. For the Tresca criterion, with τy = Sy/2, the factor of safety is:

Answer: 

Step 3. The von Mises stress for a general plane stress element is:

Step 4. For the von Mises criterion, the factor of safety is:

Answer: 

The higher factor of safety for the von Mises criterion compared to the Tresca criterion
implies that the Tresca criterion is more conservative. The von Mises criterion predicts a
stronger system.

Comparison of the Yield Criteria
If the axial yield strength Sy is known, then the shear yield strength τy as predicted by

each method is:

for Tresca: for von Mises: [Eq. 9.17]

The ratio of the axial yield strength to the shear yield strength, for each method is then:

for Tresca: for von Mises: [Eq. 9.18]

For Aluminum 6061-T6, the tabulated values for design calculations are: Sy = 35 ksi and
τy = 20 ksi. The accepted strength ratio is therefore:

σI σII,
σx σy–

2
------------------

σx σy–

2
------------------⎝ ⎠
⎛ ⎞

2
τxy( )2+±=

10.0 6.0( )+
2

-----------------------------
10.0 6.0–

2
------------------------⎝ ⎠
⎛ ⎞ 2

4.0–( )2+± 12.47 3.53 ksi,= =

τmax

σI

2
-------- 12.47 ksi

2
---------------------- 6.23 ksi= = =

FS
τy

τmax
----------- 17.5 ksi

6.23 ksi
-------------------= =

FS 2.81=

σo σx
2 σxσy– σy+ 2 3τxy

2+
1 2/

=

10( )2 10( ) 6( )– 6( )+ 2 3 4.0–( )2+[ ]
1 2/

11.13 ksi= =

FS
Sy

σo
------ 35 ksi

11.13 ksi
----------------------= =

FS 3.14=

τy Sy 2⁄= τy Sy 3⁄=

Sy τy⁄ 2= Sy τy⁄ 3 1.73= =
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[Eq. 9.19]

The von Mises ratio agrees well with the tabulated ratio, thus, the von Mises criterion is
the better model for Aluminum 6061-T6, as it is for most other ductile metals.

The Tresca criterion is generally easier to use in hand calculations, and is a more
conservative criterion. Any stress state that satisfies the Tresca criterion automatically
satisfies the von Mises criterion (Figure 9.12).

3D von Mises Failure Criterion
The von Mises stress is defined by the 3D principal stresses as follows:

[Eq. 9.20]

If σo equals or exceeds the yield strength Sy , the material yields. An important
consequence of Equation 9.20 is that if the principal stresses are each increased by the
same amount, then the value of σo remains the same, since the differences in the principal
stresses do not change.

The hydrostatic stress is the average of
the three principal stresses:

[Eq. 9.21]

When the three principal stresses at
yielding are plotted, the result is the surface
of a cylinder whose axis is in the [1,1,1]
direction, which makes the same angle with
each of the three principal stress axes
(Figure 9.14). The cylinder intercepts the
stress axes at ±Sy . The radius of the cylinder
is:

[Eq. 9.22]

As p increases, the location on the
cylindrical surface where yielding occurs
moves further away from the origin.

In 2D, the intersection of the cylinder
with the σI –σII plane is the plane stress von
Mises ellipse.

Sy τy⁄ 35 20⁄ 1.75= =

σo

σI σII–( )2 σII σIII–( )2 σIII σI–( )2+ +

2
--------------------------------------------------------------------------------------------------=

p
σI σII σIII+ +

3
-----------------------------------=

R  2
3
--- Sy=

Figure 9.14. In 3D, the von Mises ellipse 
becomes a cylinder; the yield boundary 
is the surface of the cylinder. The 
cylinder axis is in the [1 1 1] vector 
direction, and the cylinder intercepts 
each principal axis at σ = Sy . The 
distances a in the figure are included to 
help illustrate the direction of the cylinder 
axis.
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Example 9.7  Submerged Anchor

Given: At sea-level, the shank of a ship’s
anchor, with cross-sectional area
A = 5000 mm2, yields when a tensile force of
1.25 MN is applied to it. This load
corresponds to a yield strength of
Sy = 250 MPa. At sea, the anchor is
submerged and holds a ship in place
(Figure 9.15). 

Required: Determine the applied stress σa
on the anchor shank to yield the anchor
material if it can be submerged to 5.0 km
(~3 miles!). Take the density of seawater to
be ρ = 1000 kg/m3.

Solution: When submerged at 5000 m, the
hydrostatic pressure on the anchor is:

The pressure causes a hydrostatic compressive stress, applied equally in all directions.

The three principal stresses in the anchor shank are then: 

Applying the von Mises condition for yielding, σo = Sy:

Answer: 

For yielding to occur when the anchor is submerged, the applied axial stress in the shank is
the same as when the anchor is at sea-level. The hydrostatic stress has no effect on the
stress required to yield the material.

p ρgh=

1000 kg/m3( ) 9.81 m/s2( ) 5000 m( )=

49.1 MPa=

σI σa p– σa 49.1 MPa–= =

σII p      – 49.1 MPa–= =

σIII p      – 49.1 MPa–= =

2Sy
2 σI σII–( )2 σII σIII–( )2 σIII σI–( )2+ +=

2 250( )2 σa p–( ) p–( )–[ ]2 p–( ) p–( )–[ ]2 p–( ) σa p–( )–[ ]2+ +=

2σa
2=

σa 250 MPa=

Figure 9.15.  Submerged anchor under 
tension. Copyright ©2008 Dominic J. Dal 
Bello and licensors. All rights reserved.
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Chapter 10 Buckling

10.0  Introduction

When a slender member is subjected to an axial
compressive load, it may fail by a condition called
buckling. An axial member in compression is a column or
a strut. Buckling is a geometric instability in which the
lateral displacement of the axial member can suddenly
become very large (Figure 10.1). Buckling is easily
demonstrated when a steel ruler is compressed. The ruler
remains straight as the load is increased; when the load
reaches a critical value, the middle of the ruler suddenly
deflects sideways. The ruler has buckled. Examples of
structural members and systems that are subjected to
loads that may cause buckling are:

1. Building columns that transfer loads to the 
ground;

2. Truss members in compression;
3. Micro-machines (MEMS devices);
4. Submarine hulls subjected to water pressure (this 

type of buckling is beyond the scope of this 
text).

The following example introduces the concept of
geometric instability.

Example 10.1  Tower on Spring Supports

Tall buildings in earthquake regions are sometimes supported by special rubber
foundations. These large supports isolate the building from the ground’s vibrations. A
simple schematic and model of such a building is shown in Figure 10.2.

The model consists of an inverted rigid T-shape of height H and breadth 2B; the
supports are represented by springs of stiffness k (Figure 10.2b). The weight of the
building W is applied at its center of gravity distance H above the base. Due to W, the
supports displace downward by an amount:

Figure 10.1. Original shape 
(dashed) and buckled shape 
(solid) of a pinned–pinned 
column under compressive 
load.
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as shown in Figure 10.2c. 

Due to wind, or some other sideways
load, the structure may rotate clockwise
by angle θ causing point A to move up,
and point D to move further down, both
by distance B sinθ (Figure 10.2d). The
total downward displacements of points
A and D, δA and δ D , are then: 

The reaction forces, RA and RD , are
found from the spring deflections:

Applying equilibrium in the vertical
direction (Figure 10.2d):

Substituting the spring deflection expressions for RA and RD into the equilibrium equation,
and rearranging, gives the deflection of point C:

which is just the deflection of the system without rotation. 

Applying moment equilibrium about point C:

Again substituting for RA and RD , and rearranging, gives the equilibrium condition:

There are two solutions:

1. sinθ = 0, from which θ = 0°, i.e., the building stands straight;

2. , from which 

δC
W
2k
------=

δA δC B θsin–=

δD δC B θsin+=

RA kδA k δC B θsin–( )= =

RD kδD k δC B θsin+( )= =

Fy∑ 0:   RA RD W–+ 0= =

δC
W
2k
------=

MC∑ 0:   RA B θcos( ) RD B θcos( )– W H θsin( )+ 0= =

WH 2kB2 θcos–[ ] θsin 0=

WH 2kB2 θcos–[ ] 0= θcos WH

2kB2
------------=

Figure 10.2. (a) Schematic of building. 
(b) Rigid-inverted “T” and two-spring model. 
(c) Downward deflection due to weight W. 
(d) Additional deflection due to rotation θ.
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Figure 10.3 is a plot of weight W against
rotation θ, where W is normalized by
2kB2/H. 

For Solution 1, when θ = 0°, the
building does not tilt but simply deflects
downward by δC. This result is
represented by the thick vertical line on
the plot. Provided θ remains zero, W
may be as large as possible, limited only
by the material strength of the building.
This is a trivial solution since a non-zero
θ is assumed.

Solution 2 is represented by the
cosine curve on the plot. For a given
angle of tilt θ, if the building weight W is
greater than [2kB2/H]cos θ, then the
overturning moment is greater than the
resisting moment of the spring
foundations, and the building tilts
catastrophically. 

If, on the other hand, W is less than [2kB2/H]cos θ, then the resisting moment is
greater than the overturning moment, and the structure returns to θ = 0° (assuming
sufficient damping so that any oscillation will die down).

If W exactly equals [2kB2/H]cos θ, and there are no dynamic affects, the building will
stay precariously in equilibrium at angle θ, as defined by the cosine curve of Figure 10.3. 

Solution 1 intersects Solution 2 when θ = 0°, where:

The point where the plot diverges is called the bifurcation point.

Up to the bifurcation point, WH/2kB2 = 1, any small tilt returns to θ = 0°. If WH/2kB2 > 1,
any slight tilt will cause the structure to overturn. Failure by such a geometric instability is
called buckling. In this case, the critical load Wcr is:

If the building load W is greater than Wcr , the building will tip over due to any slight
angle.

WH

2kB2
------------ 1=

Wcr
2kB2

H
------------=

Figure 10.3. Weight versus angle of tilt. 
The bifurcation point is at WH/2kB2 = 1.
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10.1  Buckling of a Column

In addition to supporting transverse
loads, beams can also carry compressive axial
loads. When axial compressive stresses in a
long member dominate, the member is
referred to as a column or strut. Columns are
subject to buckling. When the compressive
force reaches a certain critical value, the
column buckles sideways (Figure 10.4b).

To develop the buckling model of a
column, consider a beam of bending
stiffness EI (Figure 10.4a). The beam is
simply supported (pinned at both ends) so
that no moment is applied at the supports
and the ends are free to rotate. Compressive
axial force P is applied through the centroid
of the cross-section. Load P is increased
from zero until the beam – acting as a
column – buckles with deflection v(x) in the
y-direction (Figure 10.4b). 

Consider the FBD of the beam segment from the left support to a cut at distance x
(Figure 10.4c). Moment equilibrium about the left support (or about the cut) gives:

[Eq. 10.1]

Recall the moment–curvature relation for a beam:

[Eq. 10.2]

Substituting Equation 10.2 into Equation 10.1 gives:

[Eq. 10.3]

Dividing by EI, and substituting:

[Eq. 10.4]

reduces Equation 10.3 to:

[Eq. 10.5]

The solution of this second-order linear differential equation is:

M x( ) Pv x( )+ 0=

M x( ) EId2v x( )
dx2

---------------- EIv″ x( )= =

EIv″ x( ) Pv x( )+ 0=

α2 P
EI
------=

v″ x( ) α2v x( )+ 0=

Figure 10.4. (a) Beam pinned at both 
ends. (b) Beam under axial compressive 
load P. (c) FBD from 0 to x.
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[Eq. 10.6]

Constants A and B are found by applying the geometric boundary conditions. In this case,
the boundary conditions require that the displacements at each end of the beam (column)
be zero. Hence, the boundary conditions are v = 0 at x = 0 and v = 0 at x = L, which gives:

• B = 0
• A sin αL = 0

The displacement equation is thus reduced to:

[Eq. 10.7]

Equation 10.7 has two possible solutions for v(L) = 0:

1. A = 0
2. sinαL = 0

Solution 1, A = 0, means that there is no lateral deflection and the beam (column)
remains straight – it does not buckle. The applied load is limited by the material properties
(compressive strength) of the column. This is a trivial solution, since the column is
assumed to buckle. This solution is analogous to the building in Example 10.1 remaining
vertical.

Solution 2, sin αL = 0, means that the column takes the shape of a sine wave
(Figure 10.4b). This solution is satisfied whenever αL = nπ, where n = 0, 1, 2, 3…
Substituting back into the expression for α (Equation 10.4) gives the value of the load P
required to cause buckling of the pinned–pinned column: 

[Eq. 10.8]

As P is increased from zero, the first buckling load occurs at n = 1. Values for n > 1
correspond to higher order buckling loads (sine waves of higher frequency), and give
greater values of Pn. Since P corresponding to n = 1 is reached first, it is the critical load
Pcr required to buckle the pinned–pinned column. The buckling load is given by the Euler
Buckling formula:

[Eq. 10.9]

The buckling load increases with the value of the bending stiffness EI, but decreases
with the square of the length L – the distance between pinned ends. Because of the strong
effect of L, columns in practice are of limited length.

The buckling strength σcr is the Euler buckling load divided by the cross-sectional
area A of the column: 

[Eq. 10.10]

v x( ) A  αx B αxcos+sin=

v x( ) A  αxsin=

Pn
nπ( )2EI

L2
--------------------=

Pcr
π2EI

L2
------------=

σcr
π2EI

AL2
------------=
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For long columns, the buckling strength is usually less than the compressive strength of
the column material (the yield strength Sy for metals), and so buckling is often the limiting
factor in design. 

Two failure conditions are then possible in columns under compressive stress σ
(σ = P/A): 

1. Buckling, when the buckling strength is reached: [Eq. 10.11]

2. Yielding, when the yield strength is reached: [Eq. 10.12]

Both conditions must therefore be checked to ensure a proper design.

If the material of a buckled column remains linear–elastic, then the column will return
to its original undeflected shape when the load is removed. However, a large load (or end-
displacement) will cause a buckled metal column to yield in bending (resulting in a
permanent bend in the column), or a brittle column to fracture.

Example 10.2  Tent Pole

Background: Tent structures support
themselves with tension members (fabric
and rope) and compression members (struts,
poles, etc.) (Figure 10.5). The greater the
tension in the tensile members, the greater
the compression in the compressive
members.

Given: A pup-tent has poles made of thin-
walled steel tubes: 

L = 36 in., R = 0.25 in., t = 0.02 in.

E = 30,000 ksi

Required: When campers tighten the fabric and rope, the poles are put into compression.
Determine the compressive force required to buckle pole AB. The ends of the pole are both
pinned (free to rotate).

Solution: The moment of inertia of a hollow tube is:

and is the same about any axis in the plane of the cross-section. The buckling load is:

Answer: 

σ σcr
π2EI

AL2
------------= =

σ Sy=

I πR3t=

Pcr
π2EI

L2
------------ π2 30

6×10  psi( ) π 0.25 in.( )3 0.02 in.( )[ ]
36 in.( )2

-------------------------------------------------------------------------------------------------= =

Pcr 224=  lb

Figure 10.5.  (a) Pup-tent. (b) Pole AB 
under compressive force P.
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10.2  Radius of Gyration and Slenderness Ratio

It is convenient to combine the geometric
variables I, A, and L in the buckling strength
formula (Equation 10.10) into a single parameter
that characterizes the column geometry.

The moment of inertia I is first expressed in an
equivalent form:

[Eq. 10.13]

where r is the radius of gyration. The equivalent
cross-section has all of its area A concentrated at
distance r from the neutral axis (Figures 10.6b and
c).

With I = Ar2, the buckling strength becomes:

[Eq. 10.14]

The slenderness ratio s is the column’s length
L divided by its radius of gyration r:

[Eq. 10.15]

The slenderness ratio combines all three geometric
terms I, A, and L, into a single variable that
describes a column’s tendency to buckle. The
buckling strength then reduces to:

[Eq. 10.16]

A column is described as long or short
depending on the value of its slenderness ratio s,
not its absolute length. In Figure 10.7, the two
rightmost columns have the same length, but the
center one is more slender, so it will buckle under a
smaller stress. The center column is long and the
rightmost column is short. The two leftmost
columns have the same slenderness ratio; they will
buckle under the same stress (but not the same
force).

I Ar2=

σcr
π2E Ar2( )

AL2
------------------------ π2E

r
L
--- ⎝ ⎠

⎛ ⎞ 2
= =

s L
r
---=

σcr
π2E

s2
----------=

Figure 10.7. Slenderness ratio 
versus length.

Figure 10.6. (a) Cross-section. 
(b) Radius of gyration about the 
z-axis. (c) Radius of gyration 
about the y-axis.
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Buckling About Two Axes
For most cross-sections, the moments of inertia Iz and Iy (about the z- and y-axis,

respectively), are different (Figure 10.6). Therefore, there are generally two radii of
gyration:

[Eq. 10.17]

The larger radius of gyration (moment of inertia) corresponds to the so-called strong axis
(it is more resistant to bending and buckling, Figure 10.6b); the smaller radius corresponds
to the weak axis (it is less resistant to buckling, Figure 10.6c). It is weak-axis buckling that
is generally of concern in design. 

Since slenderness ratio depends on radius of gyration (Equation 10.15), two
slenderness ratios must be considered, sz corresponding to rz , and sy corresponding to ry . 

10.3  Boundary Conditions and Effective Length

The buckling load was derived for a pinned–
pinned column (Figure 10.8a). The geometric
boundary conditions – the type of supports – of a
column affect its buckling load. When the buckling
load calculations are repeated for a column with both
ends fixed again rotation (Figure 10.8b), the buckling
load can be shown to be:

[Eq. 10.18]

which is four times the value of the buckling load for
the pinned–pinned column.

The difference in buckling load caused by
different boundary conditions is dealt with by a term
known as the effective length. The buckling formula
(Equation 10.9) is rewritten:

[Eq. 10.19]

where Le is the effective length of the column. The effective length depends on the
boundary conditions or geometric constraints. The effective length of a pinned–pinned
column is:

[Eq. 10.20]

rz  
Iz

A
----     ry  

Iy

A
----=;=

Pcr
4π2EI

L2
--------------- π2EI

L 2⁄( )2
-----------------= =

Pcr
π2EI

Le
2

------------=

Le L=

Figure 10.8. Buckled shapes 
of (a) a pinned–pinned column 
of length L and (b) a fixed–
fixed column of length L.
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From Equation 10.18, the effective length of a fixed–fixed column is:

[Eq. 10.21]

The effective length is the length the column would be if it buckled as a pinned–pinned
column. 

In general, the effective length is given by: 

[Eq. 10.22]

where k is the effective length factor. Values of k for various boundary conditions are
given in Table 10.1.

The effective slenderness ratio se is:

[Eq. 10.23]

and the buckling strength is then:

 [Eq. 10.24]

Table 10.1.  Effective Length for columns with common end conditions.
Dashed line indicates the original column of length L. Solid line indicates buckled shape.

End condition Pinned–pinned Fixed–free Fixed–fixed Fixed–pinned
The effective length is

the distance between
points on the column
where the moment is
zero, corresponding to
the end conditions of the
standard pinned–pinned
column. Zero moment
also occurs when the
curvature of the column
is zero (is changing sign).

The fixed–free column
is mirrored through the
fixed end to visualize its
effective length.

Effective length, Le L 2L 0.5L 0.7L

Effective length factor, k 1 2 0.5 0.7

Relative strength for same 
overall length, L 1 0.25 4 2

Le L 2⁄=

Le kL=

se

Le

r
----- kL

r
------= =

σcr
π2EI

ALe
2

------------ π2E

se
2

----------= =
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Experience is necessary to determine which effective length to apply based on the
actual end-conditions of the column. When the column is supported at both ends but not
well constrained against rotation, it is generally best to use the pinned–pinned condition
for conservative results when determining an allowable compressive stress.

Physically, the effective length is the distance between points on the buckled column
where the moment goes to zero, i.e., where the column is effectively pinned. Considering
the deflected shape, the moment is zero where the curvature is zero (from beam theory,
M = EIκ). Zero curvature corresponds to an inflection point in the deflected shape (where
the curvature changes sign). 

For the fixed–fixed column, the curvature of the buckled shape changes sign at the
“quarter-points” of the column, L/4 from each end; these are the inflection points. Thus,
the length of the column between effective pins is Le = L/2. As noted earlier, the fixed–
fixed column is four times stronger in buckling than the pinned–pinned column of the
same total length and cross-section.

Example 10.3  Free-Standing Column Under Compressive Force

Given: A steel column (E = 200 GPa) built
into the ground has length L = 2.0 m and
supports an axial compressive load P. The
dimensions of the cross-section are
b = 50 mm and d = 100 mm (Figure 10.9).

Required: Determine (a) the force to buckle
the column Pcr  and (b) the buckling strength
σcr . (c) If the factor of safety against
buckling is FS = 2.0, determine the
allowable compressive force PA.

Solution: Step 1. The Euler buckling force
and the buckling strength are:

and

where Le is the effective length of the
column. Here, the column boundary
conditions are fixed–free for buckling about
both the z- and y-axes. The effective length is
Le = 2L for both z- and y-axes buckling.

The moment of inertia depends on the axis
about which buckling takes place. The
moment of inertia about each axis (z- and y-)
is:

Pcr
π2EI

Le
2

------------= σcr
π2EI

ALe
2

------------=

Figure 10.9. Column with rectangular 
cross-section under compressive load P.
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Step 2. The end condition for buckling about either axis is fixed–free. Thus, buckling
about the y-axis governs since Iy gives the smaller Euler buckling load:

Answer: 

The buckling strength is:

Answer: 

This is a very slender member with . Structural steel has a yield
strength of Sy = 250 MPa; here, σcr is only 10% of Sy .

Step 3. The allowable force PA is the failure load divided by the factor of safety:

Answer: 

Example 10.4  Column with End Conditions Dependent upon Buckling Axis

Given: An aluminum column is made from a standard I-beam cross-section (W8×13) as
shown in Figure 10.10. The column is built-in at the base. The top of the column sits in a
channel; friction forces between the column and the channel structure are negligible. The
geometry of the cross-section is: Iz = 39.6 in.4, Iy = 2.73 in.4, and A = 3.84 in.2. For
aluminum, E = 10×106 psi and Sy = 35 ksi. The total height of the column is a = 12.0 ft
and the height to the channel is b = 11.0 ft.

Required: Determine (a) the force to cause buckling about the z-axis, (b) the force to
cause buckling about the y-axis, and (c) the force to yield the column. (d) As P increases
from zero, determine how the column fails.

Solution: Step 1. Buckling about the z-axis (the strong axis). The base of the column is
fixed. The top of the column is free to move along the channel (Figure 10.10b). Hence, the
top of the column is free with respect to buckling about the z-axis. Therefore, the column
is fixed–free for z-axis buckling (strong-axis buckling); the effective length is Le,z = 2a.

Iz
bd3

12
--------- 0.05 m( ) 0.10 m( )3

12
---------------------------------------------- 4.17

6–×10  m4 for strong-axis buckling←= = =

Iy
db3

12
--------- 0.10 m( ) 0.05 m( )3

12
---------------------------------------------- 1.042

6–×10  m4 for weak-axis buckling←= = =

Pcr
π2EI

Le
2

------------
π2EIy

2L( )2
-------------- π2 200

9×10  Pa( ) 1.042
6–×10  m4( )

4 2.0 m( )2
----------------------------------------------------------------------------------- 128.55

3×10  N= = = =

Pcr 128.6 kN=

σcr
π2EI

ALe
2

------------
Pcr

A
-------- 128.6

3×10  N
0.10 m( ) 0.050 m( )

-----------------------------------------------= = =

σcr 25.7 MPa=

se y, Le Iy A⁄⁄ 124= =

PA

Pcr

FS
-------- 128.6 kN

2.0
----------------------= =

PA 64.3 kN=
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Answer: 

Step 2. Buckling about the y-axis (the weak
axis). The top of the column is constrained
so it neither move in the z-direction, nor can
it rotate about the y-axis (Figure 10.10a).
Hence, the top of the column is fixed with
respect to buckling about the y-axis. The
column is fixed–fixed for y-axis buckling; the
effective length is Le,y = 0.5b.

Answer: 

Step 3. The force to yield the column is:

Answer: 

Step 4. The lowest calculated failure load is due to buckling about the z-axis. Although the z-
axis is the strong axis, the end conditions are fixed–free, which effectively doubles the column
length. The y-axis is the weak axis, but the fixed–fixed end conditions halve the length. 

Failure is by buckling about the z-axis, at a value of:

Answer: 

Bracing
The buckling strength of a column may be increased by providing bracing along the

length of the column. Bracing restricts sideways movement, and therefore lowers the
effective length of a column. In Figure 10.11, bracing at the middle of a pinned–pinned
column has reduced its effective length in the plane of the paper by two, essentially
creating two pinned–pinned columns, one on top of the other (Figure 10.11b). Thus, for

Pcr z,

π2EIz

Le z,
2

--------------=

π2 10
6×10  psi( ) 39.4 in.4( )

2 12 ft 12 in./ft×( )[ ]2
----------------------------------------------------------------=

Pcr z, 46.9=  kips

Pcr y,

π2EIy

Le y,
2

--------------=

π2 10
6×10  psi( ) 2.73 in.4( )

0.5 11 12×  in.( )[ ]2
----------------------------------------------------------------=

Pcr y, 61.9 kips=

Py SyA 35
3×10  lb/in.2( ) 3.84 in.2( )= =

Py 134 kips=

Pcr z, 46.9=  kips

Figure 10.10. (a) Side view of column 
under axial load. (b) Top view. 
(c) Cross-section of W8×13 I-beam. “8” 
is the nominal depth of the I-beam (in 
inches), and “13” is the weight per unit 
length (lb/ft).
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buckling in the plane of the paper, Le = L/2, which increases the buckling strength by a
factor of 4.

Bracing is usually configured to resist weak-axis buckling, which is often the limiting
load in the design of columns (Figure 10.12). If the weak-axis buckling strength is
increased sufficiently, the column strength is then governed by strong-axis buckling, or by
general yielding of the cross-section.

10.4  Transition from Yielding to Buckling

The Euler buckling strength σcr is plotted
against the slenderness ratio, s = L/r, in
Figure 10.13. Because σcr is proportional to 1/s2,
the buckling strength decreases rapidly. 

For very short columns (small s), the
buckling strength is large. However, the column
strength cannot exceed the compressive strength
of its material SC . For metals, this is the yield
strength Sy , which is drawn as a horizontal line
since it is independent of column length
(Figure 10.13).

Thus, depending on the slenderness ratio, a
column fails by either:

1. material failure (e.g., yielding in metals), or 
2. geometric instability (buckling).

Figure 10.12. Cross-members constrain 
each column. Here, bracing reduces the 
effective length for weak-axis buckling.

Figure 10.11. (a) Column under load. 
(b) Bracing reducing the effective 
length of a column.

Figure 10.13. Schematic of column 
strength versus slenderness ratio s.



www.manaraa.com

306 Ch. 10 Buckling

The transition point between yielding and buckling failure can be determined by
setting the buckling strength equal to the yield strength: σcr = Sy . The transition
slenderness ratio is:

[Eq. 10.25]

The transition slenderness ratio provides an estimate of what is a short column (yield-
dominated) and what is a long column (buckling-dominated).

Example 10.5  Transition Slenderness Ratio

Required: Determine the transition slenderness ratios for Aluminum 6061-T6 (structural
aluminum, Sy = 35 ksi, E = 10,000 ksi), and Steel A36 (structural steel, Sy = 36 ksi,
E = 30,000 ksi).

Solution: The transition slenderness ratios for the aluminum and steel columns are: 

Answer: 

Answer: 

From this calculation, it can be deduced that a steel column can be about 70% longer than
an aluminum column of the same cross-section when considering buckling.

Columns of Intermediate Length – A Transition Zone
In reality, there is no sudden change in failure mode as implied by Figure 10.13 and

Equation 10.25. Columns of intermediate length fail by a combination of material failure
(due to axial and bending loads) and Euler buckling. Experiments are used to determine
design formulas for the allowable compressive stress in columns. The allowable stress is
modeled by different formulas depending on the slenderness ratio and on the column
material, e.g., steel, aluminum, wood, etc. Design formulas for specific materials may be
found in handbooks for the particular industry of interest.

For aluminum, the allowable stress used in the design of intermediate columns is
given by a linear function, as shown qualitatively in Figure 10.14. The allowable axial
compressive stress on the cross-section is governed by the three-part boundary. Short
columns (s < s1) are limited by material strength (independent of length), while long
columns (s > s2) are limited by Euler buckling (proportional to 1/s2). The values of
slenderness ratios s1 and s2, and constants C1 through C4 , depend on the particular
aluminum being used, and are given in the current Aluminum Design Manual (The
Aluminum Association, Inc., 2005).

str π E
Sy
-----=

str al, π
Eal

Sy al,
----------- π 10,000

35
-----------------= =

str al, 53.1=

str st, π
Est

Sy st,
---------- π 30,000

36
-----------------= =

str st, 90.7=
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Example 10.6  Aluminum Columns of Various Slenderness Ratios

Given: For the design of Aluminum 6061-T6 columns, the allowable compressive stress
on the cross-section is given by two equations, one for short and intermediate columns,
and the other for long columns:

For many common aluminum alloys, the constant region of allowable stress (for short
columns) does not exist, i.e., s1 = 0.

Required: Two Aluminum 6061-T6 columns with the same cross-sectional area have
slenderness ratios of (a) sa = 50 and (b) sb = 100. Determine the allowable axial
compressive stress σA in each column.

Solution: Step 1. Slenderness ratio sa = 50 falls between s1 = 0 and s2 = 66; this is an
intermediate column governed by the linear equation. The allowable compressive stress is:

Answer: 

Step 2. Slenderness ratio sb = 100 > s2 = 66; this is a long column governed by Euler
buckling. The allowable compressive stress is:

Answer: 

A column’s strength is very sensitive to its slenderness ratio.

s s2 66:   σA=< 20.2 0.126s  ksi–=

s s2 66:   σA=> 51,100

s2
----------------   ksi=

σA a, 20.2 0.126s– 20.2 0.126 50( )–= =

σA a, 13.9 ksi=

σA b,
51,100

s2
---------------- 51,100

100( )2
----------------= =

σA b, 5.1 ksi=

Figure 10.14. Allowable compressive stress versus slenderness ratio. Values of ratios 
s1 and s2 and constants C1 through C4 depend on specific material. Per the Aluminum 
Design Manual of The Aluminum Association, Inc. (© 2005); used with permission.
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10.5  Column Shortening

When a pinned–pinned column buckles,
the applied loads move closer together, by
distance Δ (Figure 10.15). Originally, the
loads are distance L apart. When the column
buckles, its total length – the length of the
neutral axis – remains essentially unchanged,
but the points of application of the loads
move closer so that the distance between the
loads is now l = L – Δ.

The deflected shape is:

[Eq. 10.26]

where a is the sideways deflection of the
column at its center (Figure 10.16).

Using Pythagoras, the increment of
distance along the column ds, is given by:

[Eq. 10.27]

The ratio a/l is small, and using the binomial equation to expand ds:

[Eq. 10.28]

The integral of ds is the total length of the column L:

[Eq. 10.29]

The displacement of the pinned ends in the direction of the applied loads is then:

[Eq. 10.30]

Since Δ is much smaller than L when the column begins to buckle, then , and Δ
can be simplified to:

y v x( ) a πx
l

------sin= =

ds 1 dy
dx
------ ⎝ ⎠

⎛ ⎞ 2
+

0.5
dx=

1 π2a2

l2
------------

πx
l

------⎝ ⎠
⎛ ⎞cos2+

0.5
dx=

ds 1 π2a2

2l2
------------

πx
l

------⎝ ⎠
⎛ ⎞cos2+ dx=

L 1 π2a2

2l2
------------

πx
l

------⎝ ⎠
⎛ ⎞cos2+ dx

 0

 l

∫ l a2π2

4l
------------+= =

Δ L l– a2π2

4l
------------ a2π2

4 L Δ–( )
---------------------= = =

L Δ– L≈

Figure 10.15. The ends of buckled 
column AB move closer by Δ.

Figure 10.16. Geometry used to 
determine shortening of a buckled 
column.
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or [Eq. 10.31]

The shortening of the column Δ is small compared to the buckled sideways displacement a,
since a is much smaller than L. Use is made of this result in micro-mechanical devices to
measure small displacements Δ of a load on a micro-column. With L known, the sideways
displacement a is measured, and the smaller shortening Δ is then calculated. Note that
sideways deflection a must be measured; it cannot be calculated from the applied forces.

10.6  Effect of Imperfections

Real systems are not perfect. The assumed locations and directions of ideally applied
column loads – e.g., a purely axial force applied through a column’s centroid – cannot be
duplicated in practice. Also, the geometry of an as-manufactured column is generally not
perfectly straight. The effect of imperfections is illustrated in the following two examples.

Example 10.7  Tower on Spring Supports

Given: The load applied to the tower of
Example 10.1 was assumed to be
perfectly aligned with the center of the
system. In practice, loads are generally
applied off-axis, with an eccentricity of
e (Figure 10.17a). 

Required: Determine the effect of
eccentricity e on the tendency for the
tower to tip.

Solution: Step 1. On repeating the
equilibrium calculations of
Example 10.1, vertical equilibrium
gives the same displacement of point C
as before:

Likewise, the reaction forces RA and RD  are:

 

However, the eccentricity causes the moment equilibrium equation to change:

Δ a2π2

4L
------------= Δ

a
--- π2

4
------ a

L
---=

δC
W
2k
------=

RA kδA k δC B θsin–( )= =

RD kδD k δC  B θsin+( )= =

RA B θcos( ) RD B θcos( ) W H θ e θcos+sin( )+– 0=

Figure 10.17.  (a) Model of building on 
elastic foundation loaded with eccentricity e. 
(b) Deflection of system.



www.manaraa.com

310 Ch. 10 Buckling

Step 2. Substituting the expressions for RA and RD into the equilibrium equation, and
rearranging, gives the equilibrium condition:

Solving for W gives:

where  is the buckling load when e = 0.

The relationship between the load W and the angle of tilt θ is plotted for various
eccentricities e/H in Figure 10.17c. As eccentricity increases, the maximum buckling
(tipping) load decreases. This plot can be cross-plotted to give the maximum load in terms
of eccentricity e/H as in Figure 10.17d. For example, if the eccentricity is e/H = 1/20
(0.05), the maximum load is about 82% of the ideal case.

Example 10.8  Column with Initial Bend

Given: The Euler analysis of a buckling column assumes the unloaded column is perfectly
straight. However, it is to be expected that a column may be slightly bent on delivery
(Figure 10.18a).

W H θ e θcos+sin[ ] 2kB
2
 θ θcossin– 0=

W Wcr
θ θcossin

θsin e
H
---- θcos+

----------------------------------=

Wcr
2kB2

H
------------=

Figure 10.17.  (c) Weight versus angle of tilt 
for various values of e/H.

Figure 10.17.  (d) Maximum weight 
versus eccentricity e/H that will 
cause building to return to vertical.
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Required: Determine the effect of the
imperfection on the response of the column.
Assume the unloaded shape is:

where ai is the initial offset of the center of
the column as supplied.

Solution: Step 1. On applying axial load P,
the column deflects an additional amount
v(x) (Figure 10.18b). From the FBD of
length x (Figure 10.18c):

Step 2. The moment in the column is related
to the additional deformation v(x) by the
bending equation:

Eliminating M from the two equations results in a differential equation for the
displacement:

With the relation , the differential equation becomes:

Step 3. The solution for the additional displacement v due to the initial imperfection vi is:

Or, in terms of the applied load P and the Euler load :

Step 4. The additional displacement vmax at the center is: 

vi x( ) ai 
πx
L
------sin=

M P v vi+( )+ 0=

M EId2v

dx2
--------=

d2v

dx2
-------- P

EI
------v+ P

EI
------vi–

Pai

EI
-------- πx

L
------sin–= =

α2 P
EI
------=

d2v

dx2
-------- α2v+ α2ai

πx
L
------sin–=

v x( )
ai

π
L
--- ⎝ ⎠

⎛ ⎞ 2
α2–

------------------------------- πx
L
------sin=

Pcr π2EI( ) L2⁄=

v x( )
ai

Pcr P⁄ 1–[ ]
----------------------------- πx

L
------sin=

vmax

ai

Pcr P⁄ 1–[ ]
-----------------------------=

Figure 10.18.  (a) Column with initial 
imperfection, vi (x). (b) Additional 
deflection v(x) due to buckling. (c) FBD 
of column from 0 to x (x < L/2).
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The value of the additional displacement is a function of load P, with initial displacement
ai being determined from measurement. The response can be rewritten as the amplification
of the initial imperfection:

Amplification [Eq. 10.32]

Figure 10.18d shows that as P approaches the Euler buckling load Pcr , the
amplification of the initial imperfection increases. For example, at P/Pcr = 0.8, the
amplification is five times the initial imperfection. The column has already started to
buckle sideways. As P approaches
the critical value, the sideways
displacement increases rapidly,
corresponding to observations of
actual systems that are slowly loaded
until they buckle excessively (e.g.,
the steel ruler). 

The dashed lines in
Figure 10.18d represent the response
of a perfectly straight (ideal)
column. The perfectly straight
column exhibits no sideways
displacement until P = Pcr , when
the amplification instantaneously
becomes very large and the system
buckles. The imperfect column
approaches the straight column for
P = Pcr .

10.7  Effect of Lateral Forces

In addition to axial compressive loads, columns are often subjected to lateral, or
transverse, forces. This occurs particularly in braced columns. Figure 10.19 shows a
pinned–pinned column subjected to axial force P and lateral force F applied at its center. 

Because force F is applied at the center of the column, the transverse deflection is
symmetric about the middle. From the FBD of the left-hand part of the beam (x < L/2,
Figure 10.19b), equilibrium requires that: 

[Eq. 10.33]

Following the same procedures used to derive the buckling formula results in the
following differential equation:

vmax ai+

ai
----------------------

Pcr P⁄

Pcr P⁄ 1–[ ]
----------------------------- 1

1 P Pcr⁄–[ ]
-----------------------------= = =

M Pv F
2
---x+ + 0=

Figure 10.18.  (d) Amplification of central 
displacement of a column with initial 
imperfection (here, a sine curve).



www.manaraa.com

10.7 Effect of Lateral Forces 313

[Eq. 10.34]

where:

[Eq. 10.35]

and

[Eq. 10.36]

The solution of this equation has the form:

[Eq. 10.37]

Applying the boundary condition v = 0 at x = 0 gives B = 0. From symmetry, the slope at
x = L/2 must be zero:

[Eq. 10.38]

from which: 

 [Eq. 10.39]

Hence, after substitution, the displacement is:

[Eq. 10.40]

At x = L/2, the central displacement is:

[Eq. 10.41]

Substituting the values of α and β gives:

[Eq. 10.42]

The transverse stiffness of the column when it is subjected to compressive load P is
therefore:

[Eq. 10.43]
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⎜ ⎟
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Figure 10.19.  (a) Column subjected to 
compressive force P and lateral force F. 
(b) FBD of column for 0 < x < L/2.
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The transverse stiffness of a beam without compressive load P is:

[Eq. 10.44]

Therefore, the ratio of the transverse stiffness of the loaded column to that of the unloaded
column is:

[Eq. 10.45]

Setting , Equation 10.45 is rewritten:

[Eq. 10.46]

The stiffness ratio k/ko is plotted against the load ratio P/Pcr in Figure 10.20. The
complex Equation 10.45 reduces to approximately a straight line:

[Eq. 10.47]

A complex problem has been reduced to a
straightforward result, a very desirable
engineering solution.

When the compressive load on the
column is 60% of the buckling load, the
transverse stiffness is reduced to 40% of its
unloaded value. In general, when the
compressive load is x% of the buckling load,
the transverse stiffness is (100–x)% of the
unloaded stiffness.

When columns are highly loaded – near
their buckling load – the transverse stiffness
is very small. Sideway forces can then have
two different effects:

1. A small unbalanced sideways force 
may induce unstable buckling;

2. Modest constraint forces (from 
appropriate bracing systems) 
can resist buckling.
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Figure 10.20.  Lateral stiffness 
versus compressive load. 
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10.8  Oil-Canning Effect

Another phenomenon that resembles
buckling is called oil-canning, from the
snap-through (popping) observed/heard
when emptying metal oil cans or other thin-
walled cans containing liquid. A simple 2D
model illustrating oil-canning consists of
two identical elastic bars pinned to each
other and to rigid supports distance 2L apart,
as shown in Figure 10.21. Before the load is
applied, the bars are at an angle α below the
horizontal. The original length of each bar is
thus LAB = LBC = L/cos α.

When transverse load F is slowly
(statically) applied at the junction of the bars,
the system deflects upward by distance δ.
The bars shorten, and now are at an angle θ
below the horizontal. The length of each bar
is now LAB = LBC = L/cos θ.

The change of length of each bar is:

[Eq. 10.48]

The strain in each bar is:

[Eq. 10.49]

and the stress is:

[Eq. 10.50]

If the original cross-sectional area is A, then the area of each bar in the deflected
position is, considering the Poisson effect:

[Eq. 10.51]

where ν is Poisson’s ratio. The force in each bar P(θ) in the deflected position is then:

 [Eq. 10.52]

Resolving the forces in the vertical direction of the FBD of Figure 10.21b gives:

Δ L 1
θcos

------------
1

αcos
------------ –⎝ ⎠

⎛ ⎞=

ε Δ
L αcos( )⁄
------------------------ αcos

θcos
------------ 1–= =

σ Eε E αcos
θcos

------------ 1–⎝ ⎠
⎛ ⎞= =

Aθ 1 2νε–( )A=

P θ( ) Aθσ AE 1 2ν αcos
θcos

------------ 1–⎝ ⎠
⎛ ⎞– αcos

θcos
------------ 1–⎝ ⎠

⎛ ⎞= =

Figure 10.21.  (a) Two elastic bars AB 
and BC, pinned at joint B. Transverse 
force F is applied at joint B. (b) FBD of 
joint B.
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[Eq. 10.53]

The applied force F as a function of angle θ, is then:

[Eq. 10.54]

The displacement δ of the applied force as a function of θ is:

[Eq. 10.55]

Next, normalizing force F by EA, and displacement δ by L, the force–displacement
curve is shown in Figure 10.21c. For the graph, the initial bar angle is α = 20° (joint B is
below the horizontal by δ/L = 0.36) and Poisson’s ratio is taken to be ν = 0.3.

The interpretation of Figure 10.21c is as follows. The applied force F increases until it
reaches a value of 0.017AE, when snap-through occurs. Here, the snap-through angle is
θ = 11.5°. At this angle, joint B has moved δ/L = 0.17, approximately halfway from its
original position to the horizontal line AC in Figure 10.21a.

The slope of the force–displacement
curve is the stiffness K of the system to
transverse loads F. As δ increases, the
stiffness continually decreases and becomes
zero when δ/L = 0.17. The displacement
immediately jumps to δ/L=0.79,
corresponding to a position about θ = 27°
above the horizontal line AC
(Figure 10.21a). The negative slope of the
F–δ curve means the system is no longer
resisting the force, but is in fact assisting it.
The resulting sudden movement is known
as snap-through or oil-canning.

The process described is the same
effect that occurs in metal and plastic oil
cans, the snap-through of a can’s side being
evident by the characteristic popping
sound. This effect also occurs when
popping out an unwelcome dent in a car
panel.

Reaction Force
From equilibrium, the magnitude of

the horizontal reaction force Rx in
Figure 10.21d equals the horizontal
component of force P:

F 2P θsin+ 0=

F θ( ) 2AE 1 2ν αcos
θcos

------------ 1–⎝ ⎠
⎛ ⎞– 1 αcos

θcos
------------–⎝ ⎠

⎛ ⎞ θsin=

δ θ( ) L α θtan–tan( )=

Figure 10.21.  (d) FBD of system. Rx is 
maximum when θ = 0°.

Figure 10.21.  (c) Force versus displacement 
for two-bar system, with initial angle α = 20° 
below the horizontal. The horizontal (θ = 0°) 
corresponds to δ/L ~ 0.36.
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[Eq. 10.56]

The value of the horizontal reaction is maximum when
both bars are compressed the maximum amount, which is
when θ = 0°. As the system passes through θ = 0°, Rx
reaches a maximum value of:

[Eq. 10.57]

For α = 20° and ν = 0.3, the maximum value is
Rmax = 0.0625AE, which is about 3.7 times greater than
the applied load to cause snap-through (F = 0.017AE).
This illustrates the mechanical advantage that can be
achieved with snap-through. An example of the use of
this lever-like advantage is a pile-driving machine
(Figure 10.22). As force F is applied transverse to the
horizontal bars, the hammer drives the pile into the
ground with a force larger than F.

10.9  Buckling on an Elastic Foundation

Beam Displacement-Distributed Load Relation
Figure 10.23a represents a beam of

length L with simply-supported ends loaded
by distributed force w(x). The modulus is E
and the moment of inertia is I. An element of
length dx is shown in Figure 10.23b, where
dx is so small that w(x) is constant over its
length. Element dx is acted on by w(x), shear
forces V and V+dV, and moments M and
M+dM.

Applying equilibrium to dx, the rates of
change of the shear force and bending
moment can be written:

[Eq. 10.58]

[Eq. 10.59]

so that:

Rx P θ( ) θcos=

Rmax P 0°( ) AE 1 2ν αcos 1–( )–[ ] αcos 1–( )= =

dV
dx
------- w–=

dM
dx
-------- V–=

Figure 10.23.  (a) Beam of length L 
subjected to distributed load w(x). 
(b) Beam element dx.

Figure 10.22.  A pile-driver.
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[Eq. 10.60]

From beam theory (Chapter 6), the second derivative of the beam deflection v(x) is
proportional to the moment:

[Eq. 10.61]

Combining Equations 10.60 and 10.61 shows that the fourth derivative of the deflection is
proportional to the distributed load:

[Eq. 10.62]

Column on an Elastic Foundation
Figure 10.24a represents a column of length L supported on an elastic foundation and

having simply-supported ends. The beam material modulus is E and the cross-section
moment of inertia is I. The elastic foundation provides a transverse force per unit length on
the column when the transverse deflection of the beam is non-zero. At any position x, the
load per unit length due to the foundation is:

[Eq. 10.63]

where k is the foundation stiffness
per unit length (force/length per unit
length) and v(x) is the transverse
deflection of the column.

A column element of length dx,
displaced v(x), is shown in
Figure 10.24b. The total vertical
force per unit length transverse to
the column w is made up of two
parts: (1) we due to the displacement
of the elastic foundation and (2) the
change in the y-component of axial
load P over length dx. The slope of
v(x), dv/dx (= tanθ) is small, so the
y-component of the axial force P is,
using the small angle approximation:

[Eq. 10.64]

d2M

dx2
----------- w=

v″ x( ) d2v

dx2
-------- M x( )

EI
------------= =

EId4v

dx4
-------- w=

we x( ) kv x( )–=

Py P θsin Pθ= =

P θtan Pdv
dx
------= =

Figure 10.24.  (a) Beam on elastic foundation, 
with pinned ends, subjected to compressive force 
P. (b) Element dx subjected to axial force 
P and transverse distributed force due to elastic 
foundation we . (c) Effective force per unit length 
w on element dx. 
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The slope at the right side of dx is:

[Eq. 10.65]

The net force on dx is then (Figure 10.24b):

[Eq. 10.66]

so that the total force per unit length is (Figure 10.24c):

[Eq. 10.67]

Substituting Equation 10.67 into Equation 10.62 results in the deflection equation for a
column subjected to axial load P on an elastic foundation of stiffness per unit length k:

[Eq. 10.68]

Buckling Load

Again, consider the column of length L supported on an elastic foundation with
simply-supported ends (Figure 10.24). The column is subjected to compressive force P.
When it buckles, a column of length L takes on the shape:

[Eq. 10.69]

where A is unknown. This equation satisfies the boundary conditions: v = 0 at x = 0 and
x = L. The second and fourth derivatives of v are:

[Eq. 10.70]

and

[Eq. 10.71]

Substituting Equations 10.70 and 10.71 into Equation 10.68 gives:

[Eq. 10.72]

from which the buckling load of the column on an elastic foundation is:

[Eq. 10.73]
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The first term is the classical buckling load Pcr  and the second term is the beneficial effect
due to the elastic foundation; the buckling load has been increased due to the lateral
support of the foundation. Note that the classical buckling load varies with 1/L2, while the
effect of the foundation increases with L2.

Example 10.9  Buckling of a Composite Sandwich Structure

Given: A sandwich structure is
subjected to a bending moment M
(Figure 10.25a). The structure consists
of an elastic core of modulus Ec ,
sandwiched and well bonded between
two stiff plates of modulus E, both of
cross-sectional area t thick and b wide.
The plates are distance d apart, where
t << d, so that d is the depth of the
sandwich structure. 

The upper and lower plates can each be
considered as axial members on an
elastic foundation. The ratio of the
moduli is E/Ec = 10.

Required: (a) Determine the applied
moment that will cause buckling of the
plate in compression (the upper plate)
and (b) describe the buckled shape, i.e.,
determine the buckling length.

Solution: In this example, the buckling
length L is not given. There are also no
pins to support the compressive plate.
However, from symmetry, the buckled
form of the compressed plate will fit the
solution to Equation 10.73, where L is the distance between inflection points–points
where the bending moment in the column (compressed plate) is zero. The system will seek
out a distance L which minimizing the buckling load. 

Minimizing Equation 10.73 by taking the derivative with respect to L gives:

where I is the moment of inertia of the plate and k is the stiffness per unit length of the
elastic core. 

Solving for the buckled length L:

dP
dL
------- 3

π2EI

L3
------------– 2kL

π2
---------+ 0= =

Figure 10.25.  (a) Sandwich structure 
subjected to bending moment M. (b) Axial 
loads in the stiff plates support the moment; 
the contribution of the flexible core is 
neglected. (c) Buckling of compressed 
(upper) plate.
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Substituting L into Equation 10.73, and simplifying gives the load to buckle a plate:

Since the core stiffness is much less than that of the plates, the bending moment is
assumed to be supported only by the axial loads in the plates (Figure 10.25b). The axial
load P in each plate is therefore:

The stiffness per unit length of the sandwich core, with E/Ec = 10, is:

and the moment of inertia of a single plate is:

so that the compressive load to buckle a plate is:

Neglecting the contribution of the core material, the moment at which buckling occurs is:

Answer: 

The distance between the inflection points of the buckled plate (Figure 10.25c) is given by:

from which:

Answer: 

The compressed plate buckles with a half-wavelength of L. The distance between
consecutive crests or consecutive valleys of the buckled plate is 2L.
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Chapter 11 Energy Methods

11.0  Introduction

Energy methods are useful as a general
problem-solving approach, and are the basis
of computer-based finite element analysis
(FEA) programs. The energy methods are
also used in quick approximate calculations
to help making preliminary design decisions.
The formulation of the energy methods are
based on (1) the displacement method and
(2) the force method.

One advantage of energy methods is that
they are generally easier to apply than the
traditional displacement and force methods.
Energy is a scalar, while displacements and
forces are vectors. The energy methods are
illustrated by analyzing the three-bar truss
shown in Figure 11.1. 

11.1  Internal and Complementary Energy

Axial Members – Linear–Elastic Response
Axial force P applied to a bar of length L and cross-sectional area A causes the bar to

elongate Δ (Figure 11.2). For a linear-elastic material with modulus E, the elongation is:

[Eq. 11.1]

When the load is removed, the bar returns to its original unloaded length (Δ = 0).

The internal energy U stored in the bar is dependent upon elongation (displacement),
and is defined as:

[Eq. 11.2]

Δ PL
AE
-------=

U Δ( ) Ud
 0

 Δ

∫ P Δd
 0

 Δ

∫= =

Figure 11.1. Three-bar truss structure.
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The increment of internal energy, dU = P dΔ,
is the shaded area in Figure 11.2c.
Substituting for P from Equation 11.1, the
internal energy due to elongation Δ is:

[Eq. 11.3]

which is the area of the shaded triangle in
Figure 11.2d.

The internal complementary energy C
is dependent upon force, and is defined as:

[Eq. 11.4]

The increment of internal complementary
energy, dC = Δ dP, is the shaded area in
Figure 11.2e. Substituting for Δ from
Equation 11.1, the complementary energy
due to force P is:

[Eq. 11.5]

which is the area of the shaded triangle in
Figure 11.2f.

From Figures 11.2d and f, the sum of
U(Δ) and C(P) is:

[Eq. 11.6]

In this treatment, only linear–elastic
materials are considered. However,
Equations 11.2, 11.4 and 11.6 also hold for
a non-linear force–elongation (stress–strain)
curve, where U(Δ) is the area under the
curve and C(P) is the area above the curve.

Comparison of Energy States

Figure 11.3 shows the force–elongation curve for a linear material that has been
loaded to state A (PA, ΔA), and then to state B (PB, ΔB). The internal energy corresponding
to ΔA is the lower hatched triangle in Figure 11.3a:

U Δ( ) EAΔ
L

----------- Δd
 0

 Δ

∫ EA
2L
-------Δ2= =

C P( ) Cd
 0

 P

∫ Δ Pd
 0

 P

∫= =

C P( ) PL
AE
------- Pd

 0

 P

∫ L
2AE
-----------P2= =

U Δ( ) C P( )+ PΔ=

Figure 11.2. (a) Bar subjected to axial 
force. (b) Force–elongation curve for a 
linear–elastic material. (c) Differential 
change in internal energy dU with 
differential change in elongation dΔ. 
(d) Total internal energy U(Δ). 
(e) Differential change in complementary 
energy dC with differential change in 
force dP. (f) Total internal 
complementary energy C(P).
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[Eq. 11.7]

The internal energy corresponding to ΔB is the entire
triangle:

[Eq. 11.8]

From the geometry of Figure 11.3a:

[Eq. 11.9]

The term on the right side of the inequality
represents the rectangular area of height PA and
width ΔB – ΔA. The inequality of Equation 11.9 is
always valid for a linear material. The relationship is
also valid for non-linear materials provided that the
slope of the force–elongation (stress–strain) curve is
always positive.

A similar inequality applies to the
complementary energy (Figure 11.3b):

[Eq. 11.10]

The term on the right of the inequality represents the
rectangular area of width ΔA and height PB – PA . 

These two inequalities are used to establish the
minimum energy theorems.

Three-Bar Truss, Displacement and Force Methods
The three-bar truss system shown in

Figure 11.4 will be used to illustrate various
applications of the energy method. The truss is
an assembly of three bars, with geometric and
elastic properties given in Table 11.1. For this
particular structure, the values have been
chosen so that the axial stiffness EiAi/Li of
each bar is the same; in general, this is not true.

Horizontal load Fx and vertical load Fy
are applied at joint A. The horizontal and
vertical displacements of joint A are u and v.
The internal forces in Bars 1, 2, and 3 are P1,

U ΔA( ) EA
2L
------- ΔA( )2=

U ΔB( ) EA
2L
------- ΔB( )2=

U ΔB( ) U ΔA( ) PA ΔB ΔA–( )≥–

C PB( ) C PA( ) ΔA PB PA–( )≥–

Figure 11.4. Three-bar truss studied in 
this chapter.

L L

x

y

Bar 1
Bar 2

Bar 3

A

B C D30°60° 60°

F v,y

F u,x

Figure 11.3. (a) Internal 
energies at states A and B. 
(b) Complementary energies 
at states A and B.
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P2, and P3, respectively, and their elongations are
Δ1, Δ2, and Δ3.

Equilibrium

Equilibrium of joint A (Figure 11.5) relates
the applied loads to the internal forces:

[Eq. 11.11]

where

Thus:

[Eq. 11.12]

The system is redundant or statically indeterminate since there are three unknown
(internal) forces and only two equations of equilibrium.

Force–Elongation

The force–elongation relationship in each bar is:

[Eq. 11.13]

Using the values from Table 11.1, the force in each bar for this particular case is:

[Eq. 11.14]

Elongation–Displacement (Compatibility)

Consider the elongation Δ1 of Bar 1 (AB) resulting from horizontal displacement u
(Figure 11.6a). The elongation is found by projecting u onto line AB (i.e., perform the dot-
product of vector ui and a unit vector in the direction of AB):

[Eq. 11.15]
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Fx

P1

2
------

P2

2
------–

3P3

2
-------------–=
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------+ +=
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----------Δi=
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-------Δ1=
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-------Δ2=
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-------Δ3=

Δ1 u( ) u 60°cos u
2
---= =
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Fy

P1 P2
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Table 11.1.  Geometric and elastic 
properties of bars of Figure 11.4.

Bar Length Area Modulus
Axial 

Stiffness

1 L A E EA/L

2 L A E EA/L

3 E EA/L3L 3A

Figure 11.5.  FBD of Joint A.
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The elongation of Bar 1 resulting from displacement
v is found by projecting v onto AB:

[Eq. 11.16]

The elongation of Bar 1 caused by both
displacements simultaneously is then:

[Eq. 11.17]

Repeating this process for each bar gives their
elongations in terms of the displacement of joint A:

[Eq. 11.18]

The elongation of each bar Δi must be compatible
with the system displacements, u and v. All of the
bars must still be joined at joint A under load.

The aim now is to determine the relationship between the applied loads (Fx , Fy) and
the displacements (u, v) using equilibrium, Hooke’s Law, and compatibility
(Equations 11.12, 11.14, and 11.18, respectively). To achieve this goal, use is made of the
displacement and force methods described in Chapter 4. 

Example 11.1  Three-bar Truss: Displacement Method

Required: Using the displacement method, determine the relationship between the
applied forces and the displacement of joint A of the three-bar truss (Figure 11.4).

Solution: In the displacement method, the (unknown) applied forces (Fx and Fy) needed to cause
the enforced (known) displacements (u and v) are determined. The three steps are as follows:

1. Elongation–displacement (compatibility), Equation 11.18. 
2. Force–elongation, Equation 11.14 (force–stress–strain–elongation relationships 

combined).
3. Equilibrium, Equation 11.12.

Step 1. Starting with Equation 11.18, the elongations Δ1, Δ2, and Δ3 are determined in
terms of displacements u and v. 

Step 2. Substituting the elongations into Equation 11.14, the internal forces P1, P2, and P3
are determined in terms of u and v:

Δ1 v( ) v 30°cos 3
2

-------v= =

Δ1
u
2
--- 3

2
-------v+=

Δ1
u
2
--- 3

2
-------v+=

Δ2
u
2
---– 3

2
-------v+=

Δ3
3

2
-------u– v

2
---+=

Figure 11.6.  (a) Elongation of 
Bar 1 due to displacement u. 
(b) Elongation of Bar 1 due to 
displacement v.
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Step 3. Internal forces P1, P2, and P3, in terms of u and v, are substituted into the
equilibrium equations, Equation 11.12, to give:

Answer: and

Writing the results in matrix form:

or [Eq. 11.19]

where vectors f and u are the force and displacement vectors, respectively, and K is the
stiffness matrix of the system. Notice that the stiffness matrix is symmetric about its
diagonal; this is a general property of the stiffness matrix of linear–elastic systems.

Example 11.2  Three-bar Truss: Force Method

Required: Using the force method, determine the relationship between the applied forces
and the displacement of joint A of the three-bar truss (Figure 11.4).

Solution: In the force method, the displacements (u and v) caused by applied forces
(Fx and Fy) are determined. The three steps are:

1. Equilibrium, Equation 11.12.
2. Elongation–force, Equation 11.14.
3. Displacement–elongation (compatibility), Equation 11.18.

Step 1. Equilibrium is given by Equation 11.12. Since there are only two equilibrium
equations for the three unknown internal forces, P1, P2, and P3, the system is redundant.
To begin, select the force in Bar 3 as the redundant member, so P3 = R. The redundant
force is for the time being assumed to be known. The internal forces in terms of applied
loads Fx and Fy and redundant force R, are then:

; ; [Eq. 11.20]

Step 2. The Elongation–force relations are given by Equation 11.14. The elongation of
each bar is:
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[Eq. 11.21]

Step 3. The displacement-elongation relations of are, from Equation 11.18:

; ;

Eliminating u and v from these elongation equations results in the following compatibility
condition:

Substituting the elongations from Equation 11.21 into the last equation gives the
redundant force:

Equating the equations for Δi of Step 3 with those of Step 2, and solving for u and v:

and

Since R is now known in terms of Fx and Fy , the displacements are:

Answer: and

Writing the results in matrix form:

or [Eq. 11.22]

where u and f are the displacement and force vectors, respectively, and F is the flexibility
matrix of the system. Notice that the flexibility matrix is symmetric about its diagonal; this
is a general property of the flexibility matrix for linear–elastic materials. 

The flexibility matrix is the inverse of the stiffness matrix found in Example 11.1:

Δ1

P1L

AE
----------

3Fx Fy R+ +

3
------------------------------------ L

AE
-------= =

Δ2

P2L

AE
----------

3– Fx Fy 2R–+

3
------------------------------------------ L

AE
-------= =

Δ3

P3 3L

3AE
----------------- RL
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-------= =

Δ1
u
2
--- 3

2
-------v+= Δ2

u
2
---– 3

2
-------v+= Δ3

3
2

-------u– v
2
---+=

Δ1 2Δ2– 3Δ3+ 0=

R
3 3Fx– Fy+

8
---------------------------------=

u 2Fx 3R+[ ] L
AE
-------= v 1

3
--- 2Fy R–[ ] L

AE
-------=

u 7
8
---Fx

3
8

-------Fy+ L
AE
-------= v 3

8
-------Fx

5
8
---Fy+ L

AE
-------=

u  

v  

L
8AE
-----------

7 3

3 5

Fx

Fy

= u Ff=
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Although several steps of Examples 11.1 and 11.2 were not shown, the force method is
generally more algebraically intense than the displacement method.

11.2  Principle of Virtual Work

The conditions for equilibrium and
compatibility can be expressed neatly in
compact form by the so-called principle of
virtual work. In this approach, the only
conditions that need to be satisfied are
equilibrium and compatibility. It is not
necessary to make use of the elastic force–
elongation relationships (i.e., Hooke’s Law).
The method is illustrated with the three-bar
truss in Figure 11.7.

The truss is subjected to applied loads
Fx and Fy at joint A. The applied loads
are related to the internal force of each
bar, P1, P2, and P3, by equilibrium
(Equation 11.12). There are three internal
forces and only two equilibrium equations,
meaning there are an infinite number of
possibilities for the internal forces that
satisfy equilibrium.

The displacements, u and v, and the elongations of the bars, Δ1, Δ2, and Δ3, are related
by compatibility (Equation 11.18).

The force–elongation (Hooke’s law) relationships (Equation 11.14) are not enforced.

The virtual work equation is formulated by multiplying the equilibrium equations for
Fx and Fy (Equation 11.12) by displacements u and v, respectively, giving:

[Eq. 11.23]

Adding the two equations and collecting like force terms gives:

F 1– L
8AE
-----------

7 3

3 5⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 1–

EA
4L
-------

5 3–

3– 7
K= = =

Fxu
P1

2
------

P2

2
------–

3P3

2
-------------–⎝ ⎠

⎛ ⎞ u=

Fyv
3P1

2
-------------

3P2

2
-------------

P3

2
------+ +⎝ ⎠

⎛ ⎞ v=

L L

x

y

Bar 1
Bar 2

Bar 3

A

B C D30°60° 60°

F v,y

F u,x

Figure 11.7.  The internal forces of the 
three-bar truss must be in equilibrium 
with the applied forces. The elongations 
of each bar must be compatible with the 
movement of joint A.
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[Eq. 11.24]

The terms in parentheses are the bar elongations Δ1, Δ2, and Δ3 that are compatible with
displacements u and v (Equation 11.18).

The virtual work equation is therefore:

[Eq. 11.25]

The virtual work done by external forces Fx and Fy undergoing displacements u and v
equals that done by internal forces P1, P2, and P3 undergoing elongations Δ1, Δ2, and Δ3. 

The work is virtual. Although the external and internal forces are in equilibrium, and
the displacements and elongations are compatible, the force–elongation (stress–strain)
relationships have not been satisfied. Since Hooke’s Law is not enforced, a solution to
Equation 11.25 is not necessarily the actual solution.

The method of virtual work is shown in Example 11.3. Virtual work will be a key
concept in developing the minimum energy principles in Section 11.3.

Example 11.3  Three-bar Truss: Virtual Work

Given: The external forces on the three-bar truss in Figure 11.7 are taken to be Fx = 5.0 kN
and Fy = 3.0 kN and the displacements are taken to be u = 2.0 mm and v = 5.0 mm.

Required: Show by example that any set of internal forces in equilibrium with Fx and Fy
satisfies the virtual work equation (Equation 11.25).

Solution: Step 1. The external virtual work is:

Step 2. Internal virtual work. From compatibility (Equation 11.18), the elongations of the
bars due to the given displacements are:

A set of internal forces in equilibrium with Fx and Fy were developed in Example 11.2 as
Equation 11.20:

; ;

Any value of the redundant force R will satisfy equilibrium.

Fxu Fyv+ P1
u
2
--- 3v

2
----------+⎝ ⎠

⎛ ⎞ P2
u
2
---– 3v

2
----------+⎝ ⎠

⎛ ⎞ P3
3u
2

----------– v+⎝ ⎠
⎛ ⎞+ +=

Fxu Fyv+ P1Δ1 P2Δ2 P3Δ3+ +=

Fxu Fyv+ 5 kN( ) 2 mm( ) 3 kN( ) 5 mm( )+ 25 N m ⋅= =

Δ1
u
2
--- 3

2
-------v+ 5.33 mm= =

Δ2
u
2
---– 3

2
-------v+ 3.33 mm= =

Δ3
3

2
-------u– v

2
---+ 0.768 mm= =

P1

3Fx Fy R+ +

3
------------------------------------= P2

3– Fx Fy 2R–+

3
------------------------------------------= P3 R=
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Step 3a. Internal forces Selection 1. Select the redundant force to be zero, R = 0:

; ;

The internal virtual work is:

The internal virtual work equals the external virtual work.

Step 3b. Internal forces Selection 2. Select the redundant force to be R = 10 kN:

; ;

The internal work is:

Again, the internal virtual work equals the external virtual work.

By inference, since R can take on an infinite number of values, any set of internal forces in
equilibrium with the applied loads satisfies the virtual work equation. The correct value of
R for a given set of displacements (u,v) is the one that minimizes the energy of the system.

11.3  Minimum Energy Principles

The displacement and force methods described in Examples 11.1 and 11.2, can be
algebraically challenging. Methods using energy concepts are easier to apply.
Furthermore, approximate energy methods are useful in determining upper and lower
bounds on the stiffness and flexibility of load-bearing systems. Approximate methods that
are quick and easy to apply are useful to engineers in the early stages of the development
of a design.

Potential Energy of a Force
The potential energy V of force F with

components Fx and Fy is:

[Eq. 11.26]

where u and v are the displacements of the force in
the x- and y-directions, respectively (Figure 11.8).
For example, if mass m is subjected to gravity (in the
negative y-direction), the gravitational force on the

P1

3Fx Fy+

3
-------------------------- 6.73 kN= = P2

3– Fx Fy+

3
----------------------------- 3.287 kN–= = P3 0=

P1Δ1 P2Δ2 P3Δ3+ + 6.73( ) 5.33( ) 3.28–( )+ 3.33( ) 0( ) 0.768( )+=

 25 N m⋅=

P1 12.5 kN= P2 14.8–  kN= P3 10 kN=

P1Δ1 P2Δ2 P3Δ3+ + 12.5( ) 5.33( ) 14.8–( ) 3.33( ) 10( ) 0.768( )+ +=

 25 N m⋅=

V Fxu– Fyv–=

Figure 11.8. Displacement
of force.
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x

y
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mass is Fy = –mg. When the mass is raised to
a height v = h, its potential energy is:

[Eq. 11.27]

The potential energy depends only on the
final position and not on the path to get to
that position.

The elastic energy stored in the bars also
depends only on the final position (u,v) of
joint A (Figure 11.9). Each axial member
acts as a spring of stiffness Ki = EiAi/Li . For
the three-bar truss in these examples, the
axial stiffness of each bar has been chosen to
be the same.

Methods of Energy Minimization
Consistent with the approach of earlier chapters, there are two minimum energy

methods:

1. The displacement energy method: the energy principle is expressed in terms of 
joint displacements u, and compatible bar elongations Δ.

2. The force energy method: the energy principle is expressed in terms of applied 
forces f, and equilibrium internal bar forces P.

Here, u, Δ, f, and P are the displacement, elongation, applied force, and internal force
vectors, respectively. The methods are demonstrated using the three-bar truss previously
discussed.

Displacement Method – Minimum Total Energy
The problem posed in Figure 11.9 is to determine the applied forces (Fx , Fy) in terms

of enforced displacements (u, v). The internal energy U of the three bars is:

[Eq. 11.28]

Substituting for the elongations in terms of the displacements (Equation 11.18):

[Eq. 11.29]

The potential energy of the applied loads Fx and Fy is:

[Eq. 11.30]

The total energy T of the system is the sum of the internal and potential energies:

[Eq. 11.31]

V Fyv– mgh= =

U Δ1 Δ2 Δ3, ,( ) EA
2L
------- Δ1

2 Δ2
2 Δ3

2+ +( )=

U u v,( ) EA
2L
------- u

2
--- 3

2
-------v+⎝ ⎠

⎛ ⎞ 2 u
2
---– 3

2
-------v+⎝ ⎠

⎛ ⎞ 2 3
2

-------u– v
2
---+⎝ ⎠

⎛ ⎞ 2
+ +=

V u v,( ) Fxu– Fyv–=

T u v,( ) U u v,( ) V u v,( )+=

Figure 11.9. Three-bar truss.
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so that:

[Eq. 11.32]

The total energy is a function of joint A displacements (u, v) and applied forces (Fx , Fy).

Now consider displacements u* and v*, that are close to, but not equal to, the actual
(or exact) values of u and v. The difference between the exact and approximate values of u
and v are δu and δv, respectively:

; [Eq. 11.33]

The approximate elongations Δi* of the bars due to u* and v* are:

; ; [Eq. 11.34]

where Δi are the exact values and δΔi are the differences due to δu and δv.

The total energy corresponding to the nearby displacements is

[Eq. 11.35]

By substituting the compatibility equations, it can be shown that the difference
between the total energy corresponding to nearby displacements (u*, v*) and the total
energy corresponding to the exact displacements (u, v) is:

[Eq. 11.36]

Since , etc., then the difference in total energy can be rewritten:

[Eq. 11.37]

The term in square brackets is the virtual work equation with external loads Fx and Fy
undergoing displacements δu and δv, and equilibrium internal loads P1, P2, and P3 in
members extending by δΔ1, δΔ2, δΔ3 (compatible with δu and δv). Thus, the term in
square brackets is zero, as defined in Equation 11.25. 

Equation 11.37 then reduces to:

[Eq. 11.38]
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2
-------v+⎝ ⎠
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-------v+⎝ ⎠
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The displacement errors, δΔi , are all squared
and are therefore always positive. As a
consequence, the total energy associated
with the approximate displacements (u*, v*)
is always greater than the total energy of the
correct solution (u, v):

[Eq. 11.39]

Hence, the exact solution corresponds to the
minimum of the total energy.

The total energy as a function of u and v
can be plotted in 3D as shown in
Figure 11.10. The total energy surface is
concave upward. In mathematical terms, the
exact solution is given by the conditions:

[Eq. 11.40]

Applying these conditions will determine the exact solution.

Note that since the displacement error terms are squared, if the nearby solution
(u*, v*) is close to the exact solution (u, v), the error in estimating the total energy can be
smaller than the error in the displacements themselves.

The minimization of total energy is the method generally used in the computer-based
finite element method, where numerical analysis is used to analyze large engineering
systems.

Example 11.4  Three-bar Truss, Displacement Minimum Energy Method

Given: The three-bar truss shown in
Figure 11.11.

Required: Determine the relationship
between applied forces Fx and Fy and
displacements u and v using the displacement
energy method.

Solution: Step 1. In terms of u and v, and Fx
and Fy , the total energy is given in
Equation 11.32, which can be reduced to:

T u∗ v∗,( ) T u v,( )≥

T u v,( )∂
u∂

-------------------- 0=

T u v,( )∂
v∂

-------------------- 0=

Figure 11.11. Three-bar truss.

Figure 11.10. The total energy surface 
T(u,v). The minimum value occurs when 
the values of u and v correspond to the 
exact (actual) values.
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Step 2. Minimizing the total energy with
respect to u and v:

The forces in terms of the displacements are:

Answer: 

or, in matrix form:

Answer: 

This is the same result derived in
Example 11.1 using the traditional
displacement method. Note that the energy method is much easier to apply and involves
less algebra.

The matrix equation is f = Ku, where f and u are the force and displacement vectors,
respectively, and K is the stiffness matrix of the system (Equation 11.19). Note that the
stiffness matrix is symmetric about its diagonal; this is a general property of the stiffness
matrix of linear–elastic materials.

In systems where many members are connected at a few joints, the displacement
method can be very powerful. An example follows where the elongation of each member
of the system can be described by a single displacement parameter.

Example 11.5  Bicycle Wheel (Examples 4.15, 4.26)

Given: A bicycle wheel (Figure 11.12) is modeled as a set of elastic spokes, each of
length R, and cross-sectional area A, attached to a rigid rim at one end and a rigid hub at
the other. The load applied to the hub is F, and the resulting downward deflection of the
hub is v. There are N spokes (N is large).

T u v,( )

EA
2L
------- 5u2

4
--------- 3uv

2
-------------– 7v2

4
--------+ Fxu– Fyv–=

T∂
u∂

------ EA
2L
------- 5u

2
------ 3v

2
----------–⎝ ⎠

⎛ ⎞ Fx– 0= =

T∂
v∂

------ EA
2L
------- 3u

2
----------– 7v

2
------+⎝ ⎠

⎛ ⎞ Fy– 0= =

Fx
EA
4L
------- 5u 3v–( )=

Fy
EA
4L
------- 3u– 7v+( )=

Fx

Fy

EA
4L
-------

5 3–

3– 7

u  

v  

=

Symmetry of the Stiffness Matrix
Mathematically, the stiffness matrix of 

an elastic system must be symmetric. The 
internal energy at displacement u and v is 
U, independent of the path to reach that 
state. The stiffness matrix is:

and the forces in the x- and y-directions
are:

Taking the partial derivative of Fx with
respect to v, and of Fy with respect to u,
respectively, gives:

 and

Since U is path independent,

. Thus, ; the

stiffness matrix is symmetric.

K
k11 k12

k21 k22

=

Fx k11u k12v+ U u v,( )∂
u∂

---------------------      (i)= =

Fy k21u k22v+ U u v,( )∂
v∂

---------------------      (ii)= =

k12
U

2∂
u v∂∂

-------------= k21
U

2∂
v u∂∂

-------------=

U
2∂

u v∂∂
------------- U

2∂
v u∂∂

-------------= k12 k21=
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Required: Determine the relationship between
the force F and downward displacement v.

Solution: Step 1. The hub displaces downward
v, so the elongation of any spoke at angle θ to the
horizontal is Δ = v sinθ (Figures 11.12c, d). The
internal energy of a single spoke is:

The number of spokes dN in increment dθ is:

The internal energy of dN spokes is then:

Integrating from θ = 0 to 2π gives the internal
energy of all the spokes:

Step 2. The total energy is:

Step 3. Minimizing the total energy:

gives the force: 

Answer: 

The stiffness of the wheel for a downward force applied at the hub is:

Force Method – Minimum Total Complementary Energy
The problem of Figure 11.13 is now to determine the displacements (u, v) in terms of

the known applied forces (Fx , Fy). The internal complementary energy C of the system is
the sum of the complementary energies of each bar: 

Ui θ( ) EAΔ2

2R
-------------- EA v θsin( )2

2R
-----------------------------= =

dN Ndθ
2π
------=

dU Ndθ
2π
------⎝ ⎠

⎛ ⎞ EA
2R
-------⎝ ⎠

⎛ ⎞ v θsin( )2=

U v( ) NEAv2

4πR
----------------- θsin2  θd

 0

 2π

∫ NEAv2

4R
-----------------= =

T v( ) U v( ) V v( )+ NEAv2

4R
----------------- Fv–= =

T v( )∂
v∂

-------------- NEAv
2R

--------------- F– 0= =

F NEA
2R

------------v=

K F
v
--- NEA

2R
------------= =

Figure 11.12.   Bicycle hub subjected to 
load F deflects downward distance v. 
Copyright ©2008 Dominic J. Dal Bello 
and licensors. All rights reserved.
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[Eq. 11.41]

From equilibrium (Equation 11.20), the
internal forces are, with P3 as the redundant:

[Eq. 11.42]

The potential energy of the applied forces is

[Eq. 11.43]

The total complementary energy Ω of the system is the sum of the complementary and
potential energies:

[Eq. 11.44]

Substituting the expressions for the internal forces Pi from Equation 11.42 gives:

[Eq. 11.45]

Now consider applied forces Fx* and Fy* that are close to, but not equal to, the exact
values of Fx and Fy , but are in equilibrium with the internal forces. The difference
between the exact and approximate values of Fx and Fy are δFx and δFy , respectively:

and [Eq. 11.46]

The corresponding internal forces of the bars are then:

; ;

[Eq. 11.47]

The total complementary energy corresponding to the nearby forces Fx* and Fy*, and
approximate redundant R*, is:

[Eq. 11.48]

C P1 P2 P3, ,( ) L
2EA
----------- P1

2 P2
2 P3

2+ +( )=
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3Fx Fy R+ +

3
------------------------------------=
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3– Fx Fy 2R–+

3
------------------------------------------=
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V Fx Fy,( ) Fx– u Fyv–=

Ω Fx Fy R, ,( ) C P1 P2 P3, ,( ) V Fx Fy,( )+=
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2AE
----------- P1

2 P2
2 P3

2+ +( ) Fxu Fyv––=
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2AE
-----------
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2 2Fy
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-----------------------------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞
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∗ Fy Fyδ+=
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3Fx
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3
---------------------------------------------= P2

∗
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∗ Fy
∗ 2R∗–+

3
---------------------------------------------------= P3

∗ R∗=
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Figure 11.13. Three-bar truss.
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so:

[Eq. 11.49]

By substitution, it can be shown that the difference in the total complementary energy due
to the approximate forces, Fx*, Fy*, and R*, and that due to the exact solution, is:

[Eq. 11.50]

Since , etc., then:

[Eq. 11.51]

The term in square brackets is the virtual work equation with external loads δFx and δFy
undergoing displacements u and v, and equilibrium internal forces, δP1, δP2, and δP3, in
members extending by Δ1, Δ2, and Δ3 (compatible with u and v). Thus, the term in the
square brackets is zero. Equation 11.51 reduces to:

[Eq. 11.52]

The internal force errors, δPi , are all squared and are therefore always positive. As a
consequence, the total complementary energy associated with the approximate loads
(Fx*, Fy*) is always greater than the total complementary energy of the exact solution (Fx ,
Fy). Hence:

[Eq. 11.53]

In mathematical terms, the solution to the problem is given by the minimum conditions:

; ; [Eq. 11.54]
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Example 11.6  Three-bar Truss, Force Minimum Energy Method

Given: The 3-bar truss shown in
Figure 11.14.

Required: Determine the force–
displacement relationship using the
force energy method (complementary
energy).

Solution: 

Step 1. Taking the redundant force as
P3 = R, the total complementary
energy is, from Equation 11.45:

Step 2. Taking partial derivatives of the total complementary energy with respect to
applied forces Fx, Fy, and redundant R:

Step 3. From the partial derivative with respect to R, the exact redundant force is:

Substituting R into the other two equations, and solving for the exact displacements:

Answer:  

or, in matrix form:
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⎜ ⎟
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Figure 11.14. Three-bar truss.
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Answer:  

which is the same as found in Example 11.2. 

The matrix equation is u = Ff, where u and f are the displacement and applied force
vectors, respectively, and F is the flexibility matrix of the system (Equation 11.22). Note
that the flexibility matrix is symmetric about its diagonal; this is a general property of the
flexibility matrix for linear–elastic materials. Also, note that the flexibility matrix is the
inverse of the stiffness matrix, developed in Examples 11.1 and 11.4:

11.4  Bending Energy

Beam problems are often solved using energy
methods. To achieve this, the expressions for the internal
energy and complementary energy of a beam in bending
must be determined.

The elastic moment–curvature (M–κ, load–
displacement) relationship at any position along the beam
is (Figure 11.15):

[Eq. 11.55]

At a given cross-section, the internal energy per unit
length of a beam, without derivation, is:

[Eq. 11.56]

The complementary energy per unit length of a beam is:

[Eq. 11.57]

The internal energy per unit length is a function of curvature κ and the complementary
energy per unit length is a function of bending moment M. The curvature and moment are
the appropriate displacement and load variables for a beam. In general, κ and M vary with
distance along the beam. Since the expression for M is easier to find than that for κ, the
complementary energy method is most often used.
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curvature relationship for 
linear–elastic beams.
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Example 11.7  Micro-Hinge

Given: Micro-hinges are used in small
components of dimensions measured in
microns (10–6 m). Such a system is shown in
Figure 11.16a. The material is polysilicone,
with a modulus of E = 170 GPa. The hinge
has thickness t and width B (into the paper),
and is bent into a semi-circle of radius R.
The arm has thickness T, width B, and length
L. Horizontal force F is applied at the end of
the arm, causing displacement δ.

Required: Considering bending only,
determine the stiffness of the hinge system
K = F/δ.

Solution: Step 1. The complementary energy
of differential beam length ds is:

The complementary energy of the circular hinge is:

where  and ds = R dθ.

From the FBD in Figure 11.16b, the bending moment in the hinge is a function of θ:

Thus, the complementary energy of the hinge is:

Step 2. The moment in the arm, as a function of x is, from Figure 11.16c:

so the complementary energy of length dx is:

where  is the moment of inertia of the arm. 
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Figure 11.16. (a) A micro-hinge. 
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Integrating from x = 0 to L gives the complementary
energy of the arm:

Step 3. The potential energy is V = –Fδ, so the total
complementary energy is:

Taking the derivative with respect to the load F:

The displacement of the load is then:

Step 4. The stiffness of the system is:

Answer:

Example 11.8  Micro-Hinge, Numerical Example

Given: The micro-hinge of the previous example with numerical values:

t = 0.75 μm; T = 4 μm; R = 10 μm; B = 10 μm; L = 100 μm

The material has a modulus of E = 170 GPa.

Required: Determine the stiffness of the hinge system.

Solution: The stiffness is: 

The pertinent geometric properties are:

where: and

Thus:
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Figure 11.16. (b) The 
moment in the curve of the 
hinge varies with angle θ. 
(c) Moment in arm. 
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Answer: 

The stiffness is very small, as is common in such micro-devices.

Example 11.9  Circular Proof Ring

Background: Tensile testing machines are calibrated on
a regular basis to ensure that they are accurate. The
calibration can be performed using a proof ring, a
circular ring whose stiffness is known very accurately
(Figure 11.17a). These high-strength steel rings come in
a range of sizes depending on the load capacity of the
test machine being calibrated.

Given: A circular proof ring of average radius R,
thickness T, and breadth B, is subjected into two
diametrically opposite loads of equal magnitude F
(Figure 11.17a). The forces move distance Δ away from
each other.

Required: Determine the deflection Δ in terms of force
F, and dimensions T, R, and B. Use the complementary
energy method (force method).

Solution: Step 1. Consider the ring cut across its
diameter (Figure 11.17b). From equilibrium, the axial
force at each cut is F/2. Due to symmetry, the horizontal
force is zero (consider the other half of the ring). The
moment Mo, is unknown, and is taken as the redundancy.

The FBD of an arc length of the ring defined by angle θ
is shown in Figure 11.17c. At the interior surface
defined by θ, N is the normal force, V is the shear force,
and M is the bending moment. 

Since the complementary energy method is to be used,
equilibrium must be satisfied:
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Figure 11.17.  (a) Proof ring 
under tensile load F. (b) FBD 
of half the proof ring. (c) FBD 
of half ring cut at angle θ.
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Step 2. Due to internal loads N, V, and M, the internal complementary energy per unit
length around the ring circumference is: 

where  and .

The complementary energy of the ring is, with ds = R dθ:

The ring has four identical quarters and it is necessary only to integrate between 0 and π/2,
and multiply by 4. Substituting the expressions for N, V, and M, and integrating, gives the
complementary energy as a function of load F and redundant moment Mo:

Step 3. The total complementary energy is:

Minimizing the total complementary energy with respect to Mo:

gives

Substituting the expression for Mo into Ω(F, Mo), and minimizing with respect to F:

Step 4. Since , , and G ~3/8E, the displacement can be reduced to:

Answer: 

The first term in the square brackets is due to tension, the second term to shear, and the
third term to bending. Taking a typical proof ring value of T/R = 1/20, the deflection is:
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The contributions of the tensile and shear loads to deflection can be neglected; together
they sum to 0.4% of the deflection due to bending. For beam-like components subjected to
axial, shear, and bending loads, it is common to simplify the calculations by neglecting the
effect of the axial and shear loads.

11.5  Approximation Methods

A great advantage of energy methods is
that useful approximations can be made
with simple calculations. Simple
calculations are very useful at the early
stages of a new design, where structural
members must be roughly sized. Examples
are now given of the approximation method
using the displacement and the force
energy methods. To demonstrate the
approximation method, the three-bar truss
is again studied, for the particular case of
Fx = 0 (Figure 11.18).

Approximate Displacement (Minimum Total Energy) Method
In this method, the displacements are approximated. Since Fx is zero, the horizontal

displacement u of joint A is likely to be small. Thus, u is approximated as u* = 0 and v as
v*. Although joint A actually moves to the right (u is positive per Example 11.2 with
Fx = 0), approximating u as zero simplifies the calculations. The goal now is to
approximate the relationship between Fy and v.

From the compatibility conditions of Equation 11.18, the elongations in terms of
u* = 0 and v* reduce to:

; ; [Eq. 11.58]

The approximate total energy T is given by Equation 11.32, which for u* = 0 and v* is: 

[Eq. 11.59]

Minimizing the approximate total energy with respect to v* gives:

[Eq. 11.60]
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so that:

[Eq. 11.61]

where k* = Fy /v* is the approximate stiffness of the truss in the y-direction for a vertical
load at joint A. 

The exact Fy–v relationship when Fx = 0, is (from Example 11.2):

[Eq. 11.62]

The ratio of the approximate stiffness to the exact stiffness is:

[Eq. 11.63]

In spite of the crude assumption that u = 0, the approximate stiffness in the y-direction is
only 9.4% greater than the exact value. The approximate displacement method always
predicts a stiffness greater than the exact value.

Approximate Force (Minimum Total Complementary Energy) 
Method

To use the minimum total complementary energy method, an approximation is made
about the internal forces. As always, the equilibrium equations must be satisfied.
Equation 11.20 gives the equilibrium forces in each bar when the force in Bar 3 is the
redundant: P3 = R. When Fx = 0, equilibrium requires that:

; ; [Eq. 11.64]

It is now approximated that the force in Bar 3 is zero (Bar 3 is the nearest to perpendicular
with applied load Fy , so P3 is likely the smallest). The internal forces reduce to:

; ; [Eq. 11.65]

The total complementary energy is then:

[Eq. 11.66]

where v* is the displacement that results from the approximation that P3 = R = 0. 

Minimizing with respect to Fy gives:
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[Eq. 11.67]

Thus, the approximate stiffness is:

[Eq. 11.68]

The exact expression is (from Example 11.2):

[Eq. 11.69]

Hence:

[Eq. 11.70]

In spite of the crude assumption that P3 = 0, the approximate stiffness is only 6% less than
the exact value. The approximate force method always predicts a stiffness less than the
exact value.

Qualitative load–displacement graphs for the exact and approximate solutions
are shown in Figure 11.19. The displacement method overpredicts the stiffness, while
the force method underpredicts the stiffness. In spite of the coarseness of the
assumptions, the exact stiffness is closely bracketed by the two methods
(Equations 11.63, 11.70).

Estimate of the Torsional Stiffness of a Solid Shaft

In micro-electromechanical systems (MEMS) devices, it is difficult to make circular
shafts. Components in torsion are therefore usually rectangular. Energy methods can be
used to approximately determine the torsional stiffness of such systems.

Example 11.10  Square Shaft in Torsion

Given: A shaft of length L and of square
cross-section with sides D is subjected
to torque T resulting in angle of twist θ
(Figure 11.20a).

Required: Determine the torsional
stiffness of the shaft kT = T/θ, using the
approximate force energy method.

Solution: Step 1. The shaft is split up into
a series of concentric square thin-walled
tubes (Figure 11.20b). Each thin-walled
tube, distance x from the center of the

Ω∂
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------------- v∗– 0= =
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------ 3EA
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-----------= =

k 8EA
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----- 0.94=

Figure 11.19. The displacement 
method overestimates the exact 
stiffness, while the force method 
underestimates the exact stiffness.

Figure 11.20.  (a) A square shaft in torsion.
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cross-section, has thickness dx. The shear stress
is assumed to be constant on each side of the
tube (Figure 11.20c), and varies linearly with
distance x:

where B is a constant to be determined from
equilibrium.

Step 2. The contribution to the torque of one side
of the thin-walled square tube is:

There are four sides to the thin-walled tube, and
integrating the contribution of each tube from
x = 0 to D/2 results in:

Hence:

from which the shear stress is:

Step 3. The complementary internal energy of a
thin-walled tube subjected to shear stress τ is:

where τ2/(2G) is the elastic shear strain energy density and 8xL dx is the volume of a thin-
walled tube. The complementary internal energy of all the tubes is:

The displacement of torque T is θ, so the total complementary energy is: 

Minimizing with respect to torque T gives:

so:

Step 4. The torsional stiffness kT = T/θ is estimated to be:
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Figure 11.20.  (b) Square cross-
section. (c) Square tube of thickness 
dx, with constant shear stress τ = Bx 
on each side.
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Answer: 

The exact value for the stiffness from a computer analysis is:

As expected from the approximate force method, the stiffness is underestimated. In this
example, the error is 11%.

Example 11.11  Ultra-Precision Device

Given: An ultra-precision MEMS device is
shown in Figure 11.21a. The arms have
rectangular cross-section B = 20 µm wide
(into the paper) and t = 3.0 µm deep. The
length of the arms is L = 175 µm, and they
are doubled back upon themselves. The
connectors are 20 µm long and 18 µm thick.
Devices of this thickness are made by a
deposition process. The material is silicon
for which E = 160 GPa. The displacement
of the moving platform is Δ, which is
caused by force F (Figure 11.21b).

Required: Approximate the stiffness, k = F/Δ,
using the displacement method. Assume a
displaced shape for the arms.

Solution: The connectors are assumed to be
rigid with respect to the arms. This
assumption is made because the bending
stiffness of a beam is proportional to

. Since E and B are the
same for the connectors and the arms, the
ratio of the stiffness of the connectors to
the stiffness of the arms is:

The stiffness of the connectors is much
larger than that of the arms, so the
connectors are assumed to be rigid. 
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Figure 11.21.  (a) MEMS device: a 
moving platform attached to two 175 μm 
double-cantilever beams. (b) Displacement 
of beams due to movement of platform by 
distance Δ.
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Consider arm AB (Figure 11.21b). From geometry, the displacement of point A is zero,
and of point B is Δ/2, where Δ is the displacement of the moving platform, point D. The
slope of AB at each end is zero. By symmetry, the other arms must have the same shape.
The relative displacement of arm CD is Δ/2.

The displaced form (deflected shape) of AB can be assumed to be:

where L = 175 µm is the length of each arm. At x = 0 (point A) the displacement equation
gives v = 0, and at x = L (point B) the equation gives v = Δ/2.

The slope of AB is: 

which satisfies the condition that the slope is zero at the endpoints, x = 0 and L: 

Although the assumed form of the displacement is not necessarily the actual displacement,
it satisfies the geometric boundary conditions; i.e., the approximated deflection is
compatible with the required deflections and slopes at the supports.

The curvature of arm AB is:

The internal energy due to bending of arm AB is then:

The total energy of the system – the four arms and the applied force F – is:

Minimizing with respect to Δ gives:

The stiffness of the system is therefore:

Answer: 

The actual stiffness of the system is the combined stiffness of four tip-loaded cantilever
beams:
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The approximate displacement method overestimates the actual stiffness of the system
(here, by about 1.5%). 

11.6  Effect of Shear Stress

Classical beam theory is based on the
assumption that the shear stresses make no
contribution to beam deflection. The
assumption is usually valid when the beam
is made of a uniform material throughout. 

In aerospace applications, where
weight is important, the beam flanges
are typically made of aluminum and
the web is made of an aluminum
honeycomb structure or aluminum foam
(Figure 11.22a). In such situations, the
shear modulus of the web material is
typically much smaller than that of the
flange material. Consider the effect of the
more flexible web material on beam
deflection.

Figure 11.22b represents the structural
components of an aircraft wing of length L
subjected to a uniformly distributed load w
(force/length) and an end load F. The
cross-section is modeled as two metal
flanges of width B and thickness T, which
are distance D apart (Figure 11.22a). The
elastic modulus of the flange material is E.
The web is a honeycomb material of
elastic shear modulus GW. The aim is to
estimate the vertical deflection of the wing
tip Δ. The total complementary energy
method (based on the force method) is
used.

Using the FBDs of Figures 11.22c and
d  gives the shear force V and bending
moment M as a function of x. Since
R = wL + F and Mo = wL2/2 + FL, then: 
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Figure 11.22.  (a) Cross-section of 
beam. (b) Air pressure loading on wing 
w and tip load F. (c) FBD of wing. 
(d) FBD of length x of the beam.
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[Eq. 11.71]

Assuming that the flanges support the entire bending moment, the bending stress σB in
the flange is:

[Eq. 11.72]

The stress in each flange σB is assumed to be uniform; in other words, the flanges are
considered to be axial members. 

Assuming the web supports the entire shear force, the average shear stress τ is:

[Eq. 11.73]

The internal complementary energy due to the bending moment and shear force is:

[Eq. 11.74]

where E is the modulus of the flange and GW is the shear modulus of the web.

The expression for the total complementary energy is therefore:

[Eq. 11.75]

where:

•  is the potential energy of load w(x) with deflection v(x), and

•  is the potential energy of load F with deflection Δ.

The deflections are determined by minimizing the total complementary energy with
respect to w and F. The algebra can be reduced by performing the differentiation before
completing the integrals of Equation 11.75. For example:

[Eq. 11.76]

where, from Equations 11.72 and 11.73:

and

The partial derivative of Ω with respect to w is also determined and set equal to zero.

After performing the mathematics, the tip deflection can be written:
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[Eq. 11.77]

For the case F = 0:

[Eq. 11.78]

The first term in square brackets is associated with the value for the end deflection using
traditional bending theory neglecting shear effects: Δ = wL4/(8EI). The second term
modifies the displacement to include the shear response of the honeycomb.

A typical shear modulus for the aluminum honeycomb structure is approximately 1/40
that of an aluminum alloy (E ~ 10,000 ksi and G ~ 4000 ksi), so:

[Eq. 11.79]

Let B = D = L/10, and T = D/10 = L/100. Thus, with E/GW = 100, D/L = 1/10, and T/L =
1/100, the expression for the tip displacement reduces to:

[Eq. 11.80]

The correction term due to shear is the second term in the square brackets. Here the
calculated displacement is 20% larger than that obtained from classical beam bending. 

Note that if the web is of the same material as the flanges, GW = G = 4000 ksi, then:

[Eq. 11.81]

The deflection due to shear loading is then negligible, as is typically assumed.

However, replacing the entire web area with the flange material makes for a heavy
beam. With an I- or box-beam having uniform material properties and of total web width

, then:

[Eq. 11.82]

In this case, the deflection due to shear loading is 5% of that due to bending.

Δ 2

EBTD2
------------------ FL3

3
---------- wL4

8
---------- +⎝ ⎠

⎛ ⎞ 1
GWBD
----------------- FL wL2

2
---------- +⎝ ⎠

⎛ ⎞+=

Δ 2

EBTD2
------------------ wL4

8
---------- ⎝ ⎠

⎛ ⎞ 1 2 E
GW
---------DT

L2
-------- +=

GW
G
40
------ 4000 ksi

40
-------------------- 100 ksi= = =

Δ 2

EBTD2
------------------ wL4

8
---------- ⎝ ⎠

⎛ ⎞ 1 0.2+[ ]=

Δ 2

EBTD2
------------------ wL4

8
---------- ⎝ ⎠

⎛ ⎞ 1 0.005+[ ]=

b B 10⁄=

Δ 2

EBTD2
------------------ wL4

8
---------- ⎝ ⎠

⎛ ⎞ 1 0.05+[ ]=
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Chapter 12 Ductile Materials and Design

12.0  Introduction

A typical stress–strain curve for
a ductile material (metals) in tension
is shown in Figure 12.1. In the
elastic range, Hooke’s law applies,
and stress σ is linearly proportional
to strain ε with modulus E:

[Eq. 12.1]

The material remains elastic – it
returns to its initial length upon
unloading – provided that the
applied stress does not exceed the
material’s yield strength Sy . 

When the stress exceeds the
yield strength, the slope of the
stress–strain curve begins to
decrease significantly. The material
is said to have yielded. This non-
linear region is the inelastic or
plastic response of the material. The
slope in this region is the tangent
modulus Et . During plastic
deformation, the material volume
remains constant, corresponding to
a Poisson’s ratio of ν = 0.5.

If necking has not occurred, the unloading stress–strain curve is linear–elastic with
slope E. When the stress is completely removed, a permanent plastic strain εp remains. 

In elastic design, a system fails when the maximum calculated elastic stress reaches
the yield strength Sy . It became evident to engineers that this approach is conservative,
and economic gain is possible by taking advantage of a material’s ductility.

The methods developed to take advantage of plasticity are referred to as plastic
design. Experience suggests that the plastic strain needed to take advantage of ductility is

σ Eε=

Figure 12.1. Stress–strain curve for a ductile 
material. Arrows indicate the direction of the 
stress–strain response. 

Table 12.1.  Representative properties of two 
ductile metals.

Material
E, 

GPa 
(Msi)

Sy , 
MPa 
(ksi)

εy ,
%

5εy ,
%

εf ,
%

Steel A36
207
(30)

250
(36)

0.125 0.625 ~24%

Aluminum 
6061-T6

70
(10)

240
(35)

0.34 1.70 ~15%
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approximately 5Sy /E. The values of the yield strain, εy = Sy /E, for structural steel and
aluminum are given in Table 12.1. The magnitude of strain, 5Sy /E, is rarely greater than
about 2%, much smaller than the failure strain εf (~15%+) of ductile materials, when the
material breaks into two pieces. Failure due to fracture, or material separation, is not a
problem normally considered in plastic design. However certain manufacturing processes,
such as sheet forming, require large plastic strains, and then local necking defines the limit
of the manufacturing process. 

12.1  Elastic–Plastic Idealization

It is possible to model in
detailed mathematical terms, the
form of a stress–strain curve shown
in Figure 12.1. However, for most
applications, a simplified model of
the material response is helpful in
understanding system behavior. The
simplified stress–strain curve for the
idealized ductile material is shown
in Figure 12.2.

On initial application of stress,
the behavior is linear–elastic:

[Eq. 12.2]

until the stress reaches the yield strength Sy . Further strain occurs with no additional load.
In this simplified model, the material deforms plastically at constant stress:

[Eq. 12.3]

This type of behavior is termed elastic–perfectly plastic. Provided that the material does
not break into two, Figure 12.2 is an adequate model of plastic behavior. The elastic–
plastic model is conservative in that the yield strength of ductile materials typically
increases during plastic deformation (Figure 12.1) due to strain-hardening.

During plastic deformation, the total strain ε is the sum of the elastic strain εe and
plastic strain εp :

[Eq. 12.4]

When the stress is reduced from σ = Sy , the material response is elastic, with
unloading modulus E. The strain at stress σ is: 

[Eq. 12.5]

σ Eε=

σ Sy=

ε εe εp+
Sy

E
----- εp+= =

ε σ
E
--- εp+=

Figure 12.2. Idealized stress–strain curve for a 
ductile material. Elastic–perfectly plastic model.
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When the stress is completely removed
(to σ = 0), the elastic strain is removed. The
total strain is now composed only of the
plastic strain εp .

If the applied stress is reduced further so
that it becomes negative or compressive
(σ < 0), the response is shown in
Figure 12.3. The plastic strain in tension is
now represented by εp,t . As the material
unloads from σ = Sy to –Sy , the material
response is elastic with modulus E. The
strain at any stress σ is:

[Eq. 12.6]

When σ reaches the compressive yield
strength, –Sy , the change in the elastic
strain from the tensile yield condition is
Δε = –2Sy/E, so the strain when the material
just yields in compression is:

[Eq. 12.7]

In the elastic–perfectly plastic model, the magnitude of the compressive stress cannot be
increased further. The material yields in compression at σ = –Sy , which causes a
compressive plastic strain of magnitude εp,c . The total strain is now:

[Eq. 12.8]

Upon reloading – removing the compressive load – the strain at any stress becomes:

[Eq. 12.9]

 Finally, completely removing the applied compressive stress to σ = 0 results in a total
plastic strain of:

[Eq. 12.10]

To summarize the loading sequence in Figure 12.3:

ε σ
E
--- εp t,+=

ε
Sy–

E
-------- εp t,+=

ε
Sy–

E
-------- εp t, εp c,–+=

ε σ
E
--- εp t, εp c,–+=

εp εp t, εp c,–=

Figure 12.3. Loading cycle with tensile 
and compressive (reverse) plastic 
deformation.
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1. elastic loading (σ = Eε) to yield strength +Sy ;
2. yielding (plastic deformation) at constant stress σ = +Sy , with tensile plastic strain 

εp,t ;
3. elastic unloading, Δσ = E(Δε) (i.e., reducing the tensile stress/increasing the 

compressive stress) to compressive yield strength σ = –Sy ;
4. compressive yielding at constant stress σ = –Sy , with compressive plastic strain 

εp,c ; 
5. elastic reloading, Δσ = E(Δε) (i.e., reducing the compressive stress) to zero stress, 

with accumulated plastic strain εp,t – εp,c .

This loading cycle can continue indefinitely. The plastic strains in tension and
compression are in opposite directions, and therefore tend to cancel each other. Thus,
reverse plasticity may be used to attempt to return an axial member to its original length
after it has been plastically deformed (i.e., εp,t = εp,c ). 

12.2  Elastic–Plastic Calculations: Limit Load

For a ductile system subjected to statically (slowly) applied load F, the elastic limit Fy
is the load at which the system first yields. The limit load FL is the maximum load that an
elastic–perfectly plastic system can support. At the limit load, every material point on a
cross-section has yielded (and supports the maximum possible stress), and unconstrained
plastic deformation occurs until the material breaks into two parts. 

The ideal elastic–perfectly plastic behavior of axial members, torsion members, and
beams, is studied below. The limit load is calculated for each case. The linear response of
each member when the limit load is removed, is also studied. Because unloading is elastic,
once a system experiences a permanent plastic strain, residual stresses will generally exist
in the unloaded system. 

Example 12.1  Axial Members in a Two-Bar System

Given: The two-bar system shown in Figure 12.4a is subjected to force F and is
constrained to move vertically due to the rigid boss. Bar 1 has length L and cross-sectional
area A. Bar 2 has length 3L and area A. The elastic modulus of both bars is E and the yield
strength is Sy . The material is elastic–perfectly plastic. 

Required: Determine:

(a) the force–displacement relationship F–δ, and its diagram,

(b) the stress in each bar as a function of displacement δ,

(c) the limit load FL , and 

(d) the residual stresses when the limit load is removed.

Solution: Equilibrium requires that the internal forces in the two bars, P1 and P2 , balance
the applied load F (Figure 12.4b):
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Dividing by area A gives: 

where σ1 and σ2 are the stresses in Bar 1 and
Bar 2, respectively. The average stress in the
system is:

Compatibility requires that the elongation of
each bar, Δ1 and Δ2 , be the same as the
displacement of the system δ:

where ε1 and ε2 are the strains in Bar 1 and
Bar 2, respectively.

Elastic Behavior 

When initially loaded, the behavior of each bar
is elastic (σ = Eε) and the force–elongation
relationships are:

and

Applying equilibrium (F = P1 + P2) gives the
elastic load–displacement relation: 

Answer: 

which is the initial linear region of the force–
elongation curve in Figure 12.4c.

Solving for the corresponding internal forces,
stresses and strains in each bar:

and

Answer: and

P1 P2+ F=

σ1 σ2+ F
A
---=

σave
F

2A
-------=

Δ1 Δ2 δ= =

ε1L ε2 3L( ) δ= =

P1
EA
L

-------δ= P2
EA
3L
-------δ=

F 4EA
3L

-----------δ=

P1
3F
4

------- EA
L

-------δ= = P2
F
4
--- EA

3L
-------δ= =

σ1
3F
4A
------- E

L
---δ= = σ2

F
4A
------- E

3L
------δ= =

Figure 12.4. (a) Two-bar structure 
under axial load F. Not to scale. 
(b) FBD of system.
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and

During elastic loading, stress is
concentrated in the shorter Bar 1
(Figure 12.4d):

The stress concentration factor is 1.5.

Onset of Yielding – First Yield (Fy , δy)

As the load is increased, Bar 1 yields
first. The stress and strain in Bar 1 are:

Answer: 

At first yield, applied load Fy and
corresponding system deflection δy are
(Figure 12.4c):

The stress in Bar 2 is (Figure 12.4d): 

Answer: 

In elastic design, the load at first yield Fy defines the strength of the two-bar system.

Elastic–Plastic Behavior

After Bar 1 has yielded, additional load can be applied to the system. Bar 1 deforms
plastically at constant stress σ1 = Sy , while Bar 2 continues to deform elastically with
stress σ2 = Eδ/(3L) (Figure 12.4d). Hence:

Answer: 

which describes the second linear region of Figure 12.4c. The stresses and strains in each
bar when Bar 1 is yielding and Bar 2 is elastic are:

ε1
3F

4AE
----------- δ

L
---= =

ε2
F

4AE
----------- δ

3L
------= =

σ1 1.5σave 3σ2= =

σ1

P1

A
------ Sy= =

ε1 Sy E⁄=

Fy

4ASy

3
------------=

δy ε1L
SyL

E
---------= =

σ2

σ1

3
------

Sy

3
-----= =

F P1 P2+ SyA EA
3L
-------δ+= =

Figure 12.4. (c) Applied load versus 
displacement. (d) Stress in each bar 
versus displacement.
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Answer: and

and

where εp1 is the plastic strain in Bar 1. As the system elongates, the stress in Bar 1 remains
constant, but the overall load increases. The additional load is supported by Bar 2 only
(Figures 12.4c and d). This stress redistribution due to plasticity reduces the stress
concentration associated with σ1 (i.e., σ1 < 1.5σave).

The Limit Load (FL, δL )

When Bar 2 yields, both bars are at the yield strength:

Answer: 

so the applied load is: 

Load F cannot be increased further. This load is the limit load FL (Figure 12.4c): 

Answer: 

The displacement δ at the limit load is when Bar 2 begins to yield (ε2 = Sy /E):

The limit load may be calculated directly by simply setting the force in each bar equal to
the force required to yield that bar (see Example 12.4). The stress redistribution is
complete; all material points are at yield, and σ1 = σave = F/2A; the stress concentration
factor is 1.0.

The limit load is greater than the load to cause first yield Fy . For this two-bar system,
FL /Fy = 1.5. 

Unconstrained Plastic Deformation

When the applied load reaches the limit load FL , further plastic elongation can occur
without additional load. This deformation is said to be unconstrained. While FL is the
maximum load, δL is not the maximum displacement (Figure 12.4c).

The strains in Bars 1 and 2 are:

and

where εp1 and εp2 are the plastic strains in each bar. From compatibility, Δ1 = Δ2, so
ε1 = 3ε2 , which means the plastic strains can be related:

σ1 Sy= σ2
E

3L
------δ=

ε1

Sy

E
----- εp1+= ε2

δ
3L
------=

σ1 σ2 Sy= =

F P1 P2+ 2SyA= =

FL 2Sy A=

δL 3L( )ε2

3SyL

E
------------= =

ε1

Sy

E
----- εp1+= ε2

Sy

E
----- εp2+=
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Unloading from the Limit Load

When the load is removed, the stresses in
both bars decrease elastically. The elastic
response of the system has already been
determined during initial loading. For a
change in applied load ΔF, the internal
forces in the bars change by:

and

When the entire load FL is removed:

The internal forces following complete
removal of the limit load FL are therefore: 

and

The internal forces are in equilibrium, i.e., P1 + P2 = 0, since the applied force F = 0.

The stresses in each bar are:

Answer: and

Although the applied load has been removed, Bar 1 has a compressive stress –Sy/2 and
Bar 2 has a tensile stress +Sy/2 (Figure 12.4e). Such stresses are called residual stresses.
No external load is applied, but stresses remain in the system due to the loading history.
Bar 1 has had more plastic deformation than Bar 2, so in order for the bars to remain the
same length when elastically unloaded, Bar 1 must be in compression and Bar 2 in
tension.

The residual strain in each bar is:

and

The residual elongation δR of the system when unloaded from (FL, δL) is shown in
Figure 12.4f. For this case, neither bar yields in compression, so unloading is linear, with
slope . In general, the residual elongation when unloading from (F, δ ) is:

When unloading from δ = δL = 3Sy L/E (Figure 12.4f ):

εp1

2Sy

E
-------- 3εp2+=

ΔP1
3 ΔF( )

4
---------------= ΔP2

ΔF
4

-------=

ΔF FL– 2SyA–= =

P1 SyA
3 FL–( )

4
------------------+

Sy A–

2
------------= = P2 Sy A

FL–( )

4
--------------+

+Sy A

2
-------------= =

σ1 Sy– 2⁄= σ2 +Sy 2⁄=

ε1 R,

σ1

E
------ εp1+

S– y

2E
-------- εp1+= = ε2 R,

σ2

E
------ εp2

Sy

2E
------- εp2+=+=

4EA 3L⁄

δR δ F 3
4
--- L

AE
------- ⎝ ⎠

⎛ ⎞–=

Figure 12.4.  (e) Residual Stresses 
when unloaded from limit load FL.
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Reloading (after unloading from FL , δL)

If load is now reapplied, the stress in
each bar starts from its residual value
(σ1 = –0.5Sy, σ2 = +0.5Sy). Both bars
now remain elastic and both yield at the
same time, Bar 1 experiencing a change
in stress (1.5Sy) three times that of Bar 2
(0.5Sy). Bar 1 elastically strains three
times as much as Bar 2. 

The system reloading force–
displacement (F–δ ) curve (Figure 12.4f )
follows the line from the (δR , 0) to
(δL , FL). Further elongation is
unconstrained. Measured from δR, the
force–displacement curve is now
elastic-perfectly plastic (i.e., it is linear
up to F = FL , and then remains constant
during unconstrained elongation).

Summary

The applied force F and stresses σ1 and σ2 as functions of continuously increasing
displacement δ (without unloading) are summarized in Table 12.2, and shown in
Figures 12.4c and d. The load–displacement response of the two-bar system is, in general,
described by a tri-linear model (Figure 12.4f ).

δR

3SyL

E
------------ 2ASy( ) 3

4
--- L

AE
------- ⎝ ⎠

⎛ ⎞–=

1.5SyL

E
----------------=

Table 12.2.  Applied force and bar stresses during continuously 
increasing* displacement δ.

δ F σ1 σ2

0 δ
SyL

E
---------≤ ≤

4EA
3L

-----------δ 3F
4A
-------

E
L
---δ= F

4A
-------

E
3L
------δ=

SyL

E
--------- δ

3SyL

E
------------≤ ≤ SyA EA

3L
-------δ+ Sy

E
3L
------δ

δ
3SyL

E
------------≥ 2SyA Sy Sy

* Without unloading.

Figure 12.4.  (f) Force-displacement curve. If 
either bar has yielded, there is a residual 
elongation upon removing the load. Here, 
the load is removed from δ = δL, when the 
Limit Load has just been reached. Upon 
reloading, the curve is linear until the limit 
load FL is again reached.
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Example 12.2  Solid Circular Shaft in Torsion

Given: A solid circular shaft of length L and
radius R is subjected to torque T
(Figure 12.5a). The shear modulus is G and
the shear yield strength is τy . The material is
elastic–perfectly plastic (Figure 12.5b). 

Required: Determine:

(a) the torque–angle of twist relationship
T–θ, and its diagram,

(b) the limit torque TL , and 

(c) the residual stress when the limit load
is removed.

Solution: Elastic Behavior – First Yield

The initial response of the shaft is elastic.
The shear stress of a solid circular shaft is
linear with distance r from its axis
(Figure 12.5c):

where:

The angle of twist for a solid shaft is:

The torque–angle of twist relationship in the elastic region is:

Answer: 

The maximum shear stress increases with torque until yielding first occurs (τmax = τy).
The yield torque is:

The angle of twist at first yield is:

τ r( ) Tr
J

------ 2Tr

πR4
---------- r

R
---τmax= = =

τmax
2T

πR3
----------=

θ TL
JG
------- 2TL

πR4G
--------------= =

T
πR4G

2L
--------------θ=

Ty
πR

3τy

2
---------------=

θy

τyL

RG
--------=

Figure 12.5. (a) Solid shaft under 
torsion. (b) Elastic–perfectly plastic 
shear stress–strain curve. (c) Elastic 
shear stress distribution.
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In elastic design, Ty defines the strength of the
circular shaft in torsion.

Elastic–Plastic Behavior

When the applied torque exceeds Ty , the shaft begins
to plastically deform, starting at the outer radius R
and moving inwards to a radius re (Figure 12.5d).
The material within radius re (r < re) remains elastic,
and is called the elastic core. Between re and R, the
shear stress is constant and equal to the shear yield
strength τy . In torsion, any radius on the cross-
section remains a straight line due to symmetry. The
angle of twist of the elastic core θe , and thus the
angle of twist of the entire shaft θ, is:

The torque supported by the elastic core, Te , is:

The torque supported by the plastic portion of the
cross-section, Tp , is found by integrating the
contribution of the torques of many thin-walled
shafts, each of radius r and thickness dr (area
dA = 2πr dr), from re to R. The shear stress from re
to R is the shear yield strength τy :

The total torque T is the sum of elastic torque Te and plastic torque Tp :

Limit Torque

When re = 0, the material is yielding everywhere (Figure 12.5e) and the resulting torque is
the limit torque TL :

Answer: 

The limit torque is greater than the yield torque Ty by a factor of 4/3. No further torque can
be supported by the cross-section.

θ θe

τyL

reG
---------= =

Te

πre
3τy

2
--------------=

Tp r τ r( ) Ad[ ] r τy 2πr rd( )[ ]
 re

 R

∫=
 re

 R

∫ 2πτy r2 rd
 re

 R

∫
2πτy

3
------------ R3 re

3–[ ]= = =

T Te Tp+
2πτy

3
------------R3 1 1

4
---

re

R
---- ⎝ ⎠

⎛ ⎞3
–= =

TL

2πτy

3
------------R3 4

3
---Ty= =

Figure 12.5.  (d) Shear stress 
distribution due to elastic-plastic 
response. (e) Shear stress 
distribution when cross-section 
is completely plastic.
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Substituting the limit torque, TL, and the
angle of twist of the elastic core, θ = θe ,
into the total torque equation gives the
torque–angle of twist relation, T–θ, for
T > Ty :

Answer: 

A plot of the T–θ curve is shown in
Figure 12.5f. The torque is asymptotic to
T = TL . After the cross-section becomes
fully plastic, the shaft continues to
deform plastically without further load
as it is twisted about its axis to large
values of θ (>> θy). 

First yield occurs when the angle of twist is:

So the torque at first yield can also be written:

Unloading from the Limit Torque

Unloading the shaft from the limit torque TL is elastic.
The elastic stress as a function of r is:

Removing TL is the equivalent of applying an additional elastic torque that is negative,
T = –TL . This gives the residual stress distribution τR(r):

Answer: 

The residual stress is plotted in Figure 12.5g. Note that the residual shear stress on the
surface of the shaft is opposite to the stress due to the applied (and now unloaded) torque.
The axis of the shaft (r = 0) has residual stress τy since elastic unloading contributes zero
to the stress at that location.

T TL 1 1
4
---

τyL

GRθ
-----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

3

–=

θy

τyL

RG
--------=

Ty TL 1 1
4
--- 1( )3– 3

4
---TL= =

τ r( ) 2Tr

πR4
----------=

τR r( ) τy

2TLr

πR4
------------– τy

2r

πR4
----------

2πτyR3

3
------------------ ⎝ ⎠

⎛ ⎞–= =

τR r( ) τy 1 4r
3R
-------–=

Figure 12.5. (f) Torque versus angle 
of twist.

Figure 12.5.  (g) Residual 
shear stresses upon elastic 
unloading from the TL.
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Example 12.3  Rectangular Beam in Bending

Given: A rectangular beam of breadth B and
depth D is subjected to moment M
(Figure 12.6a). The material is elastic–
perfectly plastic with modulus E and yield
strength Sy (in tension and compression).

Required: Determine:

(a) the moment–curvature relationship
M–κ, and its diagram,

(b) the limit moment ML, and 

(c) the residual stress when the limit load
is removed.

Solution: 

Elastic Behavior – First Yield

The initial response of the beam is elastic. The
bending stress and curvature are given by:

and

Recall that the curvature κ is the inverse of
the radius of curvature R and the moment of
inertia for a rectangular cross-section is
I = BD3/12. 

The moment–curvature relationship in the
elastic region is:

Answer: 

In pure bending, the maximum stress σmax occurs at  (Figure 12.6b), and
yielding occurs when σmax reaches the yield strength  (compression and tension). For
a rectangular beam, the magnitude of the moment at first yield, and the corresponding
curvature, are:

and

In elastic design, My defines the strength of the beam in bending.

σ y( ) My
I

--------–= κ 1
R
--- M

EI
------= =

M EIκ=

y D 2⁄±=
Sy+−

My

SyBD2

6
----------------= κy

2Sy

DE
--------=

Figure 12.6. (a) Beam under constant 
moment M. (b) Stresses in beam due to 
elastic response. Yielding occurs when 
σmax = Sy . (c) Stresses in beam due to 
elastic–plastic response. 
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Elastic–Plastic Behavior

When the applied moment exceeds My , the beam begins to yield, starting at 
and moving inwards (Figure 12.6c). The elastic core is the portion of the beam that
remains elastic, having a height of d, with . The material for  is plastic
with stress .

The moment supported by the elastic core, Me , is:

Due to symmetry in bending, plane sections continue to remain plane, so the curvature of
the beam is defined by the curvature of the elastic core:

The moment supported by the plastic portion of the cross-section, Mp , is found by
integrating the contribution of the moments due to many axial members of area dA having
width B and thickness dy, from y = d/2 to D/2, and from y = –d/2 to –D/2 (Figure 12.6c).
The stress in the plastic region is constant and equal to the yield strength Sy . Integrating
dM = y[SyB dy] from y = d/2 to D/2, and multiplying by 2 to account for y = –d/2 to –D/2,
gives:

The total moment is then:

Limit Moment

When d = 0, the material is yielding everywhere (Figure 12.6d) and the resulting moment
is the limit moment ML. For a rectangular beam:

Answer: 

No further moment can be supported.

The moment–curvature (M–κ) relationship
for M > My can be written:

Answer:

y D 2⁄±=

y d 2⁄< y d 2⁄>
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 d 2⁄
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∫ 2SyB y yd
 d 2⁄
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D
---- ⎝ ⎠

⎛ ⎞2
–= = =

M Me Mp+
SyBD2
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⎛ ⎞2
–= =
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SyBD2

4
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 M ML 1 4
3
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EDκ
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⎜ ⎟
⎛ ⎞
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Figure 12.6. (d) Stresses in beam at the 
limit moment.
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A plot of the M–κ curve is shown in
Figure 12.6e. The moment is asymptotic
to ML . When the cross-section becomes
fully plastic the curvature is
unconstrained. The beam at the limit
moment can have a large change in slope
(curvature) without further load. This
response is called a plastic hinge. 

Unloading from the Limit Moment

When the moment is removed, the
stress–strain response is elastic.
Removing the limit moment is the same
as elastically adding –ML . The
additional stress caused by elastically
unloading moment ML is:

At y = +D/2, the change of stress upon
unloading is +1.5Sy as shown in
Figure 12.6f.

Upon removal of the limit moment,
residual stresses are introduced. These
residual stresses are:

Answer:

•

•

 

The distribution of the residual stresses is shown in Figure 12.6g. The residual stresses are
zero at .

Summary of Examples
In the elastic–perfectly plastic analysis of the previous three examples, each system

responds elastically until the most highly stressed point(s) reaches the yield strength. The

Δσ y( )
ML–( )y

I
-------------------– 3y

D
------Sy= =

for y 0:  >

σR y( ) S– y
3y
D
------Sy+ Sy 1– 3y

D
------+⎝ ⎠

⎛ ⎞= =

for y 0:  <

σR y( ) +Sy
3y
D
------Sy+ Sy 1 3y

D
------+⎝ ⎠

⎛ ⎞= =

y D 3⁄±=

Figure 12.6. (f) Stresses due to elastic 
unloading of the beam from ML. 
(g) Residual stresses in beam.

Figure 12.6. (e) Moment–Curvature 
relationship.
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stress in an elastic–perfectly plastic material cannot exceed the yield strength. As a
system continues to deform plastically, stress redistribution (non-elastic redistribution of
stress) occurs until the limit load (FL , TL , ML) is reached. At the limit load, the stress
everywhere on the cross-section is at the yield strength. For the rectangular beam, the yield
moment My (when yielding first occurs) and the limit moment ML = 1.5My are,
respectively:

and

Designers can take advantage of plastic deformation to create more efficient and
lighter structures. For example, in bending applications, the design moment can be 90% of
the limit moment. The system is allowed to plastically deform at its maximum expected
(and rarely reached) load in service. 

In addition, since the material is assumed to be elastic–perfectly plastic, the maximum
stress in the analysis is the initial yield strength Sy . Since yield strength actually increases
during plastic deformation, then the calculated limit load is smaller than the maximum
load that a cross-section can actually carry.

Direct Calculation of the Limit Load
The details of a complete elastic–perfectly plastic analysis, even in simple examples,

can be quite involved. However, it is often a straight-forward task to determine the limit
load directly. This is done by assuming that the stress at every point on a cross-section
equals the yield strength  (for normal stress) or τy (for shear stress). Once every point
has yielded, no further load can be supported. This technique is demonstrated in the
following three examples.

Example 12.4  Two-Bar System

Given: The two-bar system under load F
(Figure 12.7). Bar 1 has cross-sectional area A1 and
Bar 2 has area A2. The yield strength is Sy .

Required: Determine the limit load FL .

Solution: The limit load is reached when the axial
stress in each bar is Sy :

Answer: 

For A1 = A2, , which agrees with the
elastic–plastic calculation of Example 12.1.

My

SyBD2

6
----------------= ML

SyBD2

4
----------------=

Sy±

PL A1Sy A2Sy+=

PL 2ASy=

Figure 12.7. Stresses in two-bar 
system at limit load. 
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Example 12.5  Solid Circular Shaft in Torsion

Given: The solid circular shaft under torque T
(Figure 12.8). The radius is R. The shear yield
strength is τy .

Required: Determine the limit torque TL .

Solution: The limit torque is reached when the
shear stress on the entire cross-section is τy .
Equilibrium requires:

Answer:

which agrees with the elastic–plastic calculation
of Example 12.2.

Example 12.6  Rectangular Beam in Bending

Given: The rectangular beam under moment M
(Figure 12.9). The breadth is B and the depth is
D. The tensile and compressive yield strengths
are equal, with magnitude Sy .

Required: Determine the limit moment ML.

Solution: The limit load is reached when the
bending stress on the entire cross-section is at
the yield strength ±Sy . Equilibrium requires:

Answer:

which agrees with result of Example 12.3. 

The limit moment is also the product of the
equivalent force acting over each half-area
Sy(BD/2), and the distance between the centroids
of each Sy load distribution D/2 (Figure 12.9b):

TL r τy2πr rd[ ]
 0

 R

∫
2πR3τy

3
------------------= =

ML 2 y SyB yd[ ]
 0

D 2⁄

∫
BD2Sy

4
----------------= =

ML Sy BD
2
----⎝ ⎠

⎛ ⎞ D
2
----⎝ ⎠

⎛ ⎞ BD2Sy

4
----------------= =

Figure 12.9. (a) Stresses in beam at 
limit moment (side view). 
(b) Equivalent forces acting at the 
centroids of the +Sy and –Sy load 
areas.

Figure 12.8. Shear stresses on 
cross-section of a solid shaft at limit 
torque.
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12.3  Limit Loads in Beams: Plastic Hinges

When the limit moment of a beam cross-section is reached, the curvature of the beam
at that location is unbounded, or unconstrained, as shown in the M–κ relationship of
Figure 12.6e. Large curvatures cause the beam to act as if it is hinged (or pinned) at that
location. That position along the beam is therefore referred to as a plastic hinge. A nice
example of this behavior is in the plastic bending of a paper clip or other thin metal rod.
The deflection and slope due to the plastic hinge are large, much greater than those due to
elastic deformation. This deflection behavior may be used to calculate the limit loads of
beams.

Example 12.7  Simply-Supported Beam under Uniform Load

Given: A simply-supported beam of
rectangular cross-section, depth D and
breadth B, is subjected to a uniformly
distributed load w (force/length), as shown
in Figure 12.10a. The material yield strength
is Sy .

Required: Determine the limit distributed
load wL.

Solution: The maximum moment in a beam
under UDL occurs at the center
(Figure 12.10b):

A plastic hinge will form when Mmax = ML
and the beam will deflect as shown in
Figure 12.10c. The deflection due to the
hinge dominates over the deflection due to
elastic deformation. 

The limit moment for a rectangular beam is:

Equating the two moment expressions gives
the limit load:

Answer: 

Mmax
wL2

8
----------=

ML

SyBD2

4
----------------=

wL

2SyBD2

L2
--------------------=

y

x

(a)

B
A

x

B
A

Plastic Hinge

(b)

(c)

L

y

x

(a)

M

wL
8

2

B
A

wx

B
A

w

Plastic Hinge

(b)

(c)

L

Figure 12.10. (a) Simply supported 
beam under uniformly distributed load w. 
(b) Moment diagram of beam. 
(c) Deformation of beam due to plastic 
hinge at its center.
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In a design limited by elastic behavior, the failure moment is the moment at first yield:

when the distributed load w is:

The ratio of the limit load to the yield load is:

As discovered in Example 12.3, the limit load that a rectangular beam can support is 50%
greater than that predicted by elastic analysis. Hence the attraction of plastic design
methods now widely used in engineering systems.

Example 12.8  Fixed–Fixed Beam under Central Point Load

Given: A fixed–fixed beam of rectangular
cross-section, depth D and breadth B, is
subjected to a central point load P as shown
in Figure 12.11a. The yield strength is Sy .

Required: Determine the limit load PL.

Solution: The elastic analysis for this
problem is relatively complex. The limit
load analysis is fairly simple. 

When the applied load reaches its limit
value, P = PL . At the limit load, the beam
deforms in a similar manner as the simply-
supported beam of Example 12.7, but now
three plastic hinges must be formed, one
under the point load, and one at each wall
(Figures 12.11c and d ). At the hinges, the
moment must be M = ML = Sy BD2/4.

By symmetry, half of force P is supported at
each wall. A FBD of a segment of the beam
(from 0 to x) when the beam is loaded by PL
is shown in Figure 12.11b. Equilibrium
requires the internal moment to be linear
with x (Figure 12.11c). At x = 0 and L/2, the
magnitude of the internal moment is

My

SyBD2

6
----------------=

wy

4SyBD2

3L2
--------------------=

wL

wy
------ 2

4 3⁄
---------- 1.5= =

Figure 12.11. (a) Fixed–fixed beam 
under central load P. (b) FBD of beam for 
0 < x < L/2. By symmetry, the moment at 
the center of the beam equals the 
moment at each wall. (c) The moment 
diagram of the beam is linear.
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M = ML . Thus, moment equilibrium about
the right side of the segment from x = 0 to
L/2 (Figure 12.11b) gives:

Therefore:

Answer: 

The deflection of the beam is shown in Figure 12.11d. The deflection is primarily due to
the unbounded curvatures of the plastic hinges. The elastic deflection is negligible, so the
beam deflection is linear between hinges. The geometric response at a plastic hinge is
similar to that at a pin (Figure 12.10c).

Limit Load Estimates: Upper and Lower Bounds
When the calculation of the exact limit load is not obvious, it is possible to perform

simple calculations that bound, or bracket, the limit load. An example of such a situation is
when the system is statically indeterminate (Figure 12.12). The two methods used to
bracket the exact solution are:

1. The force method, which underestimates the limit load; it provides a lower bound 
to the solution. Equilibrium must be satisfied in the force method.

2. The displacement method, which overestimates the limit load; it provides an 
upper bound. Compatibility must be satisfied in the displacement method.

These two methods are illustrated with an example.

Example 12.9   Fixed-Pinned Beam

Given: A beam of length L supports a uniformly distributed load w. The beam is built-in
(fixed) at one end and simply-supported with a roller at the other (Figure 12.12a). The
limit moment of the beam cross-section is ML .

Required: Estimate the limit distributed load wL .

Solution: The reactions and internal forces cannot be solved by statics alone. The system
is redundant or statically indeterminate.

Force Method – Lower Bound

Guess 1. The value of the reaction force R at the pin is unknown. Let us take a first
educated guess that R = 3wL/8 = 0.375wL (Figure 12.12b), which is actually the reaction
for the elastic solution (Example 6.9). The bending moment along the beam is then:

ML

PL

2
------ L

2
--- ⎝ ⎠

⎛ ⎞– ML+ 0=

PL

8ML

L
-----------

2SyBD2

L
--------------------= =

Figure 12.11.  (d) Deflection of beam 
due to plastic hinges at its center and at 
the walls.



www.manaraa.com

12.3 Limit Loads in Beams: Plastic Hinges 375

A local maximum of the moment occurs
where the shear force equals zero:

which occurs at

So a possible value for the maximum
moment is:

The moment at the wall (x = 0) may also be a maximum:

Thus, the moment with the maximum magnitude occurs at the wall. This value provides an
estimate of the limit load wL:

Guess 2. The actual reaction R is probably not the elastic reaction since yielding causes
stress redistribution within the system. For a second approximation, guess that R = 2wL/5
= 0.40wL. A repeat of the equilibrium equation, which must always be satisfied in the
force method, results in:

The local maximum moment occurs where the shear stress is equal to zero (x = 3L/5):

while the moment at the wall is:

The maximum moment for this guess occurs at the wall. The second estimate of wL is:
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Figure 12.12. (a) Fixed-pinned beam 
under uniform load w. (b) Right-hand 
FBD of beam. The maximum moment in 
an elastic calculation occurs at the wall.
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which is larger than the estimate from Guess 1. Since the force method provides a lower
bound, select the larger value:

Answer: 

Displacement Method – Upper Bound 

Guess 1. In this approximation, the
failure mode is taken as two plastic
hinges, one at the wall and one at the
center of the beam (Figure 12.12c).
Point B is a roller and supports no
moment. The equivalent point load over
each half of the beam, F = wL/2, is
shown. 

The next step is to equate the external
work done by applied load w, to the
internal work required to create the
plastic hinges. The elastic energy in
bending is assumed to be negligible
compared to that of the large plastic
moments and angular displacements at
the hinges. 

The work to form a plastic hinge at the
wall (point A) is MLθ (Figure 12.12c).
The work needed to form a plastic hinge
at the center of the beam is 2MLθ. The
total energy to create both plastic hinges
is thus:

Due to the hinges, each equivalent load F = wL/2 displaces by δ = Lθ/4. Hence, the work
done by applied load w during plastic deflection is:

Equating the two work expressions gives the estimated upper limit load:

wL

10ML

L2
--------------=

wL
10ML

L2
---------------=

Wp 3MLθ=

Ww 2Fδ 2
wL
2

-------⎝ ⎠
⎛ ⎞ L

4
---θ⎝ ⎠

⎛ ⎞ wL2θ
4

-------------= = =

wL

12ML

L2
--------------=

Figure 12.12.  (c) Deflection of beam 
assuming plastic hinges at wall and center of 
beam. The distributed load on each half-
beam is converted to equivalent force wL/2. 
These forces move distance δ = Lθ/4. 
(d) Deflection of beam assuming plastic 
hinges at wall and at x = 2L/3. The 
equivalent loads each move δ = Lθ/3.
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which is an upper bound to the actual limit load.

Guess 2. Due to the pin at point B, the right side of the beam is less constrained than the
left. A second approximation therefore, considers a plastic hinge at the wall, and one 2L/3
from the wall (Figure 12.12d). The total plastic work to create the hinges is:

The equivalent loads in this case are 2wL/3 and wL/3. Both displace by δ = Lθ/3. Hence,
the work done by the applied load is:

Equating the two work expressions gives the estimated limit load:

Answer: 

Guess 1 gives the same result for the upper bound as Guess 2. 

Lower and Upper Bounds

The true limit load lies somewhere between the calculated estimates of the maximum
lower limit and the minimum upper limit. Hence:

Answer: 

Exact Solution

It can be shown that at the true limit load, the reaction R is:

and the corresponding limit load is:

This value lies within the bounds generated by the approximate solutions. In this case, an
estimated value that is midway between the approximated bounds – 11ML/L2 – is within
7% of the exact solution.

General Remarks

The force method always gives a lower bound and the displacement method always gives
an upper bound. The force method (equilibrium) calculations are generally more difficult
than the displacement method (compatibility) calculations. However, the force method
results in an applied load that does not exceed the true limit load. Hence, the force method
gives conservative approximations for the actual strength of a system, and thus is useful in
design.
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12.4  Limit Surface for Rectangular Beam under Combined 
Loading

The basic element used in the
development of the ASME pressure vessel
design codes is a rectangular beam
subjected to axial (normal) force N and
moment M (Figure 12.13a). For the case
when the moment is zero (M = 0), the limit
load is (Figure 12.13b):

[Eq. 12.11]

For the case when the axial load is zero
(N = 0), the limit moment is
(Figure 12.13c):

[Eq. 12.12]

When an axial force and a moment are
applied simultaneously, the limit state is
reached when the stresses are everywhere at
the yield strength ±Sy . At some height on
the cross-section, y = yo , the stress changes
sign (Figure 12.13d). For: 

• , the stress is tensile (+Sy);

• , the stress is compressive (–Sy).

Applying equilibrium in the x-direction
gives:

Normalizing force N by the limit load NL :

[Eq. 12.13]

Applying moment equilibrium about the z-axis through the centroid gives:

NL BDSy=

ML

BD2Sy

4
----------------=

y yo<

y yo>

N SyB D
2
---- yo+⎝ ⎠

⎛ ⎞ SyB D
2
---- yo–⎝ ⎠

⎛ ⎞–=

2yoBSy=

N
NL
------ 2

yo

D
----- ⎝ ⎠

⎛ ⎞=

Figure 12.13. (a) Beam under combined 
axial load N and moment M. 
(b) Stresses in beam at limit load, with 
M = 0. (c) Stresses in beam at limit 
moment, with N = 0. (d) Stresses in 
beam at limit load due to combined axial 
and bending loads N and M. 
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[Eq. 12.14]

Normalizing moment M by the limit moment ML : 

[Eq. 12.15]

Eliminating yo between Equations 12.13 and 12.15 gives the limit load condition in
terms of M and N:

[Eq. 12.16]

Alternatively, the limit condition
occurs when:

[Eq. 12.17]

The surface represented by
Equation 12.16 (and Equation 12.17)
is shown in Figure 12.14. The values
of M and N that satisfy
Equation 12.16 are combinations for
which the cross-section of the beam
becomes completely plastic. The
curve in Figure 12.14 is called the
limit load surface.

If the combination of the normal
force N and moment M falls outside of
the limit surface, the applied loading
exceeds the beam’s load-carrying
capacity.
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Figure 12.14. Limit Load Surface for 
combined axial and bending moment.
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12.5  Design Applications in Plasticity

Two approaches that demonstrate how plasticity may be used in design are:

1. The area replacement method, and

2. The ASME pressure vessel code method.

These plastic design methods allow design decisions to be made using simple calculations.

Area Replacement Method
Pressure vessels contain fluid under compression. To fill and empty the vessels, holes

must be cut into the walls and piping attached. Removing the material to form the hole
reduces the strength of the vessel. The question is how to design – reinforce – the junction
of the pipe and vessel without loss of strength? The design of a reinforcement often
employs a material’s ductility. Elastic design is limited by high-stress concentrations at the
pipe–vessel interface. By allowing plastic deformation, stresses are redistributed until the
stress at every point is at the yield condition.

Design of a Spherical Pressure Vessel with an Attached Pipe

Consider a thin-walled spherical pressure vessel
of average radius R and thickness T (T << R), to
which a thin-walled pipe of average radius r and
thickness t (t << r) is attached (Figure 12.15a). The
pressure of the contained fluid is p. The biaxial state
of stress in the vessel is:

[Eq. 12.18]

The stress perpendicular to the vessel surface is
σIII ~ 0.

Using the 3D von Mises Yield condition,
yielding occurs when:

[Eq. 12.19]

Substituting the stresses of Equation 12.18 into
Equation 12.19, the required thickness T of the
sphere is:

[Eq. 12.20]

σI σII
pR
2T
-------   σIII 0=;= =

σI σII–( )2 σII σIII–( )2 σIII σI–( )2+ +[ ]

2
------------------------------------------------------------------------------------------------------ Sy=

T
pR

2Sy
--------=

Figure 12.15.  (a) Cut-away 
view of a pipe attached to a 
spherical pressure vessel. The 
pipe axis is along the y-axis. Not 
to scale.
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Design of the Cylindrical Pipe 

The biaxial state of stress in the pipe – a cylindrical pressure vessel – is given by:

[Eq. 12.21]

The required thickness for the pipe using the von Mises condition (Equation 12.19) is:

[Eq. 12.22]

The required thicknesses of the spherical vessel and the cylindrical pipe are now known.

Design of the Vessel-Pipe Joint
Consider equilibrium of point B at

the intersection of the sphere and the
cylinder (Figure 12.15b). The angle θ is
defined by:

[Eq. 12.23]

The line load distributions (force per
unit length) at the vessel–pipe
intersection (Figure 12.15c) are:

[Eq. 12.24]

[Eq. 12.25]

where fv is the force per unit length in
the spherical vessel and fp is the force
per unit length in the pipe.

Resolving the line loads into the x-
and y-directions (Figure 12.15c):

[Eq. 12.26]

[Eq. 12.27]

Summing the line loads in the y-
direction (axial direction of the pipe)
gives:

σI
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-----   σIII 0=;=;=

t 3
2
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pr
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-----=
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R
---=

fv σsT pR
2

-------= =

fp σLt pr
2
-----= =

fvx
pR
2

------- θ    fvy
p– R
2

---------- θsin=;cos=

fpx 0    fpy
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2
-----=;=

Figure 12.15.  (b) Geometry of vessel–pipe 
intersection. (c) Force per unit length at point 
B, at the vessel–pipe intersection. 
(d) View along axis of pipe showing radial 
force per unit length at the joint exerted on 
the pipe due to pressure in the spherical 
vessel. (e) FBD of half-pipe at intersection. 
The force per unit length exerted on the pipe 
by the pressure vessel is resisted by tensile 
forces FR in the reinforcing ring.
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[Eq. 12.28]

Equilibrium in the y-direction is satisfied.

Summing loads in the x-direction or radial (r-) direction of the pipe (Figure 12.15c):

[Eq. 12.29]

When the cylinder and sphere are brought together, equilibrium in the x-direction is not
satisfied – the stresses in the sphere act to stretch the pipe radially at the vessel-pipe
interface, expanding the hole (Figure 12.15d ). To satisfy equilibrium, an equal and
opposite horizontal force must be supplied by a reinforcement, a ring of radius r, and
cross-sectional area A.

The tensile force FR supported by the ring reinforcement at the intersection is found
by applying equilibrium to Figure 12.15e:

[Eq. 12.30]

[Eq. 12.31]

Assume that the ring is manufactured from the same material as the pipe and the
vessel, with yield strength Sy . The cross-sectional area A of the reinforcing ring
(Figure 12.15f ) is then defined by its axial limit load FL :

[Eq. 12.32]

with pR/2T = Sy at yield. Equating the
expressions for FR gives the required area A of
the reinforcing ring:

[Eq. 12.33]

In practice, the radius of the pipe is much
smaller than that of the spherical vessel so that
cos θ ~ 1.0. Or, the maximum possible value of
cos θ is 1.0. Either way, the required area is:

[Eq. 12.34]

The total ring area at any cross-section of the
interface is 2A = 2rT. This value is equal to the
projected area cut through the spherical vessel
(thickness T) by the pipe (projected length 2r,
Figure 12.15f ). This simple design procedure is
known as the area replacement method. 
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Figure 12.15.  (f) The reinforcing 
ring of cross-sectional area A has 
the same area as the projected area 
of the vessel wall that was cut away 
to attach the pipe.
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Use of Limit Surface in the ASME Pressure Vessel Code
The ASME design codes are

based on the concept of the limit
load. The ability of a material to
redistribute stresses by yielding
allows higher loads to be supported
than those determined using elastic-
only analysis. But because most
stresses are determined using elastic
calculations, the question arises on
how to interpret the results of elastic
calculations in terms of the limit
surface (Figure 12.14). The following approach, pioneered by ASME, illustrates how to
integrate plasticity concepts using elastic calculations.

For a beam subjected to axial load N and bending moment M (Figure 12.16), the limit
surface is given by Equation 12.16 and shown in Figure 12.14. The equation of the limit
surface is repeated here:

[Eq. 12.35]

For a rectangular beam subjected to axial load N and bending moment M
(Figure 12.16), an elastic analysis gives the axial stress σa and bending stress σb :

and [Eq. 12.36]

The limit loads for axial- and bending-only loading are:

and [Eq. 12.37]

Substituting the expressions for N, M, NL, and ML into Equation 12.35 gives:

[Eq. 12.38]

The plot of the parabolic limit condition in a rectangular beam in terms of the elastic axial
and bending stresses, σa and σb , normalized by yield strength Sy , is shown in
Figure 12.17. This is the limit surface in terms of the elastically calculated stress.

When an elastic calculation of the stresses is made, the point determined by the elastic
stresses (σa , σb) must fall inside the limit surface if the system is not to reach its limit
load. When the calculated elastic stresses lie outside the limit surface, the system has
exceeded the limit condition.
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Figure 12.16. Rectangular beam subjected to 
axial load N and bending moment M.
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Note that the normalized elastic bending
stress, σb/Sy , can exceed unity (1.0) and still
be within the limit surface. For bending-
only, the calculated elastic bending stress
on a rectangular cross-section at the limit
moment is σb = 1.5Sy .

For a design tool, the limit surface is
simplified further into two straight lines
that include a factor of safety of 1.5
(Figure 12.17). The elastically calculated
stresses are then limited by two conditions.
The first is a line of slope –1, defined by:

[Eq. 12.39]

The second condition is a vertical line
given by:

[Eq. 12.40]

Example 12.10  Pressure Vessel with Tensile and Bending Stresses

Given: An elastic analysis of the stresses at the inside and outside surfaces of a pressure
vessel with a thick wall are computed to be σ1 = 200 MPa and σ2 = –100 MPa
(Figure 12.18a). The yield strength of the material is Sy = 200 MPa.

Required: Determine if the ASME Code conditions, including the factor of safety, are
satisfied.

Solution: The elastic stress at any point in a system subjected to axial forces and bending
moments is the sum of the axial stress (constant over the cross-section) and the bending
stress (linear over the cross-section), as shown in Figure 12.18b. For elements 1 and 2, at
opposite sides of the pressure vessel wall, the stresses are:

where σa is the average or membrane stress:

and σb is the maximum bending stress: 

σa

Sy
------

σb

Sy
------+ 1=

σa
Sy
------ 2

3
---=

σ1 σ2, σa σb±=

σa

σ1 σ2+

2
------------------- 200 100–( )+

2
-------------------------------- 50 MPa= = =

Figure 12.17.   Limit condition for 
rectangular beam using elastic stress 
calculations for axial stress σa and 
bending stress σb, in first quadrant of 
σb–σa plot. The straight lines are typical 
factor of safety lines.



www.manaraa.com

12.6 Three-Dimensional Plasticity 385

Checking the conditions from
Equations 12.39 and 12.40: 

Condition 1:

OK

Condition 2:

OK

Since both conditions are satisfied, the
design meets the code requirement.

12.6  Three-Dimensional Plasticity

When an element is subjected to the three principal stresses σI , σII , σIII
(Figure 12.19a), the von Mises stress or equivalent stress is:

[Eq. 12.41]

Yielding occurs when the von Mises stress equals the yield strength:

[Eq. 12.42]

For the standard uniaxial tension test, σII = σIII = 0 (Figure 12.19b), and the yield
condition reduces to σI = Sy , which is consistent with the original definition of the yield
strength.

During plastic deformation, experiments show that the volumetric strain is zero; the
material volume does not change. The plastic volumetric strain is the sum of the plastic
normal strains:

[Eq. 12.43]

For a perfectly plastic material, the plastic strains in each principal direction due to the
principal stresses can be described by:
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--------------------------------------------------------------------------------------------------

1 2/

=
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εp1 εp2 εp3+ + 0=

Figure 12.18.  (a) Stress state developed in 
rectangular beam due to axial load N and 
bending moment M. (b) Stresses resolved 
into those due to axial loading only, and 
those due to bending only.
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[Eq. 12.44]

where the value of λ defines the magnitude of the
strains applied to the material. The terms in the
parentheses correspond to the Poisson effect with
ν = 0.5, the value of Poisson’s ratio during plastic
deformation.

The applied stresses are generally known, so once
the plastic strain in any direction is measured, λ is
determined. With λ known, the other plastic strains can
be calculated.

Taking the difference of the plastic strains gives:

[Eq. 12.45]

Yield Conditions for Plane Stress
In plane stress, the out-of-plane principal stresses

is zero, e.g., σIII = 0 (Figure 12.19c). Thus, the plane–
stress yield condition reduces to:

[Eq. 12.46]

and the plastic strains reduce to:

[Eq. 12.47]
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Figure 12.19.  (a) A 3D element 
subjected to principal stresses. 
(b) Element subjected to 
uniaxial stress. (c) Element 
subjected to plane stress 
principal stresses. (d) Element 
subjected to a general state of 
plane stress.
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General Plane Stress State

In the x–y plane, the stresses are σx , σy, and τxy; the out-of-plane stresses are
σz = τyz = τzx = 0 (Figure 12.19d). The in-plane principal stresses are:

[Eq. 12.48]

Substituting these expressions into the von Mises yield criterion (Equation 12.46) gives:

[Eq. 12.49]

Applying the strain transformation equations, the corresponding plastic strains are:

[Eq. 12.50]

Uniaxial Stress

In the uniaxial test, the only non-zero stress is σI  (Figure 12.19b). The plastic normal
strains are then:

[Eq. 12.51]

which conform to experimental observations that the volumetric change during plastic
deformation is zero:

[Eq. 12.52]

Example 12.11  Over-Pressurized Pipe

Given: A pipe of radius r and thickness t (t << r,
Figure 12.20) has been accidentally over-
pressurized (it happens!). In an after-event
investigation, the plastic strain in the hoop
(circumferential) direction is determined to be
εH,p = 4.0%. The yield strength is Sy .
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Figure 12.20.  Pressurized pipe.
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Required: Determine (a) the pressure to yield the pipe and (b) the change in thickness of
the pipe due to plastic deformation corresponding to εH,p .

Solution: The principal stresses in the pipe are:

; ;

Applying the plane–stress yield condition (Equation 12.46):

so, the pressure at yield is: 

Answer: 

The plastic strain in the hoop direction is:

Since the measured value of the hoop strain is εH,p = 0.04 = 4.0%, then:

Hence, the longitudinal and radial strains are: 

The change in thickness is:

Answer: 

The pipe does not elongate during plastic deformation (εL,p = 0), which is beneficial since
the end-supports of the pipe will not be disturbed. The increase in radius (positive hoop
strain) is taken up by the decrease in thickness of the pipe wall (negative radial-strain). The
net change in material volume is zero, i.e., Σεi = 0.

Example 12.12  Yield Condition of a Pressurized Pipe under Torque

Given: A pipe of radius r and thickness t (t << r), contains a gas at pressure p
(Figure 12.21). Due to the movements of the supports, it is also subjected to a torque T; the
pipe acts as a thin-walled shaft when subjected to torque. The yield strength is Sy .
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Required: Determine the torque to cause
yielding Ty as a function of pressure p.

Solution: The stresses due to the pressure
are:

and

The shear stress due to the torque on a thin-
walled shaft is:

Due to the shear stress, the hoop and longitudinal stresses are no longer the principal
stresses. The general plane stress yield condition (Equation 12.49) must be applied:

The torque to cause yielding is then:

Answer: 

The normalized torque T* is plotted against the normalized pressure p* in Figure 12.22,
where:

and

The solid line defines the yield surface.

As an example, if a Factor of Safety of 1.5
has been applied to the hoop stress, then:

so p* = 0.67

For this pressure, the yield torque of the
pipe is:
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Figure 12.21.  Pressurized pipe 
subjected to torque.

Figure 12.22.  Torque versus 
pressure yield surface.



www.manaraa.com

390 Ch. 12 Ductile Materials and Design

Example 12.13  Solid Circular Shaft Subjected to Torque and Axial Load

Given: A solid circular shaft of
radius R supports torque T and
axial force P (Figure 12.23). Force
P is tensile (P > 0) or compressive
(P < 0). The yield strength in
tension or in compression is Sy and
the shear yield strength is

.

Required: Determine the load combination, P and T, that defines the limit load condition. 

Solution: The axial stress is:

Taking the shear stress as constant over the cross-section at the limit load, the torque is:

so:

With σx = σ and σy = 0, and τxy = τ, the plane stress von Mises yield criterion
(Equation 12.49) reduces to:

or

The force-only limit load (i.e., T = 0) is: 

 

and the torque-only limit torque (P = 0) is: 

Substituting PL and TL into the yield equation gives the limit load condition: 

Answer: 
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Figure 12.23.  Solid circular shaft subjected to 
torque and axial load.
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Since the force and torque terms are squared, their applied directions do not matter – the
force may be tensile or compressive, the torque may be positive or negative.

Yield Conditions for Plane Strain
In plane strain, the out-of-plane strain is

zero, ε3 = 0. From Equation 12.44:

[Eq. 12.53]

Hence, the out-of-plane stress must be:

[Eq. 12.54]

To enforce the plane strain condition during
yielding, the out-of-plane normal stress is the
average of the other two stresses (Figure 12.24).
Again, this corresponds to a Poisson’s ratio
during plastic deformation of ν = 0.5.

Substituting Equation 12.54 into the general
3D yield condition – Equation 12.41 and
Equation 12.42 – gives the yield condition:

[Eq. 12.55]

The solutions to this condition are shown in
Figure 12.25. Within the shaded region, no
yielding occurs.

If σI and σII are of the same sign (and hence
σIII is of the same sign), the principal stresses
can be very much larger than the value of Sy . It
is the difference in the principal stresses, σI and
σII , that causes yielding. An example of extremely large principal stresses occurs in
mountains, where earth is subjected to high hydrostatic compressive stresses, but does not
yield.

The principal strains for the plane strain case are:

[Eq. 12.56]
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Figure 12.24.  Plane strain element.

Figure 12.25.  Yield condition for 
plane strain. Yielding does not occur 
if the principal stresses are within 
the region bounded by the two lines.
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General Stress State

If a plane strain element is subjected to stresses σx , σy , and τxy , the yield condition
gives:

[Eq. 12.57]

The corresponding strains are:

[Eq. 12.58]

Recall that the maximum magnitude of the in-plane shear stress is:

[Eq. 12.59]

and the yield condition (Equation 12.55) becomes two straight lines (Figure 12.25): 

[Eq. 12.60]

Example 12.14  Punch Load on a Half-Space

Given: A hard rectangular punch of width d
and infinite depth (into the paper) is pushed
into a half-space volume made of an
elastic–perfectly plastic material
(Figure 12.26a). This situation occurs in
practice as the Brinell hardness test to
measure the hardness of a material. In the
model, the punch and material are assumed
to be infinitely thick (into the paper), so the
system is a 2D plane strain problem. The
term half-space implies the material is
infinitely thick into the paper and infinitely
deep below the plane surface.

Required: Using approximate methods,
determine the value of the punch load per
unit depth into the plane of the paper, PL ,
that is required to indent (yield) the
material.
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Figure 12.26.  (a) Rectangular punch 
bearing on Field 1. (b) Approximate 
stresses in the three fields.
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Solution: 

Force Method to Determine a Lower Bound

In the force method, an equilibrium stress field is guessed and a lower bound to the load is
found.

As a first approximation, the half-space is broken into three fields, Field 1, directly under
the punch, and Fields 2, on either side of Field 1 (Figure 12.26b). The shear stress in all
parts of the half space is assumed to be zero.

Under the punch, in Field 1, a stress element is subjected to the punch stress σP . Such an
element may also be subjected to a horizontal compressive stress σH . The stress on the
surface above Field 2 is zero, so a stress element in Field 2 is only subjected to horizontal
stress σH. Although this simplified stress distribution is unlikely the actual stress response,
the stresses are in equilibrium, as required in the force method.

From the plane strain yield condition, an element in Field 2 yields when:

In Field 1, the horizontal stress for equilibrium across the junction of the fields is σH , and
the vertical stress from the punch is σP . Hence, yielding occurs in Field 1 when:

To yield the material, the applied stress must be:

or

Since this is an equilibrium stress field that nowhere exceeds the yield condition (σo = Sy),
the estimate for σP underestimates the required value of the punch load. However, the
result for σP indicates that the plane strain condition increases the stress required to indent
the material to values above the uniaxial yield strength, i.e., σP > Sy .

Displacement Method to Determine an Upper Bound

In the displacement method, a displacement field is guessed and an upper bound to the
load is found. Equilibrium does not necessarily need to be satisfied.

Consider the material near the punch to be made of five rigid equilateral triangles A, B, C,
D, and E, each of side d, shown in Figure 12.26c. The triangles are restricted to move by
either slipping with respect to each other, or slipping along the stationary slip planes
represented by the heavy lines in Figure 12.26d. The term slip is used to describe the
physics of plastic deformation (beyond the scope of this text). Slip is caused by the shear
stress on the plane reaching a critical value, i.e., τ = τy .
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3
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3
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Due to punch stress σP , triangle A moves
vertically downward distance Δ. To
accommodate the movement of triangle
A, triangles B and C move horizontally
outward distance . Triangles D
and E move vertically and horizontally,
respectally. Triangle D moves horizontally
half as far as triangle B and vertically
half as far as triangle A. Thus triangle
D moves horizontally  and
vertically  Δ/2 for a net movement of

 along the 60° (heavy) slip lines.

The triangles move, or slip, when the
shear stress between them equals to the
shear yield strength:

The shear force per unit depth (into the
paper) on each side of the triangle during
slip is then: 

To determine the energy dissipated as the triangles slip past each other, the relative
movement of each pair of triangles must be determined. Also, the movement of the
triangles along the stationary slip planes (the heavy lines in Figure 12.26d) must be
determined. The relative movement between:

• Triangles A and B is .

• Triangle B and the stationary horizontal slip plane is .

• Triangles B and D is .

• Triangle D and the stationary 60° slip plane is .

The movements of triangles B and D are mirrored by triangles C and E. Thus, the energy
dissipated per unit depth by the movement of the triangles is:

The work done per unit depth by the punch in moving downward distance Δ during plastic
deformation is:

Δ 3⁄

Δ 2 3( )⁄

Δ 3⁄

τ τy

Sy

3
-------= =

f
Syd

3
--------=

2Δ 3⁄
Δ 3⁄

Δ 3⁄
Δ 3⁄

UL 2
Syd

3
--------

2Δ
3

-------
⎝ ⎠
⎜ ⎟
⎛ ⎞ Syd

3
--------

Δ
3

-------
⎝ ⎠
⎜ ⎟
⎛ ⎞ Syd

3
--------

Δ
3

-------
⎝ ⎠
⎜ ⎟
⎛ ⎞ Syd

3
--------

Δ
3

-------
⎝ ⎠
⎜ ⎟
⎛ ⎞

+ + +
10
3

------SyΔd= =

Figure 12.26.  (c) Material near punch 
divided into five equilateral triangles. Slip 
is permitted parallel to the sides of the 
triangles. (d) Motion of triangles due to 
downward displacement Δ of triangle A.
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Setting the applied work equal to the dissipated energy gives the stress to indent the
material:

This stress overestimates the required indentation stress; it is an upper bound. 

Lower and Upper Bounds on Load

Calculations based on the force (equilibrium) method predict a load less than the
actual value (a lower bound). Calculations based on the displacement method predict a
load greater than the actual value (an upper bound). In the case of the punch problem, the
limit load per unit depth is bound by:

Answer: 

More detailed finite element calculations show that PL for a flat punch is approximately
3.0Syd. This simple analysis has bounded the load necessary to indent the plane strain
material.

12.7  Cyclic Thermal Loading: Shakedown and Ratcheting

Loads – both mechanical and thermal – are often cyclic. Power plants (on earth and in
space), engines, and electronic chips, are all subject to cyclic temperature loads. The
purpose of this section is to determine the effect of cyclic thermal loading on the limit load
ideas introduced earlier in this chapter.

For an elastic–perfectly plastic ductile system under static mechanical loading, the
load at first yield Fy is the maximum load it can support before any material point yields.
The limit load FL is the maximum load the system can support. At the limit load, all
material points have yielded, and unconstrained plastic deformation occurs. 

In the case of static mechanical loading combined with cyclic thermal loading, the
corresponding design concepts are shakedown and ratcheting. Shakedown is a condition
reached after initial plastic straining produces a beneficial state of residual stress. After
initial yielding, subsequent cyclic loading occurs entirely in the elastic range. When the
loading exceeds the condition for shakedown, ratcheting occurs. Ratcheting is the
accumulation of plastic strain with each thermal cycle. In microchip technology, this
phenomenon is referred to as thermal crawl.

Two-Bar System Subjected to Constant Force and Thermal Cycling
Shakedown and ratcheting are illustrated by the two-bar system shown in

Figure 12.27a. Bars 1 and 2 are constrained to elongate vertically by the same amount δ
due to the rigid boss. The system is subjected to a constant mechanical load F. Bar 2 is

W σPd( )Δ=

σP
10
3

------Sy 3.33Sy= =

2.31Syd PL 3.33Syd< <
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subjected to a cyclic temperature load ΔT
(Figure 12.27b). For this case, the bars are
identical, with length L and cross-sectional
area A/2. The material properties are
modulus E, yield strength Sy , and thermal
expansion coefficient α. The material
properties are assumed to be constant with
temperature, and the material is elastic–
perfectly plastic. The goal is to investigate
the response of the system to mechanical
loading F and thermal loading ΔT.

Elastic Response without Thermal
Load

Consider the case when only force F is
applied. There is no thermal load (thermal
load condition (a) in Figure 12.27b). The
stresses in the bars, σ1 and σ2 , must satisfy
equilibrium:

[Eq. 12.61]

Compatibility requires that the bars
elongate by the same amount. Here, since
the bars are the same length, their strains are
always equal. For the elastic case:

[Eq. 12.62]

Equation 12.62 requires that the stresses in the bars also be the same, so:

[Eq. 12.63]

The system deflection is:

[Eq. 12.64]

Elastic Response with Thermal Load

The application of thermal load ΔT to Bar 2 (thermal load (b) in Figure 12.27b),
causes Bar 2 to elongate due to thermal expansion. The stresses in the bars must still
satisfy equilibrium:

F A
2
---σ1= A

2
---σ2+

ε1 ε2=

σ1

E
------

σ2

E
------=

σ1 σ2
F
A
---= =

δ FL
AE
-------=

Figure 12.27.  (a) Two-bar system 
subjected to constant load F. 
(b) Bar 2 is subjected to a cyclic thermal 
load ΔT.
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[Eq. 12.65]

Compatibility requires that the strains in the bars always be the same:

[Eq. 12.66]

Bar 1 has purely elastic (mechanical) strain, while Bar 2 now has both elastic and thermal
strains.

Combining Equations 12.65 and 12.66, the stresses are:

[Eq. 12.67]

To maintain compatibility during thermal loading, the stress in Bar 1 increases, and that in
Bar 2 decreases. To maintain equilibrium, the stresses must change by equal and opposite
amounts – the magnitude of the thermal stress, Eα(ΔT)/2.

The deflection of the system equals the elastic deflection of Bar 1:

[Eq. 12.68]

To simplify the algebra, the following
dimensionless groups are introduced:

[Eq. 12.69]

The stresses of Equation 12.67 can then be
rewritten in their normalized form:

[Eq. 12.70]

The stress–strain response in each bar due
to thermal loading is shown in
Figure 12.28; both bars start at point (a),
and move to shaded points (b). Yielding
does not occur as long as the normalized
stress in Bar 1 is less than unity, s1 < 1.0
(i.e., σ1 < Sy).

F A
2
---σ1= A

2
---σ2+

ε1 ε2=

σ1

E
------

σ2

E
------ α ΔT( )+=

σ1
F
A
--- Eα ΔT( )

2
--------------------+=

σ2
F
A
--- Eα ΔT( )

2
--------------------–=

δ L
E
--- F

A
--- Eα ΔT( )

2
--------------------+=

s1

σ1

Sy
------   ;   s2

σ2

Sy
------==

p F
SyA
---------   ;   t Eα ΔT( )

2Sy
--------------------==

s1 p t+=

s2 p t–=
Figure 12.28.  Stress–strain responses 
of bars due to mechanical load only – 
point (a), and due to mechanical and 
thermal loads – points (b). When thermal 
load is applied, the response of each bar 
moves from (a) to (b). At (b), Bar 1 has 
only mechanical strain, while Bar 2 has 
both mechanical and thermal strains.
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Although the strains in the bars are the same, the strain is Bar 1 is purely elastic, while
that in Bar 2 has both elastic and thermal components (Figure 12.28):

[Eq. 12.71]

Upon removal of the thermal load (to thermal loading (c) in Figure 12.27b), the
stresses and strains of both bars return to their initial values s = p = F/Sy A and ε = F/AE
(point (a), Figure 12.28). The cyclic thermal load can continue to be applied and the
system will continue to remain elastic.

First Yield due to Thermal Load
Bar 1 just yields upon application of

thermal load t if:

[Eq. 12.72]

as shown in Figure 12.29. For equilibrium,
the stress is Bar 2 is then:

[Eq. 12.73]

For a given mechanical load p, the
cyclic thermal load t to cause first yielding
is, from Equation 12.72:

[Eq. 12.74]

This condition is shown in Figure 12.30 for
the case being studied. Provided that the
cyclic thermal load t is less than or equal to
1–p, the system remains elastic upon further
cyclic loading.

Elastic–Plastic Response 

When the thermal load t equals ty ,
Bar 1 reaches the yield condition. Using the
ideal elastic–plastic model, the stress in
Bar 1 cannot exceed the yield strength. 

If the thermal load exceeds ty  (t > ty),
Bar 2 continues to thermally expand, and
Bar 1 must deform plastically (at σ1 = Sy)
to ensure that the elongations of the bars

ε1

σ1

E
------ p t+

E
-----------Sy= =

ε2

σ2

E
------ α ΔT( )+ p t–

E
----------Sy

2t
E
-----Sy+= =

s1 p t+ 1.0= =

s2 p t– 2p 1–= =

ty 1 p–=

Figure 12.29.  Stress–strain responses 
– point (a) to points (b) – for value of 
thermal load to cause Bar 1 just to yield 
(t = ty).

Figure 12.30.  Thermal–Mechanical 
load map to ensure elastic conditions.
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remain the same. This response is shown in
Figure 12.31 (point (a) to points (b)). The
stresses are now:

[Eq. 12.75]

Since yielding occurs in Bar 1, its strain has
elastic and plastic components:

[Eq. 12.76]

where εp1 is the plastic strain in Bar 1. The
strain in Bar 2 has elastic and thermal
components:

[Eq. 12.77]

Since strains ε1 and ε2 are equal in this
system, the plastic strain in Bar 1 must be:

[Eq. 12.78]

Cyclic Thermal Loading – Shakedown

With Bar 1 having plastic strain given
by Equation 12.78, thermal loading ΔT is
now removed (to thermal loading (c) in
Figure 12.27b). The stress in Bar 1
decreases linearly and that in Bar 2
increases linearly (from points (b) to (c) in
Figure 12.32). The additional behavior is
elastic and the changes in the stresses are:

[Eq. 12.79]

The stresses upon removal of the thermal
load are:

[Eq. 12.80]

as shown in Figure 12.32.

s1 1.0=

s2 2p 1–=

ε1

Sy

E
----- εp1+=

ε2

σ2

E
------ α ΔT( )+

2p 1–( )Sy

E
-------------------------

2tSy

E
----------+= =

E
Sy
-----εp1 2 p t+( ) 2–=

Δs1 Δσ1 Sy⁄ t–= =

Δs2 Δσ2 Sy⁄ +t= =

s1 1 t–=

s2 2p 1– t+=

Figure 12.31.  Stress–strain responses 
– point (a) to points (b) – for values of 
thermal load large enough to cause 
Bar 1 to plastically deform (t > ty).

Figure 12.32.  Stress–strain response 
for thermal unloading after Bar 1 has 
plastically deformed (t > ty). Bar 2 does 
not yield provided t < ts . The stress–
strain responses are from points (b) to 
points (c).
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Provided that  after removal of
the thermal load, Bar 2 does not yield. 

The thermal load t required for Bar 2 to
just yield (s2 = 1.0) when the thermal load
is removed is:

[Eq. 12.81]

The response for Bar 2 to just yield is
shown in Figure 12.33.

For , except for the first half
cycle, the response to cyclic thermal
loading is completely elastic. There will be
no further plastic strain in either bar with
continued thermal cycling. This condition is
called shakedown and ts is the shakedown
limit. 

For the particular case being studied,
shakedown occurs in the region of the t–p
diagram shown in Figure 12.34. Here, for a
given load p, the shakedown limit ts is twice
the value of the elastic limit ty .

For shakedown, plastic strain occurs in
Bar 1 only during the first thermal loading,
with value given in Equation 12.78. Further
cyclic thermal loading results in only elastic
deformation, the bars cycling between
points (b) and (c) in Figures 12.32 or 12.33.
The shakedown phenomenon is integrated
into design codes.

Cyclic Thermal Loading – Ratcheting

When the cyclic thermal load exceeds the shakedown condition, t > ts , Bar 1 yields
upon first application of the thermal load. In addition, the plastic deformation of Bar 1 is
large enough to cause Bar 2 to plastically deform when the thermal load is removed. 

The stress–strain response for this condition is shown in Figure 12.35 as temperature is
removed (from thermal load (b) to (c)). The stresses when the thermal load is removed are:

[Eq. 12.82]

With the thermal load removed, the strain in Bar 1 has elastic and plastic components:

s2 1.0≤

t ts 2 1 p–( )= =

ty t ts≤ ≤

s1 2p 1–=

s2 1=

Figure 12.33.  Thermal unloading after 
Bar 1 has plastically deformed; Bar 2 
just at yield (t = ts).

Figure 12.34.  Thermal–mechanical 
load map to ensure shakedown.
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[Eq. 12.83]

Substituting the values of s1 from
Equation 12.82 and Eεp1/Sy from
Equation 12.78, gives the total strain in
Bar 1:

[Eq. 12.84]

The total strain in Bar 2 is:

[Eq. 12.85]

so its plastic strain is:

[Eq. 12.86]

Since the total strains in the bars are the
same, ε1 = ε2 , the plastic strain in Bar 2 is
found by subtracting unity (1.0) from
Equation 12.84, so that:

[Eq. 12.87]

During the first thermal load cycle, both
bars experience plastic deformation.

Reapplication of Thermal Load, t > ts
When the thermal load is applied a

second time (from thermal load (c) to (d) in
Figure 12.27b), Bar 2 unloads elastically,
and a second increment of plastic strain is
induced in Bar 1 (Figure 12.36):

[Eq. 12.88]

where the second number in the subscript represents Cycle 2. This strain is the same as the
plastic strain in Bar 2 during the first thermal unloading half-cycle (Equation 12.87). With
each subsequent application of the thermal load, Bar 1 deforms plastically by the same
amount.

ε1

σ1

E
------ εp1+

s1Sy

E
---------- εp1+= =

E
Sy
-----ε1 2p 1–[ ] 2 p t+( ) 2–[ ]+=

ε2

Sy

E
----- εp2+=

E
Sy
-----εp2

E
Sy
-----ε2 1–=

E
Sy
-----εp2 2 2p t 2–+( )=

εp1 2, 2 2p t 2–+( )
Sy

E
-----=

Figure 12.35.  Thermal unloading for 
t > ts . The plastic strain in Bar 1 is large 
enough to cause Bar 2 to plastically 
deform when thermal load is removed. 

Figure 12.36.  Second application of 
thermal load for t > ts . Bar 1 plastically 
deforms a second time. The stress–
strain responses are from points (c) to 
points (d).
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Likewise, during the second thermal
unloading, Bar 2 deforms plastically by the
same amount as during the first thermal
unloading. Hence, during each thermal
cycle, each bar, and thus the system itself,
experiences an incremental plastic strain of:

[Eq. 12.89]

This continual elongation of the bars
with cyclic thermal loading is called
ratcheting. There is no limit for the
condition; plastic strain will continue to
accrue – the system will ratchet – with each
cycle.

If there are N loading cycles, then the
total plastic strain is:

 [Eq. 12.90]

Thermal–Mechanical Load Map and
Strain History

The complete loading t–p map for the
two-bar system studied here is shown in
Figure 12.37. Figure 12.37 is only valid for
two bars of equal length and area, made of
the same material, and with thermal loading
only on Bar 2 (Figure 12.27).

A purely elastic response occurs for
combinations of p and t in the elastic region
of Figure 12.37. For such load combinations,
both bars remain elastic during thermal
cycling. The thermal load in Bar 2 is not
sufficient to cause Bar 1 to yield.

Elastic shakedown occurs for
combinations of p and t in the shakedown
region of Figure 12.37. For such load
combinations, Bar 1 yields upon initial
application of the temperature in Bar 2, but
further thermal cycling produces only elastic
responses in both bars, as shown in the strain
history diagram of Figure 12.38b.

Δεp 2 2p t 2–+( )
Sy

E
-----=

ε N( ) 2 2p t 2–+( )
Sy

E
-----N=

Figure 12.37.  Thermal–mechanical 
load map.

Figure 12.38.  (a) Temperature history of 
Bar 2. (b) Strain history of Bar 1 for 
shakedown condition. (c) Strain history 
of Bar 1 for ratcheting condition.
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Ratcheting occurs for combinations of p and t above the shakedown region. Plastic
straining occurs during each half of the thermal load cycle. The dashed line in
Figure 12.37 represents points in the ratcheting region that have the same value of plastic
strain per cycle Δεp , given by Equation 12.89. During ratcheting, the system continuously
elongates, as shown in Figure 12.38c.

Example 12.15  Thermal Cycling of a Two-Bar System

Given: The two-bar system just studied is
made of steel (E = 30,000 ksi, Sy = 36 ksi, α =
14 ×10–6/°C) and is subjected to constant force
F and cyclic thermal loading ΔT (Figure 12.39).
The bars are of equal length L = 24 in., and
equal cross-sectional area A = 0.25 in.2. The
mean stress due only to mechanical loading is
σ = 10 ksi. Assume that the material properties
remain constant with temperature.

Required: Determine (a) the thermal load ΔTy
to cause first yield, (b) the maximum thermal
load ΔTs that does not exceed the shakedown
condition, and (c) the plastic strain per cycle
when ΔT = 400°C. 

Solution: Step 1. The load normalized by the
yield strength is:

The elastic strain caused by load F is:

Bar 1 will just yield when the thermal load on
Bar 2 is (Equation 12.74):

or

Answer: 

Step 2. The maximum thermal load for shakedown for p = 0.278 is (Equation 12.81):

p σ
Sy
----- 10 ksi

36 ksi
-------------- 0.278= = =

ε σ
E
--- 10

3×10

30
6×10

------------------ 0.033%= = =

ty 1 p– 1 0.278– 0.722= = =

ΔTy

2tySy

Eα
------------- 2 0.722( ) 36 000 psi,( )

30
6×10  psi( ) 14

6–×10 °C 1–( )
----------------------------------------------------------------------= =

ΔTy 124° C=

Figure 12.39.  (a) Two-bar structure 
subjected to constant load F and 
(b) cyclic temperature ΔT.
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Answer: 

Step 3. When the thermal load is ΔT = 400°C:

The point (p,t) = (0.278, 2.33) corresponds to a point outside of the shakedown region
(Figure 12.37). The system is ratcheting. The plastic strain per cycle is:

Answer: 

After 10 thermal cycles, the accumulation of plastic strain is 2%. Accumulated strains due
to ratcheting can grow quickly, and are generally much greater than the static elastic
strains (here, 0.033%).

12.8  Large Plastic Strains

In manufacturing processes such as metal forming, the plastic strains are much larger
than the elastic strains. The presence of large plastic strains affects the load capacity and
the in-service failure strain of a component.

When a tensile test is performed on a bar of ductile material, the load–displacement
(P–Δ) graph has the form shown in Figure 12.40. The load reaches a maximum value,
when necking begins to occur. The load then decreases with increasing displacement until
the specimen breaks into two parts. The maximum load defines the point of necking or
plastic instability.

Strain and stress are generally defined in terms of the original length L, and original
cross-sectional area A, of the bar. The nominal strain or engineering strain is:

[Eq. 12.91]

and the nominal stress or engineering stress is:

[Eq. 12.92]

The graph of engineering stress–strain, shown in Figure 12.40b, has the same shape as the
load–displacement (P–Δ) diagram of Figure 12.40a. The engineering stress–strain (σ–ε)

ts 2 1 p–( ) 1.44= =

ΔTs 2 ΔTy( ) 248°C= =

t Eα ΔT( )
2Sy

-------------------- 30
6×10  psi( ) 14

6–×10 °C 1–( ) 400°C( )
2 36 000 psi,( )

------------------------------------------------------------------------------------------- 2.33= = =

Δεp 2 2p t 2–+( )
Sy

E
----- 2 2 0.278( ) 2.33( ) 2–+[ ] 36

3×10

30
6×10

------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

0.002= = =

Δεp 0.2% =

εn
Δ
L
---=

σn
P
A
---=
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curve is simply the load–
displacement curve divided by
constant values – original area A
and original length L.

The nominal strain to failure is
typically 20% or more in ductile
materials, many times greater than
the elastic strains which are in the
order of 0.2%. Thus the effects of
elasticity can be neglected in the
current discussion. 

During plastic deformation, the
volume of the material remains
constant (Poisson’s ratio is ν = 0.5
during plastic deformation). If the
extended length of the bar is l and
the reduced cross-sectional area is
a, then neglecting elastic
deformation:

[Eq. 12.93]

In tension, length l > L, so that area
a < A. The actual stress σt , or true
stress, is greater than the nominal
value:

[Eq. 12.94]

To account for the effects of
geometric changes of the bar, it is
convenient to introduce the concepts
of true strain εt and true stress σt .

True Strain and True Stress
The length of a tension member in the strained condition is l = L + Δ and the cross-

sectional area is a. When a further increment of elongation δl is applied to the bar, the
increment of true strain δεt is defined as:

[Eq. 12.95]

The increment of true strain is the ratio of the incremental change in length δl to the
current length l. Integrating δεt from the bar’s initial length L to any length l, gives the true
strain at length l:

AL al=

σt
P
a
--- =  P

A
---> σn=

δεt
δ l
l

----=

Figure 12.40.  (a) The load–displacement 
diagram for a ductile bar in tension. (b) The 
engineering stress–engineering strain diagram 
for a ductile bar in tension.
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[Eq. 12.96]

Since l = L + Δ and εn = Δ/L, then true strain εt can be related to engineering strain εn :

[Eq. 12.97]

For small (i.e., elastic) values of strain, the error in using engineering strain is
negligible since:

[Eq. 12.98]

For example, for strains within the elastic range, e.g., εn = 0.10%, the true strain is
0.09995%, giving an error with respect to the true strain of 0.05%. Hence, it is acceptable
to use engineering strain in the elastic range. As the strain increases, so does the error. If
the engineering strain is εn = 10%, well beyond the elastic region, the true strain is
εt = 9.5%, an error of about 5%. 

Alternatively, strain can be expressed as:

[Eq. 12.99]

True stress σt is defined in terms of the current cross-sectional area a:

[Eq. 12.100]

Combining the constant volume condition Equation 12.93 (a = AL/l) with Equation 12.99
gives:

[Eq. 12.101]

where σn is the nominal or engineering stress. For typical elastic strains, e.g., εt = 0.10%,
the error in the nominal stress with respect to true stress is about 0.1%. Hence, it is
acceptable to use engineering stress in the elastic range. For large values of strain, e.g.,
εt ~ 10%, the error in the nominal stress is about 9.5%.

True Stress–True Strain Curve
When the engineering stress–engineering strain (σn–εn) diagram is converted to the

true stress–true strain (σt–εt) diagram, the resulting curve has the form shown in
Figure 12.41, plotted up to the point at which the system begins to neck. In tension, true
stress is greater than its related engineering stress, and true strain is less than its related
engineering strain.

For many metals, the true stress–true strain response is described by the relationship:

[Eq. 12.102]

εt  δl
l

----
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εn 0→
lim εn≈=

l
L
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---=

σt
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------- σneεt= =
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where n and K are material constants.
Table 12.3 gives typical values of n,
which is known as the hardening index,
and constant K. The relationship of
Equation 12.102 is used until necking
occurs. Once the test specimen starts to
neck locally, stress in the bar is no longer
the same throughout, and the true stress–
strain relationship is no longer valid.

Condition for Plastic Instability
Plastic instability, or necking,

occurs when the applied load reaches
a maximum. The load–true stress
relationship is:

[Eq. 12.103]

The maximum load occurs when δP = 0,
so that:

[Eq. 12.104]

from which:

[Eq. 12.105]

Since the volume is constant:

[Eq. 12.106]

then:

[Eq. 12.107]

It follows from Equations 12.107 and 12.95 (δεt = δ l/l) that:

[Eq. 12.108]

Equating Equations 12.105 and 12.108 gives the instability condition:

[Eq. 12.109]

P σta=

δP δ σta( ) σt δa( ) a δσt( )+ 0= = =

δa
a

------
δσt

σt
--------–=

V AL al= =

Vδ al( )δ a δl( ) l δa( )+ 0= = =

δa
a

------ δl
l

----– dεt–= =

δσt

δεt
-------- σt=

Source: http://www.key-to-steel.com/articles/
art42.htm Accessed May 2008.

Table 12.3.  Sample values of hardness 
index n and constant K. 

Material n K (ksi)

Steel, 0.05% carbon, 
annealed

0.26 77

Steel, 0.6% C, quenched 
and tempered, 1000°F

0.10 228

Copper, annealed 0.54 46

70/30 brass, annealed 0.49 130

Figure 12.41.  Stress–strain curves for 
engineering and true values of stress and 
Strain for steel, 0.05% carbon, annealed. 
Response up to plastic instability (necking).
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where, from Equation 12.102:

[Eq. 12.110]

Differentiating:

[Eq. 12.111]

Equating Equation 12.110 and 12.111 gives the true strain at plastic instability (necking):

[Eq. 12.112]

The true strain at instability is equal to the hardening index, n. Referring to Table 12.3, the
true instability strain for annealed copper is 54%, and that for a quenched and tempered
steel is 10%. Typical experimental data indicate that the ductility (engineering strain to
failure) of annealed copper is about five times that of a quenched and tempered steel.

In terms of engineering strain, instability or necking occurs at (from Equation 12.97):

[Eq. 12.113]

For the stress–strain curves plotted in Figure 12.41, necking occurs at true strain
εt,o = n = 0.26, which is equivalent to engineering strain εn,o = 0.30.

Three-Dimensional True Stress–True Strain Plastic Instability
For 3D problems, the material response is analogous to the true stress–true strain

tensile response given in Equation 12.102:

[Eq. 12.114]

Here,  is the effective stress and  is the effective strain. These two terms are defined
by the principal values of true stress and true strain:

[Eq. 12.115]

[Eq. 12.116]

For a material loaded in the true principal stress state, σI,t , σII,t , σIII,t , the true principal
strains are:

σt Kεt
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δεt
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εt o, n=
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σt εt
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-------------------------------------------------------------------------------------------------------------------

1 2/

=
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[Eq. 12.117]

The factor of 1/2 corresponds to the value of Poisson’s ratio during plastic deformation.
For the uniaxial case (σII,t = σIII,t = 0), the effective stress reduces to: .

The 3D plastic instability is shown with a spherical pressure vessel in Example 12.16. 

Example 12.16  Instability of a Spherical Pressure Vessel 

Given: A spherical pressure vessel (Figure 12.42) is subjected to increasing pressure p
until plastic instability takes place. Instability occurs when the pressure reaches its
maximum value. Such a test is often called the bulge test. The initial radius is R and
thickness is T (R << T). Under load, the radius is r and the thickness is t (r << t). The yield
strength is Sy .

Required: Using the effective stress and strain equations for 3D systems, determine the
true strain in the plane of the pressure vessel wall at plastic instability, ε1,o . 

Solution: Step 1. For a spherical pressure vessel, the true principal stresses are:

; ;

where σI,t and σII,t are in the plane of the vessel wall and σIII,t is perpendicular to the wall.
Applying Equation 12.115, the effective true stress is:

Step 2. The true strains are related by the observation that the volumetric strain during
plastic deformation is zero: 

From symmetry of the spherical vessel:

so the constant volume condition gives the true strain in the III-direction:

εI t,

 εt 

σt

------- σI t,
1
2
--- σII t, σIII t,+( )–=

εII t,

 εt 

σt

------- σII t,
1
2
--- σIII t, σI t,+( )–=

εIII t,

 εt 

σt

------- σIII t,
1
2
--- σI t, σII t,+( )–=

σt σI t,=

σI t,
pr
2t
-----= σII t,

pr
2t
-----= σIII t, 0=

σt σI t,=

ε1 t, ε2 t, ε3 t,+ + 0=

ε1 t, ε2 t,=

ε3 t, 2ε1 t,–=
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Applying Equation 12.116, the effective true strain
is:

Step 3. From equilibrium of a spherical half-shell
under pressure p:

so

The condition for maximum pressure p is dp = 0:

from which:

The increments of the true strains are:

Noting that:

 (since volume does not change during yielding) and

then:

or

which is the condition for maximum load. 
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r
------------------

2tσt

r
----------= =

dp 2
t dσt( )

r
---------------

σt dt( )

r
---------------

tσt dr( )

r2
------------------–+ 0= =

dσt

σt

-------- dr
r

-----= dt
t

-----–

dε1 t, dε2 t,
dr
r

-----= =

dε3 t,
dt
t

-----=

dε3 t, 2– dε1 t,=

dεt 2dε1 t,=

dσt

σt

-------- dr
r

----- dt
t

-----– dε1 t, dε3 t,– 3dε1 t,
3
2
---dεt= = = =

dσt

dεt

-------- 3
2
---σt=

Figure 12.42.  (a) Spherical 
pressure vessel. (b) 3D 
element showing the principal 
stresses.
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Applying the uniaxial true stress–true strain relationships (Equations 12.110 and 12.111)
to the effective stress and strain gives:

Setting the two expressions for  equal to each other gives:

Solving for the effective strain:

The corresponding value of the true in-plane strain at failure is therefore:

Answer: 

This is an important result. When manufacturing spherical vessels, load instability, or
necking, occurs at a strain one-third that measured in a uniaxial tension test. The ductility
for this loading and geometry is effectively one-third that of the uniaxial case.

σt Kεt
n=

δσt

δεt

-------- nKεt
n 1–( )=

δσt δεt⁄

δσt

δεt

-------- nKεt
n 1–( ) 3

2
---σt

3
2
---Kεt

n= = =

εt
2
3
---n 2ε1 t,= =

ε
1  o,

n
3
---=
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Chapter 13 Effect of Flaws: Fracture

13.0  Introduction

The normal stress in a straight bar of
cross-sectional area A and length L
subjected to axial force P (Figure 13.1) is:

[Eq. 13.1]

If the working stress is half the yield
strength, Sy /2, then the required cross-
sectional area is: 

[Eq. 13.2]

The weight of the bar is then:

[Eq. 13.3]

where γ is the weight density of the
material.

The yield strength of steel Sy can be
modified by suitable heat and/or mechanical
treatment, or by the addition of alloying
elements. The weight density γ of various
types of steels is essentially constant,
irrespective of the production process. Thus,
the weight of a bar can best be decreased by
selecting a high-strength steel in the design
of an engineering structure.

However, it was learned in practice that components made of high-strength steel had a
tendency to fail by fracture – breaking into two pieces – with little or no plastic
deformation. This phenomenon is also known as fast fracture. Investigations of the failure
surfaces indicated that failures initiated at material locations having small pre-existing
cracks.

σ P
A
---=

A 2P
Sy
-------=

W γAL 2 γ
Sy
-----PL= =

Figure 13.1. Bar subjected to axial force.

Figure 13.2. Some World War II Liberty 
Ships suffered catastrophic fracture. The 
USS Esso Manhattan failed in New York 
harbor in March, 1943, and was 
subsequently repaired (US government 
photograph. Lane, F.C., Ships for Victory. 
Baltimore: The John Hopkins University 
Press, 1951. Reprinted 2001).
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In response to the high demand for ships during World War II, welds replaced riveted
connections in many cases, particularly in the rapidly produced supply vessels called
Liberty Ships. During the welding process, cracks could be unintentionally introduced,
providing initiation points for sudden and catastrophic fracture, as shown in Figure 13.2.
Cracks could begin at welds, and other areas where the geometry was discontinuous (e.g.,
at sharp geometries and notches). Since the steel plates that made up the ship’s hull were
now welded together, a crack could grow through one steel plate (which becomes more
brittle at lower temperatures), through the weld, and into the next plate. In riveted
construction, a crack could only grow through a single plate.

A Board of Investigation was convened by the Secretary of the Navy in 1943 to
inquire into the design and methods of construction of welded steel merchant
vessels, after several failures of inspected vessels.

...A specific case of structural failure cited in the [interim] Report [of June 3,
1944] was the case of the Esso Manhattan... which, on March 29, 1943 [in New
York Harbor] broke in two. The fracture started in a butt weld between plates A-9
and A-10 at the crown of the deck. With a sound described variously as a thump,
thud, bang, crash or explosion, the fracture ran across the deck... and down both
sides, progressing to the bilge port and starboard. The vessel jack-knifed and the
bow dug under an oncoming wave. The crew abandoned in lifeboats and were
picked up... The vessel was repaired and returned to service.

...Contrary to popular impression, hull fractures were not confined to Liberty
ships but were shared by other types of vessels. Practically all fractures
originated in discontinuities occasioned by design details and notch effects
incidental to imperfect welding.

from: The Coast Guard at War: December 7,1941-July 18, 1944, Marine Inspection, Vol. XIII.

Source: http://www.uscg.mil/history/REGULATIONS/CGWar_13_Marine_Inspection.html
Accessed May 2008.

Although manufacturing quality improves with experience and better technology, it is
difficult to ensure an as-manufactured crack-free component. Because the presence of
cracks is inevitable, analysis methods are needed to assess the effect of these flaws on
component strength, and to develop appropriate design tools.

Fracture Mechanics is the branch of engineering mechanics used to predict the
strength of a component with a crack. The study of how components failed by fracture was
accelerated due to the Liberty Ship problems.

Cracks in most metallic (ductile) systems can generally be detected before they are
large enough to lead to catastrophic failure. Aircraft, for example, are routinely examined
for the presence of fatigue cracks that may cause fast fracture. 

In ceramic (brittle) materials, the crack sizes that cause failure are very small, so the
detection of flaws of a critical size is difficult. In such cases, the design strategy is based
on statistical methods. Both approaches for dealing with cracks are discussed in this
chapter.
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13.1  An Introduction to Fracture Mechanics

Early attempts to understand the onset of
fracture were based on stress criteria.
Consider a plate made of a linear elastic
material subjected to applied tensile stress σ
(Figure 13.3). The stress at the edge of an
elliptical hole of length 2a and height 2b in a
large plate (a << W, b << W) is:

[Eq. 13.4]

Large values of a/b cause high stress
concentrations, σmax/σ. 

As a/b increases, the elliptical hole
approaches the geometry of a crack. A
criterion for fracture assumes that when
σmax is equal to the ultimate tensile strength
Su of the material, fracture occurs.
Experiments indicate that this simple
method of modeling cracks does not
accurately predict failure. Equation 13.4
depends only on the ratio a/b, but the
applied stress at fracture was found to
depend on the absolute length of the crack
2a.

It was subsequently discovered that an
energy criterion for fracture could explain
the experimental observations.

Critical Energy Release Rate
To understand the energy approach,

consider a long strip of adhesive tape of
width b, attached to a flat surface
(Figure 13.4a). The tape is removed by
applying a constant force P normal to the
surface. The required force depends on
the strength of the tape’s adhesive with the
surface.

The work to remove tape length a from
the surface is:

σmax σ 1 2a
b
---+⎝ ⎠

⎛ ⎞=

Figure 13.3. Large plate of width 2W 
with elliptical hole, 2a by 2b. The plate is 
considered infinitely large if a << W, 
b << W. The plate is in a state of plane 
stress if its thickness is also small 
compared to its width.

Figure 13.4. (a) Tape pulled from a 
surface by constant force P, exposing 
area ab. (b) The work done to grow 
exposed surface by δa is P δa = Gcb δa.
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[Eq. 13.5]

When a increases to a+δa, the
additional work done by force P is:

[Eq. 13.6]

If the energy needed to separate a unit
surface of the tape is Gc , then the
energy dE required to detach an
additional length of tape δa is

[Eq. 13.7]

Equating the work done by force P
to the energy required to separate the
tape from the surface (Figure 13.4b)
gives:

[Eq. 13.8]

from which:

[Eq. 13.9]

In a simple experiment, a constant force
of 20 N was needed to detach a strip of
cellophane tape b = 20 mm wide, adhered to
the surface of a ceramic tile. The energy per
unit area to separate the tape is thus:

The quantity Gc is the critical energy
release rate, or toughness, of a material. It is
the energy required to create a new pair of free
surfaces of unit area. The dimensions of
toughness are energy per area. A value of
1.0 kJ/m2 is typical of tape-adhesives. 

The toughness of a material is determined
using standardized test methods. Some
representative toughness values are given in
Table 13.1. The energy required to create a
new surface of steel is substantially greater
than that of an aluminum alloy. Brittle
materials such as cast iron and ceramics, and 
wood parallel to the grain, have relatively

W Pa=

δW P δa=

dE Gcb δa=

P δa Gcb δa=

Gc
P
b
---=

Gc
20 N

0.02 m
----------------- 1.0 kJ/m2= =

Table 13.1.  Representative values of 
Toughness Gc and Fracture Toughness Kc .

Material
Gc 

(kJ/m2)

Kc 
(MPa/m1/2)

Mild steel 100 140

Rotor steels 200–240 200–215

Pressure vessel steels 150 170

Aluminum alloys,
high to low strength

8–30 23–45

Cast iron 0.2–3.0 6–20

Cement 0.03 0.2

Engineering ceramics 0.02–0.1 3–5

Wood, perpendicular to 
grain

8.0–20 11–13

Wood, parallel to grain 0.5–2.0 0.5–1.0

Figure 13.5. (a) A component 
subjected to force P with pre-existing 
edge crack of length a. 
(b) Load–displacement diagram of 
component.
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small toughness values. It is often necessary to perform tests on a particular material to
find its toughness.

Elastic Energy Release Rate
Consider a component (compact test specimen) of thickness B having a crack of

length a (Figure 13.5a). A pair of equal and opposite loads, P, are applied at points
initially L apart. The corresponding relative displacement of the loads is Δ. The elastic law
for this condition is:

[Eq. 13.10]

where K is the component stiffness. 

The displacement in terms of the force is:

[Eq. 13.11]

where C is the compliance, or flexibility, of the system. 

When the response is linear–elastic, the work done on the system equals the internal
elastic strain energy stored in the system:

[Eq. 13.12]

which is the triangular area under the P–Δ curve
in Figure 13.5b.

Energy Release Rate at Constant Load

Consider that the load on the component is
such that the material begins to tear, extending
the crack by δa, where δa is small relative to a
(Figure 13.6a). During crack extension, load P
is kept constant. With the extended crack, the
component is less stiff, so for the same force P,
the displacement of the component is larger by
δΔ. The internal strain energy is then:

[Eq. 13.13]

as shown in Figure 13.6b.

The increment of work done by constant
load P as the crack extends is:

[Eq. 13.14]

The change in internal strain energy of the
component is:

P KΔ=

Δ P
K
---- CP= =

W U 1
2
---PΔ= =

U δU+ 1
2
---P Δ δΔ+( )=

δW P δΔ=
Figure 13.6. (a) A component with 
crack growth δa subjected to load P. 
(b) Load–displacement curves for 
components with crack lengths a 
and a+δa, subjected to the same 
load P.
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[Eq. 13.15]

Hence, half of the work done by load P is used to increase the internal strain energy of the
component, which leaves an excess energy δE of:

[Eq. 13.16]

This energy is the energy made available to extend the crack (i.e., to break atomic bonds to
create new free surfaces). 

The energy released per unit area of new crack surface is:

[Eq. 13.17]

G is the elastic energy release rate. This is the energy available per unit area (kJ/m2) to
grow a crack of width B by distance δa. If the calculated value of G exceeds the material
toughness Gc , the crack will grow. If G < Gc , there is not enough energy available to
grow the crack; the crack length remains constant, i.e., δa = 0.

Energy Release Rate at Constant
Displacement

Consider that the load on the component is
such that the material begins to tear, extending
the crack by δa, where δa is small relative to a
(Figure 13.7a). During crack extension,
displacement Δ is held constant. With the
extended crack, the component is less stiff, so for
the same displacement Δ, the required force is
changed by δP. The internal energy is then:

[Eq. 13.18]

as shown in Figure 13.7b. The system with the
larger crack is less stiff, so δP is negative.

Since Δ is constant, the increment of work
done by the applied load is δW = 0. The change
in internal energy of the component is:

[Eq. 13.19]

Hence, the energy available to be released from
the component to extend the crack is:

δU 1
2
---P δΔ=

δE δW δU– 1
2
---P δΔ δU= = =

G δE
B δa
----------- δU

B δa
----------- 1

B
---∂U

∂a
-------

P const=

= = =

U δU+ 1
2
--- P δP+( )Δ=

δU 1
2
--- δP( )Δ=

Figure 13.7. (a) A component with 
crack growth δa subjected to 
constant displacement. (b) Load–
displacement curves for 
components with crack lengths 
a and a+δa, subjected to the same 
displacement Δ.
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[Eq. 13.20]

Note that δP, and thus δU, is negative, so δE is positive.

The energy released per unit area of new crack surface is: 

[Eq. 13.21]

Again, G is the energy release rate. 

Energy Release Rate in terms of Compliance

The internal strain energy is:

[Eq. 13.22]

where C is the compliance or flexibility of the component, the inverse of its stiffness K.

For constant load P:

[Eq. 13.23]

For constant displacement Δ:

 [Eq. 13.24]

Thus, using either the constant–load condition, or constant–displacement condition, the
energy release rate calculation gives the same result.

Conditions for Crack Initiation and Growth
The calculated energy release rate (the load) of a system is G, and the critical energy

release rate or toughness (the material property) is Gc . The criterion for crack growth, or
fracture, is G > Gc. The three possible relationships for G and Gc , and the corresponding
system responses are:

• G < Gc : the crack does not initiate (it does not start to grow);
• G = Gc : the crack initiates, but does not continue to grow; and
• G > Gc : the crack initiates and grows (fast fracture).

[Eq. 13.25]

Crack initiation is when the crack begins to grow by a small amount, but quickly stops;
fast fracture does not occur. The condition G = Gc is analogous to the uniaxial stress in a
ductile material when it reaches the yield strength σ = Sy; the material just yields but does
not plastically deform.

δE δW δU– 0 1
2
--- δP( )Δ– δU–= = =

G δE
B δP
----------- δU–

B δP
----------- 1

B
---– ∂U

∂P
-------

Δ const=

= = =

U 1
2
---PΔ 1

2
---CP2 1

2
---Δ2

C
------= = =

G 1
B
--- U∂

a∂
-------

P const=

P2

2B
-------δC

δa
-------= =

G 1
B
---– U∂

a∂
-------

Δ const=

Δ2

 2B 
----------⎝ ⎠

⎛ ⎞– δ C 1–( )
δa

----------------- P2

2B
-------δC

δa
-------= = =
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Example 13.1  Calculating G: Center Crack in Infinite Plate
Given: A common fracture problem is a center
crack of length 2a in an infinite plate of thickness
B (Figure 13.8). The plate is 2W wide and L long,
where both 2W and L are much greater than crack
length 2a (a << W, a << L) and B. Thus, the crack
and nearby material responses are unaffected by
the overall geometry of the plate. The plate is
subjected to stress σ.

The internal strain energy for a plate with center
crack 2a is given by:

[Eq. 13.26]

The first term is the energy of the plate without a
crack. The second term is the increase of strain
energy due to the presence of the center crack.
The mathematical expression for the second term
is obtained using the Theory of Elasticity, not
shown here. 

Required: Determine the energy release rate G
for the center crack.

Solution: The energy release rate G for a center crack in an infinite plate is:

Answer: [Eq. 13.27]

Note that G increases linearly with crack length a. The longer the crack length, the more
energy is available to grow the crack further. Larger cracks are thus more likely to be the
cause of failure than smaller cracks.

Example 13.2  Double Cantilever Beams under Constant Load P

Given: Double cantilever beams are often used in
experiments to determine the toughness of a
material. A double cantilever is shown in
Figure 13.9. The solid beam is 2h deep and B
wide. A crack of length a on the center-line of the
double cantilever is the cantilever length. Equal and
opposite loads P are applied to open the crack.

U 2WLB σ2

2E
------- ⎝ ⎠

⎛ ⎞ πa2Bσ2

2E
--------------------+=

G 1
B
---∂U

∂a
-------

P const=

=

G πaσ2

E
-------------=

Figure 13.8. Plate with center crack 
of length 2a. The plate is infinitely 
large if a << L and a << W.

Figure 13.9. Double cantilever.
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Required: Under constant load P, determine the energy release rate G.

Solution: Step 1. The crack opening is Δ, so each cantilever deflects Δ/2. From beam
theory, the tip displacement is:

where

The internal energy due to force P is then:

Step 2. Hence, the energy release rate G is:

Answer: 

Example 13.3  Double Cantilever Beams under Constant Displacement
Given: The double cantilever is shown in
Figure 13.10.

Required: Under constant displacement Δ,
determine the energy release rate G.

Solution: Step 1. The crack opening is Δ, so
each cantilever deflects by Δ/2:

where

The internal energy due to constant
displacement Δ is:

Step 2. Hence, the energy release rate G is:

Answer: 

Substituting the load–displacement expression, , into the solution gives the

same expression for G found in Example 13.2:

Δ
2
--- Pa3

3EI
---------= I bh3

12
---------=

U 2 1
2
---P Δ

2
--- ⎝ ⎠

⎛ ⎞ 2 1
2
---P

Pa3

3EI
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞ P2a3

3EI
------------= = =

G 1
B
--- U∂

a∂
-------

P const=

=

G P2a2

BEI
------------=

Δ
2
--- Pa3

3EI
---------= I bh3

12
---------=

U 2 1
2
---P Δ

2
--- ⎝ ⎠

⎛ ⎞ 2 1
2
---

3EI

2a3
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞ Δ

2
--- ⎝ ⎠

⎛ ⎞ 3Δ2EI

4a3
----------------= = =

G 1
B
--- U∂

a∂
-------

Δ const=

– 3Δ2EI
4B

----------------
δ a 3–( )

δa
----------------–= =

G 9Δ2EI

4Ba4
----------------=

Δ
2
--- Pa3

3EI
---------=

G 9Δ2EI

4Ba4
---------------- 9EI

Ba4
---------

Pa3

3EI
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞

2
P2a2

BEI
------------= = =

Figure 13.10. Double cantilever.
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Example 13.4  Stress to Cause Crack
Growth

Given: An infinitely wide plate (a << W) made of
an aluminum alloy is subjected to stress σ
(Figure 13.11). A central crack of length
2a = 30 mm exists in the plate. The toughness of
the aluminum is Gc = 25 kJ/m2 and the modulus is
E = 70 GPa.

Required: Determine the minimum stress required
to cause failure by fracture (crack initiation and
growth).

Solution: Step 1. The energy release rate G for an
infinite plate with a center crack 2a is
(Equation 13.27):

Step 2. The crack begins to grow when
.

Thus, fracture occurs when the stress exceeds:

Answer: 

If the material is Aluminum 6061-T6, then Sy = 240 MPa. The plate will fail by fracture
before it starts to yield. This situation is undesirable since fracture occurs before plastic
deformation becomes evident.

Example 13.5  Steel Plate

Given: An infinite plate made of pressure vessel steel is to be subjected to an applied stress
σ = 2/3Sy . The steel has properties:

E = 200 GPa, Sy = 1600 MPa, Gc = 150 kJ/m2

Required: Determine the maximum permissible center crack length 2a so that fracture
does not occur.

Solution: Step 1. The energy release rate G for an infinite plate with a center crack 2a is:

G πaσ2

E
-------------=

G Gc≥ 25 kJ/m2=

σ
GcE

πa
---------- 25

3×10  J/m2( ) 70
9×10  Pa( )

π 0.015 m( )
-------------------------------------------------------------------= =

σ 193 MPa=

G πaσ2

E
-------------=

Figure 13.11. Plate with center 
crack.
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The applied stress is: 

Step 2. Under this stress, for crack initiation, the initial crack half-length is:

If the crack length 2a is less than 16.8 mm, the crack will not initiate under the applied
load. 

Answer: 

Note that if the applied stress is half that used above, then the initial crack length may be
up to four times longer without failure by fracture.

Stress Intensity Factor
An equivalent method of representing the energy release rate G is the stress intensity

factor K, where K is related to G by the following equations from the Theory of Elasticity:

for plane stress (e.g., for a thin specimen) [Eq. 13.28]

for plane strain (e.g., for a thick specimen) [Eq. 13.29]

Stress intensity factor equations for various loadings and geometries are generally given in
tabular form and are available in printed references. Some stress intensity factors are given
in Table 13.2. Stress intensity factor calculators are also available online (e.g., http://
www.fatiguecalculator.com).

The energy release rate for a center crack in an infinite plate is (Example 13.1):

[Eq. 13.30]

The corresponding expression for the plane stress stress intensity factor is:

[Eq. 13.31]

The units of stress intensity factor are  ( ).

The advantage of the stress intensity factor approach is that the expression for K is
dependent only upon load σ and crack length a; unlike G, K is independent of material.
Consequently, expressions for K determined by mathematical techniques can be given in
tabular form (e.g., Table 13.2), which is convenient in engineering practice. In research,
however, it is the energy release rate G that is generally used to study crack propagation.

σ 2
3
---Sy

2
3
--- 1600

6×10  Pa( ) 1067 MPa= = =

a
GcE

πσ2
---------- 150

3×10  J/m2( ) 200
9×10  Pa( )

π 1067
6×10  Pa( )2

------------------------------------------------------------------------- 8.4 mm= = =

2a( )max 16.8 mm=

K2 GE=

K2 GE

1 ν2–
--------------=

G πaσ2

E
-------------=

K EG σ πa= =

MPa m ksi in.
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Table 13.2.  Stress Intensity Factors for common geometries.

Geometry Elastic stress intensity factor, K

Central
Crack
(plane
stress)

Infinite plate (a << W ):

Finite plate (width 2W ):

[Source 1a]

Single 
Edge

Crack
(plane 
stress)

Infinite plate (a << W ):  

Finite plate (width W ):

[Source 1b]

Semi-
elliptical 
Surface 
Crack 

in semi-
infinite body 
(body >> a)

 [Source 2]

Cubic fit for E* by present authors:
< 0.6% error up to a/2c = 0.5

Three-Point 
Bending

(plane
stress)

[Source 3]

Double 
Cantilever 

Beam
(plane
stress)

where:

See: Examples 13.2 and 13.3 for derivation; 

K σ πa=

K σ πa πa
2W
--------sec

1 2/
=

K 1.12σ πa=

K σ πa  fE
a
W
-----⎝ ⎠

⎛ ⎞=

fE 1.122 0.231
a
W
-----⎝ ⎠

⎛ ⎞– 10.55
a
W
-----⎝ ⎠

⎛ ⎞ 2
21.71

a
W
-----⎝ ⎠

⎛ ⎞ 3
– 30.38

a
W
-----⎝ ⎠

⎛ ⎞ 4
+ +=

K σ πa
1.12
E∗

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

E∗ 1.0 0.30
a

2c
------

⎝ ⎠
⎛ ⎞ 2.67

a
2c
------

⎝ ⎠
⎛ ⎞ 2

1.99
a

2c
------

⎝ ⎠
⎛ ⎞ 3

–+ +≈

K 3FL

2BW2
--------------- a f3

a
W
-----⎝ ⎠

⎛ ⎞=

f3 1.93 3.07
a
W
-----⎝ ⎠

⎛ ⎞– 14.53
a
W
-----⎝ ⎠

⎛ ⎞ 2
25.11

a
W
-----⎝ ⎠

⎛ ⎞ 3
– 25.8

a
W
-----⎝ ⎠

⎛ ⎞ 4
+ +=

K Pa

BI
----------= I Bh3

12
---------=

K EG=

Sources and Notes:
1. Tada, H., et al., The Stress Analysis of Cracks Handbook, 2nd ed., Paris Productions, Inc., 1985.

a. Accuracy: 0.3% up to a/W = 0.7; 1% at a/W = 0.8. Based on fit by C.E. Feddersen (1966). 
b. Accuracy: 0.5% up to a/W = 0.6. Based on least square fit, B. Gross and J.E. Srawley (1964);

W.F. Brown and J.E. Srawley (1966).

2. Kåre, H., Introduction to Fracture Mechanics, McGraw-Hill, 1984. 

E* is the complete elliptic integral with argument .

3. Agarwal, B.D., and Broutman, L.J., Analysis and Performance of Fiber Composites, J.Wiley
and Sons (1980).

Note:  is the maximum bending stress in a beam in three-point bending.

1 a c⁄( )2–

σ 3FL( ) 2BW2( )⁄=
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Note that the term infinite plate (e.g., in Table 13.2) refers to cases when the crack
size, a, is small compared to the overall specimen geometry (i.e., a << W). The specimen
is so large that its dimensions do not affect the response of the crack and the nearby
material. If the crack length is not small, results for a finite geometry must be used. In
general, the stress intensity factor can be written:

[Eq. 13.32]

where f is a function of component geometry and σ is an applied stress. For a center crack
in an infinite plate, f = 1.0, and for an edge crack, f = 1.12.

Critical Stress Intensity Factor
Fracture occurs when the stress intensity factor K (the load) reaches a critical value,

called the critical stress intensity factor, or fracture toughness Kc . Fracture toughness is
a material property. A few representative values of fracture toughness are given in
Table 13.1. 

For plane stress conditions:

[Eq. 13.33]

At fracture, K = Kc and G = Gc , so:

[Eq. 13.34]

The fracture toughness Kc for various materials can be calculated from material modulus
E and toughness Gc . Note that Kc and Gc are often both generally called toughness. To
distinguish between the two, Kc is called the fracture toughness.

Conditions for Crack Initiation and Growth
The condition for fracture initiation and growth using the stress intensity approach is

exactly the same as the energy release condition given in Equation 13.25 except that the
stress intensity factor is used in place of the energy release rate, and the material critical
stress intensity factor (fracture toughness) is used in place of the material critical energy
release rate (toughness). 

The calculated stress intensity factor (the load) is K and the critical stress intensity
factor or fracture toughness (the material property) is Kc . The criterion for crack growth,
or fracture, is K > Kc. The three possible relationships for K and Kc, and their
corresponding system responses are:

•  K < Kc : the crack does not initiate;
•  K = Kc : the crack initiates but does not grow; and
•  K > Kc : the crack initiates and grows (fast fracture).

[Eq. 13.35]

K f σ πa⋅=

K EG=

Kc EGc=
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Example 13.6  Inspection of Cracks

Given: During a routine maintenance inspection at an industrial plant, an edge crack of
length a = 50 mm is discovered in a large (infinite) plate of mild steel. The plate is
subjected to a stress of σ = 100 MPa perpendicular to the crack. The value of Kc for the
steel is .

Required: Determine if the presence of the crack will likely cause fracture.

Solution: The stress intensity factor for an edge crack in an infinitely large plate is, from
Table 13.2:

The critical stress intensity or fracture toughness of the steel is . Since
K < Kc , the crack is stable; it will not grow. The plate may continue to be used, but should
continue to be inspected.

Example 13.7  Inspection of Fatigue Cracks

Given: When metals are subjected to cyclic loading, it is known that cracks slowly grow
with each cycle. Consider a steel plate subjected to cyclic loading with a maximum tensile
stress of σ = 100 MPa. A center crack of initial length 2a exists in the plate. The fracture
toughness of the steel is .

Required: Determine the crack length 2af  that will cause the plate to fail by fracture. 

Solution: At fracture initiation, K = Kc , so:

 

Answer: 

The center crack can reach a length of 2af = 1.25 m (!) before fracture occurs. Such a
crack, as might occur in a bridge or in a ship, can be observed during routine inspection.

13.2  Design Considerations

Critical Crack Length
Example 13.6 illustrates how to determine if a crack is large enough to cause fracture.

The critical crack length 2ac is defined as the length of the crack for fracture when a
ductile material is subjected to a stress equal to the yield strength σ = Sy .

140 MPa m

K 1.12σ πa 1.12 100 MPa( ) π 0.05 m( ) 44.4 MPa m= = =

Kc 140 MPa m=

Kc 140 MPa m=

af
1
π
---

Kc

σ
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

1
π
--- 140 MPa m

100 MPa
------------------------------- ⎝ ⎠

⎛ ⎞ 2
= =

af⇒ 0.624=  

2af 1.25=  m
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For a center crack of length 2a in a
large thin plate (plate width 2W >> 2a), the
applied stress at facture is:

[Eq. 13.36]

For failure by yielding: 

[Eq. 13.37]

These failure conditions are plotted in
Figure 13.12. The intersection of the two
conditions defines the critical crack length: 

[Eq. 13.38]

Solving for the critical half crack length ac : 

[Eq. 13.39]

The value of the critical crack length depends only upon the material properties of the
material. If the crack is shorter than ac , the material will fail by yielding. If the crack is
longer than ac , the material fails by fracture.

Example 13.8  Critical Crack Length

Required: Determine the critical crack length for rotor steel with  and
Sy = 240 MPa.

Solution: The critical crack length is:

Answer: 

For a center crack in a large plate of rotor steel, the critical crack length is 2ac = 488 mm.
Such a crack can generally be detected visually.

Representative Critical Crack Lengths

Estimates of the critical crack length of various materials are given in Table 13.3. The
table has been created using representative material properties. In practice, scatter of the

σ
Kc

πa
----------=

σ Sy=

σ
Kc

πac

------------- Sy= =

ac
1
π
---

Kc

Sy
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

=

Kc 210 MPa m=

ac
1
π
---

Kc

Sy
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

1
π
---

210 MPa m
240 MPa

-------------------------------⎝ ⎠
⎛ ⎞

2
= =

ac 0.244 m=

Figure 13.12. Stress versus crack 
length. For a < ac , the system yields; for 
a > ac , the system fractures.
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material properties, and thus of the critical crack length, is expected. For a given
application, calculations should be done using the properties of the actual material.

The following observations may be made:

•  The critical crack length for rotor- and mild-steels are often large enough to be 
noticed by visual observation. 

•  Pressure vessels steels, although having a high yield strength, are more susceptible 
to the presence of cracks, so careful inspection is required.

•  High strength aluminum alloys are also sensitive to small cracks. Inspection for 
cracks is a standard activity in aircraft maintenance.

•  Cast iron, cement, and ceramics, are brittle; it is difficult to detect cracks of the 
critical length. The design of brittle materials is based on statistical methods, 
which are described in Section 13.6.

Proof Test to Guarantee Design
When components are difficult to manufacture and analyze, when design experience is

limited, or when crack detection is difficult, proof tests can be used to demonstrate that a
design does not fail by fracture.

Consider a large plate that is to be subjected to a maximum working stress σ = σw ,
with a center crack of length 2a (Figure 13.13). A proof test is performed at stress
σp = kσw , where k is a constant greater than 1.0 (typically k ~ 4/3). If the component does
not fail during the proof test, then the applied stress intensity factor of the proof load is
less than the fracture toughness:

[Eq. 13.40]

Hence the maximum length of any pre-existing crack must be smaller than:

K σp πa Kc<=

Table 13.3.  Representative Critical Center Crack Lengths, 2ac , below which fracture 
does not occur.

Material
Gc 

(kJ/m2)
Kc 

(MPa/m1/2)
Sy 

(MPa)
Critical Crack 

Length, 2ac (mm)

Mild steel 100 140 220 258

Rotor steels 220 210 240 487

Pressure vessel steels 150 170 1600 7.2

Aluminum alloys,
high strength

10 26 500 1.7

Cast iron 1 13 500 0.43

Cement 0.03 0.2 3 2.8
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[Eq. 13.41]

For the plate to fracture at the working stress σw ,
the crack length is:

 [Eq. 13.42]

For k = 4/3 the crack length 2aw to cause fracture
at the working load σw is at least k2 = 1.78 times
longer than any pre-existing crack in the panel
2a. Hence, it can be deduced that under working
conditions, the existing crack length is less than
that to cause fracture, with a typical factor of
safety. This procedure has been used in rocket
design. 

Leak-Before-Break Design
Thin-walled pressure vessels

(t << R) may have thumb nail
surface cracks (Figure 13.14).
Under pressure, these cracks may
grow through the vessel wall. Fast
fracture of these vessels,
especially those that contain
gasses, can be violent. However, if
the crack penetrates the wall
before fast fracture can occur, then
failure will be by leakage of the
contained gasses. Hence the name
Leak-Before-Break Design.

Due to the pressure, the stress intensity factor of a semi-elliptical surface crack, for
a << 2c, is estimated to be (from Table 13.2):

[Eq. 13.43]

where σ is the maximum stress in a pressure vessel (the hoop stress in a cylindrical vessel
and the spherical stress in a spherical vessel). Fast fracture occurs when the crack length is:

[Eq. 13.44]
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⎝ ⎠
⎜ ⎟
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k2a>= =

K 1.12σ πa=

af
1

1.25π
--------------

Kc

σ
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

=

Figure 13.14. (a) Cross-section of pressure 
vessel. (b) Leak-before-break.

Figure 13.13. Large plate with 
center crack 2a.
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Leakage occurs when the crack has grown through the thickness of the wall without
fast facture occurring. The vessel will leak before it fractures provided that:

[Eq. 13.45]

In other words, the thickness of the pressure vessel t is less than the crack size required to
cause fracture af . The crack will never reach length af .

The stress at yield is the material yield strength Sy . For leak-before-break to apply for
all possible elastic stresses, the wall thickness t must satisfy the condition:

[Eq. 13.46]

where ac is the critical crack length of the material, defined by Equation 13.39. 

If t < 0.8ac , then the crack cannot grow large enough to reach the fracture condition;
there is not enough material. 

If t > 0.8ac , fracture can occur. Failure of pressure vessels by fast fracture can be
violent and dangerous.

From Table 13.3, the critical crack lengths, ac , for mild and rotor steels are typically
more than 125 mm. However, for pressure vessel steel and aluminum alloys that have
small ac values (in the order of 1.0 mm), leak-before-break design may not be used, as the
wall thickness is generally greater than ac .

13.3  Crack Stability

Two conditions are required to extend an existing crack: 

1. crack growth must initiate (the crack must start to grow), and
2. there must be sufficient driving force for the crack to continue to grow.

When a stable crack initiates, it stops growing after a short extension. An unstable crack
initiates and grows instantaneously (fast-fracture) and the system fails catastrophically.

This section discusses the question: Does a crack grow in a stable or unstable
manner? To investigate this question, the resistance curve and tearing modulus are
introduced.

The Resistance Curve or R-Curve
In a fracture test, crack growth initiates when the energy release rate G reaches the

material critical energy release rate, or toughness, Gc . 

t af< 1
1.25π
--------------

Kc

σ
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

=

t 1
1.25π
--------------

Kc

Sy
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

< 1
1.25
----------ac 0.8ac= =
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For brittle materials, the toughness of a
material with increasing crack extension δa is
constant (Figure 13.15a). A brittle material
remains elastic.

For ductile and semi-ductile materials,
however, it is observed in experiments that
toughness increases with crack growth δa. The
Gc versus δa relationship is a rising curve
(Figure 13.15b), known as the resistance curve
or R-curve. A ductile material yields near the
crack tip; energy must now be put into plastic
deformation as well as crack growth.

For this discussion, the resistance curve is
simply taken as a straight line with positive
slope T. The toughness Gc(δa) as a function of
crack extension δa in a ductile material is:

[Eq. 13.47]

where Gci is the material toughness for crack
initiation and T is the tearing modulus, the slope
of the resistance curve. The tearing modulus is a
material property.

Stability of a Crack
Consider a center crack of length 2a in an infinite plate of a ductile material subjected

to stress σ. The energy release rate is:

[Eq. 13.48]

Crack growth initiates when the energy release rate equals the initial material toughness
G = Gci (at δa = 0). For a given stress σ, the crack length at initiation ai is:

[Eq. 13.49]

If the crack grows by δa, the new energy release rate of the system is:

 [Eq. 13.50]

If this new energy release rate is less than the material toughness at the new crack length
Gc(δa) (Equation 13.47), the crack is stable and will not grow:

Gc δa( ) Gci T aδ+=

G K2

E
------ σ2πa

E
-------------= =

ai

EGci

σ2π
------------=

G Gδ+ σ2π
E

---------- ai aδ+( ) Gci
σ2π

E
---------- aδ+= =

Figure 13.15. (a) Gc versus δa for 
a brittle material. (b) Gc versus δa 
(R-curve) for a ductile material. As 
the crack grows, the toughness 
increases.
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[Eq. 13.51]

From the condition for crack initiation
(Equation 13.49):

[Eq. 13.52]

Substituting this expression into Equation 13.51
gives the condition for a stable crack. The crack
does not grow provided that:

[Eq. 13.53]

as illustrated qualitatively in Figure 13.16. 

The crack is unstable – it initiates and propagates (grows) – when:

[Eq. 13.54]

Example 13.9  Cracks Stability in Steel and Aluminum

Given: Consider a proof test
performed on two similar
components, both with
center cracks, one made of
steel and the other of
aluminum. The proof test is
performed at a stress
σp = 0.9Sy . The pertinent
material properties are given
in Table 13.4.

Required: For each material, (a) determine the size of an existing center crack so that
crack growth just initiates due the proof load σp = 0.9Sy, and (b) determine if the crack is
stable or unstable.

Solution: Step 1. For a center crack to initiate due to σp = 0.9Sy , it must have a length of:

G Gδ+ Gc aδ( )<

Gci
σ2π

E
---------- aδ+ Gci T aδ+<

σ2π
E

---------- aδ T aδ<

σ2π
E

----------
Gci

ai
--------=

Gci

ai
-------- T<

Gci

ai
-------- T>

Figure 13.16. Although crack growth 
may initiate in ductile materials, if 
Gci /ai < T, crack growth is arrested; 
the crack is stable.

Table 13.4.  Yield Strength, Toughness, Fracture 
Toughness, and Tearing Modulus.

Material
Sy

 (MPa)
Gc 

(MJ/m2)
Kc

(MPa/m1/2)
T 

(MJ/m3)

Steel, ASTM A533 483 0.2 0.2 200

Aluminum, 6061-T6 280 0.02 37 2.7
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Step 2. For the steel:

Answer: 

The slope of the energy release rate for the steel at crack initiation is:

The tearing modulus of the steel is: . 

Since T > δG/δa at initiation, there is no crack growth:

Answer:  the crack in the steel is stable.

Step 3. For the aluminum:

Answer: 

The slope of the energy release rate for the aluminum at crack initiation is:

The tearing modulus of the aluminum is: . 

Since T < δG/δa at initiation, the crack grows by fast fracture:

Answer:  the crack in the aluminum is unstable. 

This example illustrates one reason why aluminum is rarely used as a pressure vessel material.

13.4  Modes of Fracture

The three modes of fracture are shown in Figure 13.17 in terms of a double cantilever
with a crack length a. The double cantilever can be loaded by three sets of forces P, F, and
S, with each load set applied along a primary axis. Loads applied to the crack in these
ways are referred to as Mode I, II and III loading, respectively. In each case, the crack
extends along the center plane of the double-cantilever.

The work of previous sections has concentrated on Mode I, with the load applied normal
to the crack surface. Mode I is generally the easiest to analyze and usually the most critical.

ai
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Since structures can be loaded in
many ways, the loading on a crack is
generally a combination of the three
modes. This situation is described as
mixed mode fracture.

The energy release rate G for each
of the three basic cases is developed
here. Recalling Equation 13.17, for
constant load P:

[Eq. 13.55]

Recalling Equation 13.21, for constant
displacement Δ:

[Eq. 13.56]

The internal strain energies U are
calculated using beam-bending theory,
or the energy stored in an axial bar.

Mode I
In Mode I loading, a pair of loads P

is applied normal to the plane of the
crack and normal to the direction of
crack growth (Figure 13.17a). The
relative displacement Δ of the loads is
given by beam deflection:

[Eq. 13.57]

where . The internal strain energy of the double cantilever is:

[Eq. 13.58]

For constant load, the Mode I energy release rate is:

[Eq. 13.59]

For constant displacement:

G 1
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Figure 13.17. The three modes of fracture: 
(a) Mode I, (b) Mode II, and (c) Mode III.
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[Eq. 13.60]

By substituting the expression for Δ in terms of P, it can be shown that the expressions for
GI derived by the two methods are the same.

To distinguish between the failure modes, the corresponding material toughness – for
applied loading perpendicular to the crack surface – is referred to as GIc , and the initiation
condition is: GI = GIc . Likewise, the Mode I fracture condition may be expressed in terms
of stress intensity factor and fracture toughness, with KI = KIc at crack initiation.

Mode II
In Mode II loading, a pair of loads F is applied parallel to the crack plane, and along

the direction of crack growth (Figure 13.17b). The relative displacement Δ of the loads is
given by the deflection of an axial member:

[Eq. 13.61]

where A = BH. The internal strain energy of the two bars is:

[Eq. 13.62]

For constant load:

[Eq. 13.63]

For constant displacement:

[Eq. 13.64]

By substituting the expression for Δ in terms of F, it can be shown that the expressions for
GII derived by the two methods are the same. 

Note that GII is independent of the crack length a (Equation 13.63); the amount of
energy released with crack growth δa is proportional to δa (δU = GB δa). 

The criterion for crack initiation is: GII = GIIc , where GIIc is the material toughness
corresponding to Mode II fracture. Toughness GIIc is generally different from Mode I
toughness GIc . The Mode II conditions can also be expressed in terms of stress intensity,
with crack initiation occurring when KII = KIIc .
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Mode III
In Mode III loading, a pair of loads S is applied parallel to the plane of the crack,

normal to the direction of crack growth (Figure 13.17c). The relative displacement Δ of
the loads is given by beam deflection:

[Eq. 13.65]

where . The internal energy of the two cantilevers is:

[Eq. 13.66]

For constant load:

[Eq. 13.67]

For constant displacement:

[Eq. 13.68]

By substituting the expression for Δ in terms of S, it can be shown that the expressions for
GIII derived by the two methods are the same.

The criterion for crack initiation is: GIII = GIIIc , where GIIIc is the material toughness
corresponding to Mode III fracture. The Mode III conditions can also be expressed in
terms of stress intensity, with crack initiation occurring when KIII = KIIIc .

Note that the Mode III solution for G is the same as the Mode I solution, except for the
definition of the moment of inertia I.

Mixed Mode Fracture
When the crack is subjected to all three loads simultaneously, the energy release rate is

the sum of the individual energy release rates:

[Eq. 13.69]

The simplest failure criterion is that the material toughness is independent of the mode
mixity, so that:

[Eq. 13.70]

Thus, the condition for crack initiation is:

[Eq. 13.71]
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More complex criteria are discussed in fracture mechanics texts and in the research
literature.

The most critical loading is generally Mode I, when the crack is being opened by loads
applied normal to the crack.

13.5  Thin Film on a Substrate: Spalling

Electronic components and protective
coatings on metals are sometimes made by
depositing a thin film on a thick substrate at
elevated temperature, followed by cooling to
room temperature by temperature ΔT.
Because the coefficients of thermal
expansion of the coating and of the metal
substrate are different, a residual stress σR
is induced upon cooling. A 2D representation
is shown in Figure 13.18a.

The coating thickness h is much smaller
than the thickness of the substrate d
(h << d); the width of both components is B
(into the paper, Figure 13.18). 

If the coating and substrate were each
free to expand or contract due to the
temperature change (ΔT < 0), the strain in
the coating would be:

[Eq. 13.72]

and that in the substrate would be:

[Eq. 13.73]

where αc and αs are the coefficients of
thermal expansion of the coating and the
substrate, respectively.

However, the coating must continue to be attached to the substrate at the lower
temperature; i.e., the total strain in each material must be the same. Since the coefficients
of thermal expansion of the coating and the substrate are generally different, mechanical
(elastic) stresses must exist in both materials after cooling.

If the stress in the coating upon cooling is the residual stress, σR , then the mechanical
strain in the coating is:

εc t, αc ΔT( )=

εs t, αs ΔT( )=

Figure 13.18. (a) Thin film on a thick 
substrate, h << d. (b) Spalling of thin 
film. Energy released from the thin 
film goes into creating a crack at the 
film–substrate interface.



www.manaraa.com

438 Ch. 13 Effect of Flaws: Fracture

[Eq. 13.74]

where Ec is the modulus of the coating. To satisfy equilibrium, there is also a stress in the
substrate, but since the substrate is much thicker than the coating, the average substrate
stress is small and can be neglected, i.e., σs = 0. 

Equating the total strains after cooling, εc = εs , gives:

[Eq. 13.75]

from which the residual stress in the thin coating is:

[Eq. 13.76]

Usually αs > αc , so that the residual stress in the coating is compressive, σR < 0 (recall
that ΔT < 0). A large compressive stress causes the coating to spall (debond and peel)
away from the substrate (Figure 13.18b). To determine the condition for spalling, the
energy release rate must be calculated. 

Referring to the 2D representation of the system in Figure 13.18b, the spall has a half
length a. When the crack advances by δa, the stress in the coating material of length δa
reduces from σR to zero. Considering only one-half of the 2D spall, the loss of internal
energy in the coating is taken to be:

[Eq. 13.77]

where B is the breadth of the coating. This energy is available to drive the crack, and the
energy release rate is:

[Eq. 13.78]

If this value exceeds the toughness Gc of the coating–substrate interface, the crack grows.
Note that the energy release rate is independent of crack length a, but is proportional to
coating thickness h. Hence, it is advantageous to keep the layer thickness as small as
possible. Such a phenomenon is observed with paint; a thin coat of paint is less likely to
spall than a thick coat of paint.

Example 13.10  Coating Thickness to Prevent Spalling

Given: A ceramic coating is applied to a thick metal substrate at 900ºC, and subsequently
cooled to 20ºC. The thermal coefficient of expansion of the coating is αc = 6×10–6 ºC–1

and of the substrate is αs = 12×10–6 ºC–1. The coating modulus is Ec = 400 GPa and the
toughness of the coating–substrate interface is Gc = 0.05 kJ/m2.
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σ R
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σ R

Ec
------- αc ΔT( )+ αs ΔT( )=

σ R Ec αs αc–( ) ΔT( )=
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σ R

2
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⎝ ⎠
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σ R
2 h
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-----------= =
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Required: (a) Approximate the residual stress. (b) Determine the maximum thickness of
the coating to avoid spalling.

Solution: Step 1. The residual stress is taken from Equation 13.76:

Answer: 

Step 2. The energy release rate is:

The interface starts to crack when G = Gc. The maximum coating thickness is therefore:

Answer: 

It is, therefore, not surprising that coatings on electronic substrates are very thin. The use
of thin films is the basis of the thermo-mechanical reliability of these systems.

13.6  Statistical Design with Brittle Materials

The superchargers used in high performance cars are often made from ceramics.
During the manufacturing process, internal flaws are inherently introduced. Because
ceramics have low toughnesses, the strength of ceramic components is controlled by flaw
size. If the toughness of a ceramic is , and the applied tensile stress is
200 MPa, the maximum allowable size of a center crack of length 2a is approximated by
the fracture condition:

[Eq. 13.79]

The maximum center crack length is 2amax = 16.0 μm, which is small, and cannot be seen
with the naked eye. Poor preparation of ceramic materials leads to a subpar product with
relatively large cracks; such components are weak. Careful preparation is expensive, but
produces strong products with only small cracks.

Despite rigorous manufacturing procedures, internal cracks are introduced randomly
into the material. These inherent cracks are of various sizes and positions as indicated by
the pictorial of a ceramic plate in Figure 13.19a. The strength of the plate σ f is dictated by
the longest crack amax . The failure stress σ f is:
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[Eq. 13.80]

The larger the crack size, the smaller the
stress at fracture.

Now suppose the plate is divided into
several smaller specimens (Figure 13.19b).
Only one of the smaller plates includes the
large crack amax , so that plate fails at σ f . In
each of the other smaller plates, the largest
crack is shorter than amax , so each can
support a stress greater than σ f . Thus, the
average strength of the smaller specimens is
greater than the strength of the original large
specimen. 

Said another way, the larger the
specimen, the more likely a large flaw will
be found, and thus the smaller the
specimen’s strength.

The volume of a ceramic component is
therefore important in determining its
strength. In practice, highly stressed ceramic
components tend to be small, typically
measured in the order of 10 mm or less.

The Weibull Distribution of 
Strength

Consider a tensile test performed on a
large number of ceramic specimens (about
1000). Because strength is dependent on
volume, the tests are all carried out on
specimens of the same reference volume Vo .
The fraction of the specimens Ps(Vo , σ) that
survive a given applied stress σ is plotted
against σ. The shape of the survival
probability curve Ps–σ has the form shown
in Figure 13.20.

At low stress levels, the survival rate Ps
is 1.0 (all specimens survive). As the stress
level is increased, the survival fraction
decreases to zero.

σf

KIc

πamax

-------------------=

Figure 13.19. (a) The ceramic plate fails 
when the applied stress σ reaches the 
fracture criterion for the largest crack. 
(b) Same plate divided into four plates. 
Only one plate will fail at the stress 
governed by the largest crack. The 
average stress to fail all four plates will 
be higher than the stress to fail the single 
large plate. 
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The fraction of specimens that
have failed at any stress level σ is:

[Eq. 13.81]

The failure probability curve Pf –σ has
the form shown in Figure 13.20.

An expression for Ps(Vo, σ) that
fits experimental data well for ceramic
materials is the Weibull distribution,
which is given by:

[Eq. 13.82]

and for Pf (Vo, σ):

[Eq. 13.83]

where So and m are material parameters that are fitted to experimental data. The term So is
the reference stress and m is the Weibull modulus. Variables Vo , So, and m are the Weibull
parameters.

When the applied stress σ is So , then the survival fraction is independent of m, and is
given by:

[Eq. 13.84]

The value of So is the stress σ corresponding to a survival fraction of 0.368; it is
determined from experimental data (Figure 13.20).

To determine the constant m requires more work. Taking the natural logarithm of both
sides of Equation 13.82 gives:

[Eq. 13.85]

Inverting Ps to remove the negative sign, and taking logs again, gives:

[Eq. 13.86]

A plot of ln[ln(1/Ps)] against ln(σ /So) is shown in Figure 13.21. The experimental data are
fitted by a straight line. The slope of the line is the Weibull modulus m. 
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1
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----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

lnln m σ
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----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞
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Figure 13.20. Probability of survival Ps and 
probability of failure Pf as a function of 
applied stress σ /So . 
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A more detailed description of
determining the Weibull parameters is
found in Section 13.8.

The variations of Ps(Vo, σ) against
the stress for m = 5 (a typical value for
bulk ceramics, ~ 10 mm), m = 9, and
m = 15 (a typical value for ceramic
fibers, ~100 μm) are shown in
Figure 13.22. 

When m is high, the Ps–σ curve has a
sharp decrease around stress So . A high
value of m means the dispersion
(variation, or spread) of specimen
strengths is small; the majority of
specimens have about the same strength.
Conversely, when m is low, the Ps–σ
curve decreases gradually. A low value of
m means the dispersion of strengths is
wide.

Mean Strength

The mean strength σm of the
distribution is given by:

[Eq. 13.87]

where Γ(x) is the gamma function, the
values of which are given in
mathematical tables or software. The
mean strengths for various values of m
are given in Table 13.5.
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Table 13.5.  Mean strength as a 
function of m.

m = 5 7 9 15

0.918 0.935 0.947 0.966σm So⁄

Figure 13.21. Experimental data are plotted 
on the ln[ln(1/Ps)] versus ln(σ /So) graph. 
The slope is the Weibull modulus m.

Figure 13.22. Probability of survival Ps as a 
function of applied stress σ /So for various 
Weibull moduli m.
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Effect of Volume
Consider a brittle tensile specimen

divided into n elements, each of volume Vo
as shown in Figure 13.23a. The total volume
is V = nVo . The probability of survival of the
system of n elements is the product of the
survival probabilities Ps(Vo, σ) of all n
elements, each of which is subjected to
tensile stress σ. Thus:

[Eq. 13.88]

This formulation is also valid when the
elements are aligned, as in a chain
(Figures 13.23b and c), since all elements
experience the same stress. Hence, this
approach is often referred to as weakest link
statistics. As soon as the weakest link fails,
the entire systems fails.

Example 13.11  Probability of Survival: Volume Vo

Given: A bar of volume V = Vo is subjected to applied stress σ. The Weibull modulus m is
5 and the reference stress So is 200 MPa.

Required: Determine the stress σ that has a reliability of 999/1000, i.e., only 1 in 1000
specimens breaks at stress σ.

Solution: The survival rate is:

Ps V σ,( ) Ps Vo σ,( )[ ]n=

Ps Vo σ,( )[ ]V Vo⁄=

σ
So
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
m

exp
V Vo⁄

=

V
Vo
------–

σ
So
-----

⎝ ⎠
⎜ ⎟
⎛ ⎞m

exp=

Figure 13.23. (a) A plate divided into n 
elements, each of volume Vo . (b) A long 
specimen with same volume as that in 
Part (a). (c) A chain is only as strong as 
its weakest link.
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Solving for the stress for a reliability of 0.999 gives:

Answer: 

At σ = 50.2 MPa, at least one specimen in 1000 will probably fail.

Example 13.12  Probability of Survival: Volume 100Vo

Given: A bar of volume V = 100Vo is subjected to applied stress σ. The value of m is 5 and
So is 200 MPa.

Required: Determine the stress σ that has a reliability of 999/1000.

Solution: The survival rate is:

Answer: 

By increasing the volume by a factor of 100 from Example 13.11, the allowable stress for
Ps = 99.9% drops from 50 to 20 MPa. The larger the volume, the lower the strength.

13.7  Effect of Non-Uniform Stress in Statistical Design

In general, the stress in a component varies from point-to-point. Typical components
are beams in bending, shafts in torsion, and disks that are rotating. The aim now is to find
the survival probability Ps(V, F), where V is the total volume of the component and F is the
applied load. 

The influence of the stress distribution on strength is calculated by dividing the
component of volume V into a large number of constant–stress elements, each of volume
dV, and then calculating the survival probability of each element. The survival probability
of element dV subjected to tensile stress σ is:

[Eq. 13.89]

Stress σ varies throughout the component. The survival probability of the entire
component is found by multiplying together the survival probability of all elements dV.
Recalling the rule for exponential multiplication (e.g., ), the expression for
the survival probability of the entire component is:
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[Eq. 13.90]

where V is the total volume and F is the load that causes the varying stress σ on differential
elements dV. In addition, since compressive stresses (σ < 0) do not cause cracks to grow,
elements dV that are in compression do not contribute to the integral of Equation 13.90.

Example 13.13  Beam Under Constant Moment

Given: A beam with a square cross-
section of sides b, and having length L, is
subjected to a constant negative moment
M over its entire length (Figure 13.24).

Required: Determine the expression for
the probability of survival, Ps(V, M).

Solution: Step 1. Referring to the
survival fraction, Equation 13.90, the
stress as a function of location must be
found, along with an appropriate
element dV, and the limits of integration.

Bending stress varies linearly with distance y from the neutral axis:

where the maximum bending stress for a square cross-section is:

Since M(x) is constant, the expression for stress as a function of position (x,y) is known. 

A rectangular beam in bending can be considered as a stack of axial members, each b wide
and dy deep, each supporting normal stress σ (y). The differential volume dV is:

Also for y < 0, the stresses are compressive. The compressive side of the beam can be
neglected in the probability calculation since compressive stresses do not cause fracture. 

Step 2. Substituting σ and dV into Equation 13.90, and setting up the integral from
y = 0 to b/2, gives:
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∫–exp=
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dV Lb dy( )=
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So
------------ 2y

b
------⎝ ⎠
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Lb yd( )[ ]
 0

 b 2⁄

∫–exp=

Figure 13.24. Beam subjected to constant 
moment M.
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Step 3. Integrating:

Answer: 

where V = b2L is the total volume of the beam and .

The term  is known as the load factor λ and depends on the volume geometry

and how it is loaded. The survival probability can then be rewritten to include λ:

[Eq. 13.91]

For a beam in pure bending:

The following examples determine the load factors for different loads and geometries.

Example 13.14  Three-Point Bend Test

Given: A simply-supported rectangular
beam, breadth b, depth d, and length L is
subjected to a central load P (Figure 13.25).
The beam is made of a ceramic with Weibull
modulus m, reference stress So, and
reference volume Vo .

Required: Determine the survival probability
Ps (V, P) for the beam in three-point bending.

Solution: Step 1. The moment of inertia is
I = bd3/12. Bending stress varies linearly
with distance x along the beam and with
distance y from the neutral axis. The stress
distribution from x = 0 to L/2 is:
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λ 1
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2
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I
--– σ– max

4xy
Ld
---------= =

Figure 13.25. (a) Simply supported 
beam subjected to central point load P. 
(b) Moment diagram.
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The maximum bending stress σmax for a beam of rectangular cross-section in three-point
bending is:

Note that σmax only occurs at two points (x = L/2, y = ±d/2), and only one of those points
is in tension. For the present case, this point is at the bottom center of the three-point
beam, and is the location where fracture will most likely (but not necessarily) occur.

Step 2. Substituting the expression for stress σ (x,y) into the probability equation:

The differential volume element is dV = b dydx. The x-integral is taken from x = 0 to L/2
(half the beam), so the expression within the exponential function is multiplied by 2 to
included the entire volume in tension. The stresses in the system are tensile only for y < 0;
the compressive stresses in the beam (y > 0) do not cause fracture. Thus, the y-integral is
taken from –d/2 to 0.

Step 3. Upon integration, the probability of survival is:

Answer: 

where  is the total volume and .

The load factor λ for the rectangular beam in three-point bending is:

Example 13.15  Spinning Rod

Given: A ceramic rod of length L and radius R, spins about a vertical axis perpendicular to
the rod’s axis, with angular velocity ω in radians per second (Figure 13.26). The ceramic
has mass density ρ and Weibull parameters m, So, and Vo .

Required: Determine the survival probability Ps (V, ω) for the spinning rod.

Solution: Step 1. The stress induced in the rod by the centripetal force is a function of x.
Consider a FDB of a differential element dV = πR2 dx (Figure 13.26b). The net force on
dV is the product of its mass dm = ρ dV and its centripetal acceleration ω2x, which is in the
negative x-direction:
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Dividing both sides by the cross-sectional
area gives:

Integrating both sides gives the stress along
the rod:

Applying the boundary condition that the
ends of the rod are stress free,

, gives the constant C:

The maximum stress occurs at the axis of
rotation (x = 0):

The stress distribution throughout the rod
can then be written:

Step 2. Substituting σ and dV into Equation 13.90 gives:

The differential volume is . The integral is taken from x = 0 to L/2, and the
expression within the exponential is multiplied by 2 since the entire volume is in tension.

Step 3. Integrating, and substituting , gives:

where V =  πR2L and .

The integral is the load factor:

Performing the standard integral:
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Figure 13.26. (a) Rod spinning with 
angular velocity ω . (b) FBD of length of 
rod dV.
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Thus:

Answer: 

Based on: G.G. Trantina and C.A. Johnson “Spin Testing of Ceramic Materials,” Fracture
Mechanics of Ceramics, vol.3, Plenum Publishing Corporation, 1978.

Load Factor
The probability of survival Ps of a ceramic component has the general form:

[Eq. 13.92]

where λ is the load factor. The load factor is a measure the effective volume of the
component. Equation 13.92 is the survival probability of a component of volume λV
subjected to uniform stress σmax (Equation 13.88). Factor λ is a function of Weibull
modulus m.

Table 13.6 summarizes the load factors for the four components and loadings
discussed in this section. The load factor depends on the distribution of stress in the
material, and thus depends on the component geometry and how the component is loaded. 

For the uniaxial bar, the stress is uniform – all points in the component are subjected to
the same stress, σ (x, y) = σmax. Hence, the bar’s load factor is λ = 1.0.

For a beam subjected to a constant moment, only the top (or bottom) of the cross-
section is subjected to the maximum tensile stress. All other material points are subjected
to less tensile stress, and only half of the beam is actually in tension. The effective volume
of a beam in bending is much smaller than that of the axial bar; e.g., for m = 5, λ = 0.083.
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Table 13.6.  Load Factor and Maximum Stress for various components and loadings.

Member, 
Loading

Uniaxial Bar, 
Tension

Rectangular Beam, 
Constant Moment

Rectangular Beam, 
Three-Point Bending

Bar, Spinning

Load factor, 
λ 1.0

Maximum 
stress, σmax

1
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A graph of load factor λ against
Weibull modulus m for various
geometries and loads is shown in
Figure 13.27. The figure shows that
increasing the Weibull modulus
decreases the load factor and thus
decreases the effect of component
volume on survival probability. For the
spinning bar, if m increases from
m = 5 to 15, the load factor decreases
from λ ~ 0.4 to 0.2, decreasing the
effective volume by nearly a factor of 2. 

A high modulus means that the
dispersion of strength in the ceramic is
small, so that volume becomes
statistically less important to the failure
strength. For large values of m, λ
approaches a constant value for each
configuration. 

Example 13.16  Spinning Rod 2

Given: A rod of length L = 100 mm and
cross-section b = 5 mm square spins about
an axis through its center of mass
(Figure 13.28). The density of the material is
3200 kg/m3. The Weibull parameters are:

m = 5, So = 300 MPa, Vo = 0.11×10–6 m3

Required: Determine (a) the maximum
stress in the rod for a probability of survival
of 999 in 1000 and (b) the rotational speed ω
corresponding to that stress.

Solution: Step 1. The volume of the
spinning rod is V = 2.5×10–6 m3. For a
spinning rod, with m = 5, the load factor is:

Step 2. The probability function is:

λ 22m m!( )2

2m 1+( )!
----------------------- 210 5!( )2

11!
--------------------- 0.369= = =

Figure 13.28. Spinning rod with square 
cross-section.

Figure 13.27. Load factor as a function 
of Weibull modulus for various 
geometries and loads: bar in tension, 
rectangular beam with constant moment, 
rectangular beam in three-point bending, 
and spinning bar.
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Step 3. Solving for the maximum stress:

Step 4. For a spinning rod: 

Thus the angular velocity is:

Answer: 

The rotational speed of small ceramic components can be very high.

13.8  Determining Weibull Parameters

Tensile tests on brittle materials are
difficult to perform, so it is usual to
measure their material properties from
standard three-point bend tests. A series
of three-point bend tests is performed on
standard beams of length 80 mm and
square cross-section of area 100 mm2

(Figure 13.29). Representative results of
such a test performed on 1000 samples
are given in Table 13.7 and the survival
probability is plotted in Figure 13.30.

The Weibull parameters that must be
determined are: the reference volume Vo ,
the reference stress So , and the Weibull
modulus m.

The probability of survival for the
three-point bend test is:
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Figure 13.29. Three-point bend test.

Table 13.7.  Maximum bending stress σmax, 
and corresponding number of surviving 

beams n.

σmax
(MPa)

n
σmax
(MPa)

n
σmax
(MPa)

n

75 999 200 882 350 115

100 994 225 788 375 47

125 987 250 665 400 15

150 969 300 368 425 3

175 931 325 240 450 0
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[Eq. 13.93]

where V is the volume of one sample:

[Eq. 13.94]

If the reference volume Vo is selected to be:

[Eq. 13.95]

then the probability distribution of the three-point bend test reduces to:

[Eq. 13.96]

The reference stress So is defined by
the stress σmax for a survival probability
of:

[Eq. 13.97]

Reading directly from the experimental
graph (Figure 13.30) gives So =
300 MPa.

To find the Weibull modulus, repeat
Equation 13.86:

 

[Eq. 13.98]

Using the experimental data, the
expression ln[ln(1/Ps)] is plotted against
ln(σ /So) and a straight line fitted
through the data points as shown in
Figure 13.31. The Weibull modulus is
the slope of the straight line. Here,
m = 5.

The material properties that fit the
experiment are: m = 5 and
So = 300 MPa. The reference volume Vo
is .

Ps V σmax,( ) 1

2 m 1+( )2
------------------------

V
Vo
------

⎝ ⎠
⎜ ⎟
⎛ ⎞ σmax

So
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ m

–exp=

V d2L 8.0
6–×10  m2= =

Vo
V

2 m 1+( )2
------------------------=

Ps V σmax,( )
σmax

So
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ m

–exp=

Ps e 1– 0.368= =

1
Ps
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

lnln m σ
So
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

ln=

Vo 0.11
6–×10  m3=

Figure 13.30. Probability of survival 
versus stress.

Figure 13.31. Determination of Weibull 
modulus.
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13.9  Strength of Fiber Bundles: Global Load Sharing

Ceramic fibers are used in composite materials because of their strength and stiffness.
For example, 100 µm diameter silicon carbide fibers can have a strength of 2000 MPa. To
attain such strength, the maximum flaw or crack length must be less than 0.7 µm
(assuming ). Variation in fiber strength is a consequence of geometric
imperfections introduced during the process of drawing the fiber. Fiber processing,
therefore, is an important area of research and development. 

Following the probability ideas used to determine the strength of ceramics, tests are
performed on many fibers to find the parameters of the Weibull distribution. Because the
geometry of the fibers is long and slender, length is used in place of volume. The fraction
of the fibers of length L that survive an applied stress σ is therefore described by the
Weibull relation:

[Eq. 13.99]

where Lo and So are the reference length and reference stress, respectively. The values Lo
and So correspond to a fiber length and stress level for a survival fraction of 0.368. In high
tech applications, the value of Lo is often chosen to be 25.4 mm (1.0 in.). 

Bundle Strength
Fibers can be formed into fiber

bundles that consist of many fibers
acting in parallel, as represented in
Figure 13.32. The fibers are not
connected, but are constrained so that
they each have the same strain as the
bundle. The effect of this constraint is
key to the overall response of the fiber
bundle system.

For convenience, let each fiber have
a length of L. The probability of survival
for one fiber subjected to stress σ is:

[Eq. 13.100]

If there are n individual fibers in the
bundle, weakest link statistics gives the
probability of survival of the system:

Kc 3 MPa m =

Ps L σ,( ) L
Lo
------ σ

So
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞m

–exp=

Ps L σ,( ) L
Lo
------ σ

So
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞m

–exp=
Figure 13.32. (a) Unconstrained fiber bundle 
under stress. (b) Constrained bundle where 
all fibers have the same strain.
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[Eq. 13.101]

Note that nL is the total length of the fibers. Using weakest link statistics, the probability
of survival of the system would decrease rapidly with increasing numbers of fibers, since
if one link fails, the entire system fails. For fiber bundles, this does not happen in practice.

In bundles where the fibers are constrained to have the same strain (Figure 13.32b),
when one fiber breaks, the system does not fail. The crack does not immediately grow into
the neighboring fiber. Instead, the load that was supported by the broken fiber is
transferred to the remaining unbroken fibers. This phenomenon is known as global load
sharing.

If the nominally applied stress on a fiber bundle of length L is σn , then when some of
the fibers break, the stress σ supported by each of the unbroken fibers is: 

[Eq. 13.102]

where Ps is the survival probability of a fiber of length L at stress σ. For example, if the
applied stress is σn , and 20% of the fibers have failed (Ps = 0.8), the surviving fibers must
now support 125% of the nominal stress (σ = σn/Ps = 1.25σn).

Rearranging Equation 13.102:

[Eq. 13.103]

Normalizing by So gives the relationship between the nominal stress σn and the actual
strain of the bundle, ε = σ /E:

[Eq. 13.104]

The resulting stress–strain curve, for the case m = 5 and L/Lo = 1.0, is shown in
Figure 13.33. Initially, the linear slope of the curve is defined by the elastic modulus of the
ceramic fibers. As stress increases, fibers begin to break and the effective modulus of the
fiber bundle decreases.

The maximum value of the applied stress is determined by taking the derivative of
Equation 13.104 and setting it to zero. The maximum occurs when:

[Eq. 13.105]

and the corresponding maximum applied stress is the fiber bundle strength σ b :

Ps nL σ,( ) nL
Lo
------ σ

So
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞m

–exp=

σ
σn

Ps
------=

σn σPs σ L
Lo
------ σ

So
----- 

⎝ ⎠
⎜ ⎟
⎛ ⎞m

–exp= =

σn

So
------

εE
So
------ L

Lo
------ εE

So
------ 

⎝ ⎠
⎜ ⎟
⎛ ⎞m

–exp=

εE
So
------ m 1 m/–=
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[Eq. 13.106]

where fb is:

[Eq. 13.107]

Values of fb for various moduli m are
given in Table 13.8. The strength σ b
scales with  so that the fiber
bundle strength decreases as the length
increases. This result is expected since
there is more material for a crack of
critical length to exist in.

Figure 13.33 gives the stress–strain
curves of a fiber bundle for m = 5, 9,
and 15. As m increases, the spread of
the individual fiber strengths decreases.
Thus, more fibers survive to higher
values of σ /So , which means the fiber
bundle strength σ b increases. The
survival probability Ps of the fibers at
σ = σ b is:

[Eq. 13.108]

This explains the increase in height of the stress–strain curves with increasing values of m.

The distribution of fiber strengths also explains the shape of the stress–strain curves
(Figure 13.33). For large values of m, the fibers tend to fail at approximately the same
stress. This is evidenced by the stress–strain curve for m = 15, which is linear to higher
values of stress and strain than the curve for m = 5; relatively few fibers in the m = 15
material have failed before the bundle strength σ b is reached. Since the distribution of
fiber strength is small for m = 15, as soon as fibers begin to fail, they nearly all fail over a
small strain range, causing a steep drop in the stress–strain curve. Conversely, for m = 5,
which has a larger spread of fiber strengths, there is still a significant number of fibers
intact beyond the strain corresponding to the bundle strength. Failure is a more gradual
process for the m = 5 material, as evidenced by the less-steep drop in its stress–strain
curve.

σb

So
------

Lo

mL
-------- 

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 m/

1
m
---- –⎝ ⎠

⎛ ⎞exp=

Lo

L
------ 

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 m⁄

fb=

fb
1

me
------- ⎝ ⎠

⎛ ⎞ 1 m/
=

L 1 m/–

Ps 1 e 1 m/––=

Table 13.8.  Dependence of fb on m.

m 5 9 15

fb 0.593 0.701 0.781

Figure 13.33. Fiber bundle stress–strain 
curves for bundles with fibers of various 
Weibull moduli.



www.manaraa.com

456 Ch. 13 Effect of Flaws: Fracture

Example 13.17  Fiber Bundle Strength

Given: A bundle of fibers has a total fiber length of 2.0 m. For reference length
Lo = 25.4 mm, the mean strength of the fibers is σm = 1800 MPa. The Weibull modulus is
m = 9.

Required: Determine the strength of the fiber bundle.

Solution: Step 1. The fiber bundle strength is:

where fb(m = 9) = 0.701.

Step 2. The relationship between the mean fiber strength σm and So for m = 9 is from
Table 13.5:

Hence:

Step 3. The bundle strength is:

Answer: 

σ b So

Lo

L
------ 

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 m⁄

fb=

σm 0.947So=

So

σm

0.947
------------- 1800 MPa

0.947
------------------------- 1901 MPa= = =

σb 1901 MPa( ) 25.4
3–×10  m

2.0 m
-------------------------------⎝ ⎠

⎛ ⎞
1 9⁄

0.701( )=

σb 820 MPa=
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Chapter 14 Joints

14.0  Introduction

Fasteners (connectors such as
bolts, rivets, pins, nails, and screws)
and adhesives hold a structure
together by transferring load from
one component to another.
Figure 14.1 is a lap joint, where two
members overlap each other at
the connection. Connections are often
the weakest link in a system, and thus are of major concern when accessing system
integrity. Connections can also be difficult to analyze; there are many parts and stresses to
consider, and the advanced theories of joining can be very complex. 

Bolted joints are generally associated with traditional construction methods. Bolts are
also used to join components made of composites, providing new design challenges.

The discussion in this chapter begins with a basic analysis of simple bolt-like
connections, such as bolts, rivets, and pins. This is followed by a more complex analysis of
a bolted connection, which includes stress concentrations due to the holes at the joint.
Finally, an analysis of adhesive joints is developed.

Bearing Stress
When two objects are in contact with each

other – or bear against each other – a stress exists
between them. This contact stress is the bearing
stress σB. In Figure 14.2, a footing of a system
transfers force F to the floor. The contact area A
is called the bearing area. The bearing stress is
the bearing force over the bearing area:

[Eq. 14.1]

Bearing stress is compressive – two objects can
only press against each other. Failure in bearing
is due to yielding of one of the materials,
resulting in a surface indentation.

σB
F
A
---=

Figure 14.1. A simple connection – one rivet 
joining two plates.

Figure 14.2.  The footing bears on 
the floor with force F.
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14.1  Simple Fasteners

Consider the simple connection of one
rivet (or bolt, etc.) holding two plates
together (Figures 14.1 and 14.3). The upper
and lower plates have thickness a and b,
respectively, and both have width W into
the paper. Force P on the upper plate acts to
the left, and that on the lower plate acts to
the right. The force must be transferred
through the rivet of diameter D.

The stresses that act on the rivet are
found by taking FBDs of the rivet and
applying equilibrium.

Average Bearing Stress
The upper plate bears on the top part of

the rivet, pulling it towards the left. The
lower plate bears on the lower part of the
rivet, pulling it towards the right. By
Newton’s Third Law, the rivet also bears on
each plate.

The average bearing stress is the
bearing force divided by the projected area
of the rivet. This area is the rivet diameter
multiplied by its imbedded length. The
bearing stress (Figure 14.3b) on the upper
part of the rivet is:

[Eq. 14.2]

And on the lower part:

[Eq. 14.3]

It is the bearing stress that transfers load P
from the plate to the rivet (and from the
rivet to the plate). 

The next step is to determine how the
load is transferred from the upper part of
the rivet to the lower part. 

σB a,
P

aD
-------=

σB b,
P

bD
-------=

Figure 14.3.  (a) A 2D FBD of 
connection. (b) Sketch of rivet showing 
average bearing stresses; top view of the 
bearing stress acting on the upper part 
of the rivet. (c) Stresses acting on the 
part of the rivet in the upper plate. The 
rivet transfers the load via shear stress.

Figure 14.4.  Stresses acting on the 
lower part of the rivet.
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Average Shear Stress
Consider the top part of the rivet only (Figure 14.3c). The bearing force acts to the

left. To maintain equilibrium, a shear force must act to the right on the cross-section of the
rivet having shear area As . It is the shear stress in the rivet that transfers the force from the
upper to the lower part of the rivet. 

The average shear stress on a cross-section of the rivet varies from zero at the top of
the rivet to the maximum at the interface of the two plates. The maximum average shear
stress in the rivet is:

[Eq. 14.4]

Figure 14.4 shows a 3D view of the lower part of the rivet, with the average bearing
and shear stresses acting on it. Detailed calculations (or physical argument) show that the
bearing stress actually varies around the rivet–plate interface, and that the shear stress
varies over the circular cross-section. However, in typical design calculations, the average
values of the bearing and shear stresses are determined. The average values are taken into
account in listings of the shear strength for various rivets, bolts, etc. In fact, it is the
allowable shear force (or allowable average shear stress) for a bolt that is often tabulated,
and so calculating average stress values are acceptable design practice.

Single and Double Shear
The bolt joining the members in Figure 14.5a is in a state of single shear. The entire

load P is transferred in shear over one cross-section of the bolt (Figure 14.5b).

The bolt in Figure 14.5c is in double shear. Load P is transferred over two cross-
sections. Thus, while the bolt transfers the same force P, the maximum shear stress is half
that of the bolt in single shear (Figure 14.5d). 

The system in double shear, often seen in pin-and-clevis connections, has the
additional advantage of being balanced due to its symmetry. By contrast, the single shear
system introduces a small moment at the joint since the axial forces in the top and bottom
plates are not coaxial. The axial loads will tend to align, possibly causing the connected
members to deform (Figure 14.5e).

14.2  Failure in Bolt-type Connections:  A Basic Analysis

Bolted joints have several possible failure modes. In joint design, each failure mode
must be evaluated to ensure that the joint has sufficient strength. 

In Figure 14.6, two members of the same width W and thickness a are joined by a
single connector (e.g., a rivet or a bolt) of diameter D. The center of the connector hole is
distance c from the free-end of the members; this is the edge distance. The joint transfers
force P.

τave
P
As
----- 4P

πD2
----------= =
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In this section, the joined members are assumed to be ductile and elastic–perfectly
plastic. As the material at a cross-section yields, stress is redistributed until the entire
cross-section is at the yield strength Sy at failure. 

The cross-sectional area of the member away from the joints is known as the gross
area A, which is used to determine the gross stress in the member. The stress in each
member between joints is generally checked before the joints are analyzed.

The joints themselves may fail by one of the modes discussed below.

Tensile Failure at Net-Section
Because holes are drilled in each member, its cross-sectional area is reduced at the

bolt locations (Figure 14.6b). The force must pass through the remaining area before

Figure 14.5.  (a) Bolt in single shear. (b) Part of bolt embedded in lower plate. 
The shear force is transferred between plates over one cross-section. (c) Bolt 
in double shear. (d) Part of bolt embedded in middle plate. The shear force is 
transferred over two cross-sections, resulting in a shear stress half that of the 
single shear case. (e) Failure of single shear joint due to axial loads aligning. 
(f) Failure of joint by bolt yielding in shear.
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being transferred in bearing to the bolt.
The average axial stress through the
reduced cross-section is the net-section
stress:

[Eq. 14.5]

The net area is the gross area minus the
area removed by the holes. For the
single-bolt connection, Anet = a(W–D).
The net-section stress must not exceed
the allowable axial stress of the plate
material. Due to plastic deformation and
stress-redistribution at the net-section,
the stress at failure everywhere on the
net-section equals the yield strength Sy .

To make up for the area lost due to
the holes, the gross area of a member is
generally increased at the joint, as
illustrated in Example 14.1. Sometimes
the increased area (without the holes) is
known as the gross area.

Bearing Failure at Connector-Plate Interface
The average bearing stress between the plate and the bolt is: 

[Eq. 14.6]

The bearing stress at failure is the bearing yield strength SB of the plate material or the
connector material, whichever is the smaller.

Tear-out Failure
A connector may tear out of the plate as shown in Figure 14.6c, especially if the edge

distance c is small. The force required to cause tear-out (or shear-out) of the single bolt is
the product of the plate shear strength τf = τy and the area over which the shear acts, 2ac:

[Eq. 14.7]

The factor 2 appears in the equation since the shear stress acts over two surfaces, each of
area ac.

Shear Failure in Connector
The maximum shear stress in the connector is:

σnet
P

Anet
---------- P

a W D–( )
-----------------------= =

σB
P

aD
-------=

Pto τf 2 ac( )[ ] 2acτf= =

Figure 14.6.  (a) Rivet/bolt connection 
joining two members. (b) FBD of upper 
member cut at net section, Anet = a(W−D). 
(c) FBD of upper member cut where 
connector may tear out. The tear-out area is 
Ato = 2ac.
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[Eq. 14.8]

This shear stress must be smaller than the allowable shear stress of the connector material.
Failure of the bolt due to yielding in shear is shown in Figure 14.5f.

Example 14.1  Integrity of a Connection

Given: Consider the single-bolt lap joint
in Figure 14.7. The thickness of the left
(upper) and right (lower) axial members
are a and b, respectively. The width of
the main part of the left member is W1,
increasing gradually to W2 at the joint;
the width of the right member is W4
increasing to W3 . The bolt diameter is
D; the edge distance is c. Assume that all
the members are made of different
materials. 

The allowable stresses (the factor of
safety has already been applied to the
strengths) are:

•  in the left member (material a): 
normal stress: Sa ; 
shear: τa ; bearing: SB,a ;

•  in the right member (material b):
normal stress: Sb ; 
shear: τb ; bearing: SB,b ;

•  in the bolt: shear: τbolt ; 
bearing: SB,bolt .

Required: Derive expressions for
the stresses acting at critical sections of
the member, and relate each stress to the
appropriate allowable stress.

Solution:

Left (Upper) Member

Consider FBDs of the left (upper) member cut at various cross-sections, and determine the
stresses at each section.

The gross area of the main length of the left member is A = aW1 , thus:

τave
P
As
----- 4P

πD2
----------= =

Figure 14.7.  (a) Bolt joining two members 
with increased areas at the connection. 
(b) Stress at Section 1-1. (c) Stress at 2-2. 
(d) Stress at 3-3 (the net-section). (e) Shear 
stress over tear-out area. (f) Bearing stress 
of bolt acting on the upper member.
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Section 1-1 (Figure 14.7b): allowable normal stress

The axial stress σ1 must be less than the allowable normal stress Sa . The dimensions may
be varied to insure that the stress is less than the allowable, or the applied force must be
reduced. At the widened section:

Section 2-2 (Figure 14.7c): allowable normal stress

Stress σ2 need not be calculated; since W2 > W1 then σ2 < σ1. 

Section 3-3 is the net-section through the hole center:

Section 3-3 (Figure 14.7d): allowable normal stress

The bolt may tear-out or cause bearing failure in the plate:

Tear-out area (Figure 14.7e): allowable shear stress

Bearing area (Figure 14.7f): allowable bearing stress

The Bolt

The upper part of the bolt must take the bearing stress from the left (upper) member,
transfer it via shear to its lower part, and then via bearing stress to the right (lower)
member. Thus:

Bearing stress, upper: allowable bearing (bolt)

Shear stress: allowable shear (bolt)

Bearing stress, lower: allowable bearing (bolt)

Right (Lower) Member

The right member is subjected to the same types of stress as the upper member, but the
values are generally different if W1 is not equal to W4, W2 is not equal to W3, or a is not
equal to b. The allowable stresses in the right member are different from those in the left
member if they are made of different materials.

Summary

At the joint, each member must satisfy at least four strength requirements (gross tension,
net-section tension, bearing, and tear-out). The connector must satisfy three requirements
(shear, two bearing). Even in such a simple joint, the possibility of failure in each of the 11
conditions must be checked.

σ1
P

aW1
----------- Sa<=

σ2
P

aW2
----------- Sa<=

σ3
P

a W2 D–( )
-------------------------- Sa<=

τto
P

2ac
--------- τa<=

σB a,
P

aD
------- SB a,<=

σB a,
P

aD
------- SB bolt,<=

τbolt
4P

πD2
---------- τbolt<=

σB b,
P

bD
------- SB bolt,<=
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Figure 14.8.  (a) Five bolts joining two 
plates. (b) FBD of the left/upper plate cut 
through the bolt holes (net section). 
(c) Cross-hatched area is part of upper 
plate that may tear-out.

Example 14.2  Multiple Bolts in a Single Row

Given: Two Aluminum 6061-T6 plates
are joined by five 1/2-in. diameter bolts
(Figure 14.8). The width and thickness of
each plate are W = 8.5 in. and t = 3/16 in.,
respectively. The edge distance – from the
line passing through the bolt centers to the
edge of each plate – is c = 2.0 in. The
bolt-to-bolt distance is e = 1.0 in. (1.5 in.
center-to-center). The material properties
for the plate and bolt material are the
same. The allowable stresses (the factor of
safety has already been applied) are:

Normal: Sa = 19 ksi; 
Shear: τa = 11 ksi; and 
Bearing: SB,a = 34 ksi.

Required: Verify that the connection can
support a load of P = 10,000 lb without
exceeding the allowable stresses.

Solution:

Bolts

Each bolt has a cross-sectional area of: 

and a bearing area of: 

There are five bolts, so each bolt must transfer a force of:

Shear stress, bolt. The shear stress in each bolt is:

OK

The shear stress in the bolt is within the allowables.

As
πD2

4
---------- π 0.5( )2

4
------------------ 0.196 in.2= = =

AB Dt 0.5 in.( ) 3 16 in.⁄( ) 0.0938 in.2= = =

Pb
P
5
--- 10 000 lb,

5
------------------------ 2000 lb= = =

τbolt

Pb

As
------ 2000 lb

0.196 in.2
------------------------ 10.2 ksi= = =

τbolt τa<⇒
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Bearing stress, bolt.

OK

Plates

Axial stress, plate. The highest axial stress occurs at the cross-section that has the least
area; this is where the holes are drilled (Figure 14.8b). The entire force P must pass
through the net-section, t(W–5D). Thus:

OK

Bearing stress, plate. The bearing stress is the same as that on the bolts, and they are of the
same material:

OK

Tear-out, plate. For the five bolts to tear-out of the upper plate, the cross-hatched area in
Figure 14.8c may be the part of the left/upper plate removed. The areas that connect this
cross-hatched area to the rest of the upper plate are 2tc and 4te, where c is the edge
distance and e is the distance between bolt surfaces. Shear stress acts over area 2tc and
normal stress acts over 4te. To ensure the tear-out requirement is satisfied, the tear-out
force is calculated by letting all the stresses reach their allowables:

OK

Each bolt may also plow-through the upper plate individually, the plate failing in shear:

 

OK

Since the lower plate is the same as the upper plate, its analysis has already been
completed.

σB bolt,

Pb

AB
------ 2000 lb

0.0938 in.2
--------------------------- 21.3 ksi= = =

σB bolt, SB a,<⇒

σnet
P

t W 5D–( )
------------------------- 10 000 lb,

3 16⁄  in.( ) 8.5 in. 5 0.5 in.( )–[ ]
---------------------------------------------------------------------------- 8.9 ksi= = =

σnet Sa<⇒

σB

Pb

AB
------ 2000 lb

0.09375 in.2
------------------------------ 21.3 ksi= = =

σB SB a,<⇒

Pto Sa 4te( ) τa 2tc( )+=

19 ksi( ) 4 3 16⁄  in.( ) 1.0 in.( )[ ] 11 ksi( ) 2 3 16⁄  in.( ) 2.0 in.( )[ ]+ 22.5 kips= =

P Pto<⇒

Pto 2, 5 2tc( ) τa( )[ ] 5 2 3 16⁄  in.( ) 2 in.( ) 11 ksi( )[ ] 41.25 kips= = =

P Pto 2,<⇒
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Summary 

All the stresses are within the allowables, and the allowable tear-out force is greater than
the applied load. Therefore, the connection can support the load P = 10 kips.

Example 14.3  Bolts in Regular Grid-Pattern

Given: Four bolts in a square-pattern join
two members as shown in (Figure 14.9).
The connection supports load P.

Required: Determine (a) the force acting
on each bolt and (b) the forces acting
through Sections 1-1 and 2-2 (Figure 14.9b).

Solution: Step 1. Since the bolt is in a
regular square pattern, the load is taken to
be carried equally by all four bolts. Each
bolt must support a force of:

Answer: 

Step 2. The force acting across Section 1-1
is the entire force transferred by the
connection:

Answer: 

Step 3. At Section 2-2, half of the load in
the upper plate has already been removed
by the bolts at Section 1-1. The force that is
not removed by the first set of bolts is the
by-pass (or pass-through) force Pt
(Figure 14.9c). This force must be
transferred over net Section 2-2:

Answer: 

The stresses in the plates and bolts are
calculated as described previously.

Bolts in a regular grid-pattern of any size can be analyzed as illustrated in the above
examples. Bolts in an offset grid-pattern must be analyzed using a more complicated
formulation, not presented here, but available in design manuals.

 Pb
P
4
--- =

 F1 P =

 F2 Pt
P
2
---= =

Figure 14.9.  (a) Four bolts in a square 
pattern. (b) Force P is assumed to be 
equally distributed among the bolts.
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14.3  Failure of Bolt-type Connections: An Advanced Analysis

Structural members made of polymer matrix composites are often joined with metal
bolts (Figure 14.10). Since polymeric components are generally brittle, the beneficial
effect associated with yielding in ductile materials cannot be assumed. 

In the previous section, it was assumed that only average stresses needed be calculated
to determine joint strength. This approach is satisfactory when the plate material is ductile,
and high local stresses are relieved by plastic deformation. Assuming that the material is
elastic–perfectly plastic, the entire net-section is at the yield strength when the joint fails.

For materials that remain essentially elastic until failure – brittle materials – the
maximum elastic stresses caused by the presence of the holes must be calculated. For
basic geometries, the stresses can be determined
using stress concentration factors, which are
known for many geometries and can be found
on the web (e.g., www.fatiguecalculator.com)
and in printed references.

A detailed presentation of the following
approach is found in the paper by L.J. Hart-
Smith, “Mechanically-Fastened Joints for
Advanced Composites – Phenomenological
Considerations and Simple Analyses” (Fibrous
Composites in Structural Design, Plenum Press,
1980, pp. 543–574).

Stress Concentration Factor
Consider a thin elastic plate of width W

subjected to axial stress σ (Figure 14.11a). If a
hole of diameter D is drilled into the center of
the plate, then the stress at the cross-section
through the hole center is not uniform
(Figure 14.11b). The average stress on the net-
section is:

Figure 14.10.  Two members joined by multiple bolts.

Figure 14.11.  (a) Plate with a hole. 
(b) The stress concentration factor 
of a plate with a hole for D << W is 
K = 3.
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[Eq. 14.9]

The maximum stress at the hole surface is:

[Eq. 14.10]

where K is the stress concentration factor (SCF). The SCF depends on the shape and
dimensions of the component, and the type of load. As noted above, the equations for
many SCFs are known. 

When the hole is small compared to the plate (D/W << 1) and the material remains
elastic, the maximum stress reduces to the well-known result:

[Eq. 14.11]

Lap Joint with n In-line Bolts
Consider a lap joint with n bolts, arranged in a single line in the direction of the load

(Figure 14.12a). The joined plates each have width W and thickness t; the bolt diameter is
D and the bolts are placed e apart, center-to-center. The joint transmits load P by shear in
the bolts, and the bolts are assumed to share the load equally. In the upper (left) plate, the
load reduces from P at the loaded left end of the plate to zero at the right end.

Consider a length of the upper plate formed by two cuts, one on either side of the first
bolt (Figure 14.12b). Load P is supported by the bolt load Pb and by the bypass load Pt
which passes through to the rest of the upper plate. This loading condition can be broken
up into a plate with a hole loaded by Pt , and a plate loaded at the hole by bearing force Pb
(Figure 14.12c). The maximum bypass load is at the first bolt.

Elastic Stress due to Bypass
Load

If the material is elastic, the
maximum stress due to the average
bypass stress σt is:

[Eq. 14.12]

and occurs at the side of the hole
(Figure 14.13a). The elastic stress
concentration factor Kte for a plate
of width W with a center hole of
diameter D, is modeled by:

[Eq. 14.13]

σave
σ

1 D W⁄–
----------------------=

σmax Kσave=

σmax 3σ=

σmax,t Kteσt=

Kte 2 1 D
W
-----–⎝ ⎠

⎛ ⎞ 3
+= Figure 14.12.  (a) Two plates joined by multiple 

bolts. (b) FBD of length of upper plate around 
first bolt. (c) Loads on FBD considered as the 
superposition of a (1) bypass force Pt and 
(2) a bearing force Pb .
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which reduces to Kte = 3 for large plates.
The average bypass stress is:

[Eq. 14.14]

Elastic Stress due to Bearing Load

The maximum stress in the plate due to
the bearing stress σb is:

[Eq. 14.15]

and also occurs at the side of the hole
(Figure 14.13b). The elastic stress
concentration factor Kbe for a plate of width
W with a series of center holes of diameter
D each subjected to bearing stress is
modeled:

[Eq. 14.16]

Variable θ is a correction factor for the bolt
spacing e. In this development, the effect of
spacing will be neglected, which means
θ = 1.0. The average bearing stress is:

[Eq. 14.17]

Total Maximum Stress

The maximum tensile stress in the plate is the sum of the stresses due to the bypass
and bearing loads:

[Eq. 14.18]

Plasticity and Delamination

Equation 14.18 is only valid if the stresses remain elastic. High stresses cause plastic
deformation in metals and delamination in polymer composites. The resulting stress
redistribution due to these non-linear responses can be expressed by modifying the stress
concentration factors. The modifications are determined from the results of experiments.
The modified stress concentration factors are:

[Eq. 14.19]

σt

Pt

W D–( )t
----------------------=

σmax,b Kbeσb=

Kbe 1 2
W D⁄( ) 1–

--------------------------- 1.5θ
W D⁄( ) 1+

---------------------------–+=

σb

Pb

Dt
------=

σmax Kteσt Kbeσb+=

Ktp 1 c Kte 1–( )+=

Kbp 1 c Kbe 1–( )+=

Figure 14.13.  (a) Plate with a hole 
subjected to applied stress σt = Pt /Wt. 
(b) Plate with a hole subjected to bearing 
stress σb = Pb /Dt.
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Ktp is the plastic stress concentration factor for the pass-through stress and Kbp is the
plastic stress concentration factor for the bearing stress; these SCFs replace the elastic
stress concentration factors in Equation 14.18. Variable c is a correlation factor depending
on the material. For elastic (brittle) materials, c = 1, and the plastic SCF reduces to the
elastic SCF. For fully plastic (ductile) materials, yielding occurs over the entire net section
so that c = 0 and Ktp = Kbp = 1 (i.e., at failure, the stress everywhere is the yield strength).
The value of c for many polymeric composites is approximately c = 0.25.

Failure Modes

Two failure modes are currently considered: 

1. tensile failure: when the maximum calculated stress in the plate reaches the 
ultimate tensile strength of a ceramic or polymeric material, σmax = Su , or the 
yield strength Sy for ductile materials; 

2. bearing failure: when the bearing stress σb on the plate reaches the bearing 
strength, σb,max = SB, causing the hole to elongate.

For metals, SB ~ 1.73Sy ; for polymer composites, SB ~ Su , and for ceramics SB >> Su .
These values are assumed in further discussion. Because the bearing strength of ceramics
is much larger than their tensile strength, bearing failure for ceramics is not considered.

As a final assumption, the bolts are considered to be strong enough to support the
applied load, both in bearing and in shear; the bolts do not limit the design.

Joint Efficiency

In the absence of the joint, the plate can support an ultimate load:

[Eq. 14.20]

Joint failure occurs either by tensile failure at the hole, or in bearing at the bolt–plate
interface. The efficiency of the joint, η, is:

[Eq. 14.21]

where Pf is the lowest calculated load for the various failure modes. The efficiency is the
strength of the joint compared to the host system. Efficiency calculations are illustrated in
the following examples.

Example 14.4  Single-Bolt Connection

Given: A single-bolt connection joins two plates, both of width W and thickness t
(Figure 14.14). The bolt is of diameter D.

Required: Determine the efficiency η of the connection.

Pu SuWt=

η
Pf

Pu
------=



www.manaraa.com

14.3 Failure of Bolt-type Connections: An Advanced Analysis 471

Solution: Step 1. For a single-bolt
connection, the bypass load is zero, Pt = 0,
and the bolt load is Pb = P. Hence, the
maximum tensile stress in the plate is:

where  and Kb is the plastic
(general) stress concentration factor.

Step 2. The plate can fail either in tension or
in bearing. For the plate to fail in tension:

Applying Equation 14.21, the efficiency for
tensile failure of a joint with a single bolt is
found to be:

Answer: [Eq. 14.22]

where the value of c depends on the plate material.

Step 3. For the plate to fail in bearing:

σmax Kbσb=

σb P Dt( )⁄=

Kbσb Su   (Sy for metals)=

ηt

Pf

Pu
------

1 D
W
-----–

1 c W
D
----- 1.5

1 D W⁄( )–
1 D W⁄( )+
---------------------------–+

----------------------------------------------------------------------= =

σb SB=

Figure 14.15. Efficiency of a single-bolt connection for joining 
various materials: ductile materials (c = 0), brittle materials 
(c = 1.0), and polymer matrix composites (c = 0.25).

Figure 14.14. (a) Single bolt joint. 
(b) FBD of upper (left) member.



www.manaraa.com

472 Ch. 14 Joints

Applying Equation 14.21, the joint efficiency for bearing failure is:

Answer: [Eq. 14.23]

Discussion: The efficiency of the single-bolt connection for any given D/W is the
minimum of the tensile and bearing efficiencies. Joint efficiency versus D/W for the various
failure modes are plotted in Figure 14.15 for c = 0 (perfectly plastic metal, SB = 1.73Sy),
c = 0.25 (polymer composite, SB = Su), and c = 1.0 (elastic ceramic, SB >> Su).

From Figure 14.15, the following observations may be made for single-bolt connections:

1. In metals that are perfectly plastic (c = 0), both efficiencies are represented by 
straight lines. The maximum possible efficiency is η = 0.64 when D/W 0.37; 
tensile and bearing failure occur simultaneously.

2. In ceramics that remain elastic (c = 1.0) and do not fail in bearing, the tensile 
efficiency plot has negative curvature. The maximum possible efficiency is 
η = 0.21 when D/W = 0.4; tensile failure occurs at the sides of the hole.

3. In polymer composites (c = 0.25), bearing efficiency is linear, while tensile 
efficiency has a negative curvature. For the assumptions made, the maximum 
possible efficiency is η = 0.4 when D/W = 0.4; tensile and bearing failure 
occur simultaneously.

Example 14.5  Multi-Bolt Connection

Given: A multi-bolt (n-bolt)
connection joins two members,
both of width W and thickness t
(Figure 14.16). The bolts each
have diameter D.

Required: Determine the efficiency
η of the connection.

Solution: Step 1. For the multi-
bolt connection, the bypass load
Pt is maximum at the first bolt:

[Eq. 14.24]

To determine the actual force distribution among the bolts requires a lengthy analysis.
However, yielding in metals and delamination in polymer composites allow stress
redistribution to occur, and it is therefore assumed in this analysis that load P is distributed
equally among the bolts. While this is a major assumption, it leads to observations which
are consistent with experiment.

If n is the number of bolts, then the bearing load on each bolt is:

ηb
D
W
-----
⎝ ⎠
⎜ ⎟
⎛ ⎞

 
SB

Su
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Pt P Pb–=

Figure 14.16. (a) Multi-bolt connection. (b) The 
maximum pass-through load is at the first bolt.
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[Eq. 14.25]

The bypass load Pt is largest at the first bolt:

[Eq. 14.26]

Step 2. The maximum tensile stress in the plate is therefore at the first bolt, and is:

[Eq. 14.27]

Step 3. Applying the tensile failure condition:

[Eq. 14.28]

and the bearing failure condition:

[Eq. 14.29]

The efficiency for tensile failure is:

Answer: [Eq. 14.30]

Step 4. The efficiency for bearing failure is:

Answer:  [Eq. 14.31]

Pb
P
n
---=

Pt P Pb– n 1–
n

------------P= =

σmax Ktσt Kbσb+ Kt
n 1–

n
------------⎝ ⎠
⎛ ⎞ P

W D–( )t
---------------------- Kb

P
Dt
------+= =

σmax Ktσt Kbσb+ Su= =

σb SB=

ηt Kt
n 1–

n
------------⎝ ⎠
⎛ ⎞ 1

1 D W⁄( )–
--------------------------- Kb

W
nD
-------+

1–
=

ηb n D
W
-----
⎝ ⎠
⎜ ⎟
⎛ ⎞

 
SB

Su
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Figure 14.17. Efficiency of multi-bolt connection 
for elastic–perfectly plastic materials, c = 0.
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Discussion: The efficiency of the connection for any given D/W is the minimum of the two
efficiencies. Graphs of joint efficiency versus D/W are given for perfectly plastic materials
in Figure 14.17 and for polymer matrix composites in Figure 14.18.

For ductile materials, c = 0, SB = 1.73Sy (Figure 14.17), the following observations may
be made:

1. The maximum efficiency for one bolt is η = 0.64 when D/W ~ 0.37. Tensile and 
bearing failure occur simultaneously.

2. The maximum efficiency increases with the number of bolts. For four bolts, the 
maximum possible efficiency is 0.87 when D/W ~ 0.12. Tensile and bearing 
failure occur simultaneously.

3. The increase in efficiency is not linear with the number of bolts (cost). For each 
additional bolt, less additional efficiency is gained. The increase in efficiency 
is eventually offset by the increased joint cost; an economic limit is reached.

For polymeric materials, c = 0.25, SB = Su (Figure 14.18):

1. The maximum efficiency for one bolt is η = 0.4 when D/W ~ 0.4. Tensile and 
bearing failure occur simultaneously.

2. The maximum efficiency increases with the number of bolts. For four bolts, the 
maximum efficiency is 0.52 when D/W ~ 0.2. The failure mode is tensile.

3. Increasing the number of bolts from 1 to 4 only increases the efficiency from 0.4 
to 0.52. The maximum efficiency of two bolts (η = 0.5 at D/W ~ 0.26) is 
approximately the same as the maximum efficiency for four bolts. In practice, 
the number of bolts in a composite joint is therefore limited. 

Final bolt designs are confirmed by performing mechanical tests on the actual joint.

Figure 14.18. Efficiency of multi-bolt connection 
for polymer–matrix composites, c = 0.25.
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14.4  Stress Distribution in Adhesive Lap Joints in Shear

Adhesives are used to join
metal, polymer and composite
plates and panels (Figure 14.19).
The adhesive transmits load P from
the upper plate to the lower plate by
means of shear stresses in the
adhesive. Adhesives are strong
when loaded in shear, but have little
strength when loaded by normal
stresses.

For the lap joint in Figure 14.19a, the upper (right) plate has width W, thickness t1 ,
and elastic modulus E1 . The lower (left) plate has width W, thickness t2 , and elastic
modulus E2 . The adhesive has thickness t and shear modulus G. The applied load
transmitted through the joint is P. The length of the bonded joint (overlap) is L. 

The axial stress in each plate varies with distance x, measured from the left end of the
joint. The normal (axial) stress and displacement at position x of the upper plate are σ1(x)
and u1(x), respectively. The corresponding values of the lower plate are σ2(x) and u2(x). At
their free ends, the plates are stress-free: σ1(0) = σ2(L) = 0. The adhesive is assumed to be
subjected to only shear stress τ(x).

From the FBD formed by taking a cut at position x in the joint (Figure 14.19b):

[Eq. 14.32]

Consider an element dx in the upper plate (Figure 14.19c). Equilibrium requires that
the change in σ1 over distance dx be:

[Eq. 14.33]

or:

[Eq. 14.34]

Now consider an element dx in the lower plate (Figure 14.19d). Equilibrium requires that:

[Eq. 14.35]

From the last two equations, (Wt1)dσ1 and (Wt2)dσ2 are equal but opposite in sign. At any
distance x, the force in the upper plate (Wt1σ1) increases at the same rate that the force in
the lower plate (Wt2σ2) decreases; the load is being transferred from one plate to the other.

P σ1 Wt1( ) σ2 Wt2( )+=

dσ1 Wt1( ) τ x( ) W dx( )=

dσ1

dx
--------- τ x( )

t1
----------=

dσ2

dx
--------- τ x( )

t2
----------–=

Figure 14.19.  (a) Adhesive lap joint.
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Using the definition for strain,
ε = du/dx, and Hooke’s Law, the strains
in the upper and lower plates are:

[Eq. 14.36]

[Eq. 14.37]

The shear strain in the adhesive is
(Figure 14.19e): 

[Eq. 14.38]

Differentiating Equation 14.38 with
respect to x: 

[Eq. 14.39]

and then substituting Equations 14.36
and 14.37 gives:

[Eq. 14.40]

Substituting for σ2 (Equation 14.32)
and for τ (Equation 14.34) gives a
second-order differential equation for
stress σ1:

[Eq. 14.41]

where and

The solution of Equation 14.41 has the form:

[Eq. 14.42]

Constants A and B are found by applying the boundary conditions. In the upper plate, at
x = 0 (the free-surface), σ1 = 0; at x = L, σ1 = P/Wt1.

ε1 x( )
du1

dx
---------

σ1 x( )

E1
--------------= =

ε2 x( )
du2

dx
---------

σ2 x( )

E2
--------------= =

γ x( )
u1 x( ) u2 x( )–

t
--------------------------------- τ x( )

G
----------= =

1
G
---- τd

dx
------ 1

t
---

du1

dx
---------

du2

dx
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
G
---- τd

dx
------ 1

t
---
σ1

E1
------

σ2

E2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

d2σ1

dx2
------------ λ2σ1– C+ 0=

λ2 G
t
---- 1

E1t1
----------- 1

E2t2
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

= C G
t
---- P

E2Wt2t1
---------------------=

σ1 x( ) A  λxcosh B  λxsinh C

λ2
------+ +=

Figure 14.19.  (b) FBD of joint cut at 
distance x. (c) Element of upper plate, dx 
long, t1 tall, W wide (into paper). Stresses 
drawn in positive directions. (d) Element of 
lower plate, dx long, t2 tall, W wide (into 
paper). (e) Deformation of system, with left 
edge of adhesive (x = 0) taken to be fixed. 
The original system profile is indicated by the 
dotted lines. Any vertical line AB (dashed ) 
displaces to A'B'.
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Completing the algebra, the expression for the normal stress σ1 is:

[Eq. 14.43]

The shear stress τ(x) is calculated by taking the derivative of σ1(x) (Equation 14.43), and
substituting the result into Equation 14.34. Stress σ2(x) is determined from equilibrium in
Equation 14.32. After some mathematical manipulation, the stresses are:

[Eq. 14.44]

[Eq. 14.45]

[Eq. 14.46]

where:

 [Eq. 14.47]

and

[Eq. 14.48]

Constant k is a measure of the
relative axial stiffnesses,
EA = E(tW), of the plates. Constant
λ2 is a measure of the ratio of the
adhesive shear stiffness to the plate
stiffnesses.

A plot of the variation of the
shear stress with position for various
values of λL is given in Figure 14.20
for k = 3, i.e., E1t1 = 2E2t2. The
shear stress is normalized by the
average shear stress ,
and the position by the joint length
L. The shear stress is maximum at
the ends of the joint, x = 0 and L. In
general, the shear stresses at each
end are not equal.

σ1 x( ) C

λ2
------ 1  λxcosh–( )  λxsinh

 λLsinh
------------------- P

Wt1
--------- C

λ2
------ 1  λLcosh–( )–+=

σ1 x( ) P
Wt1k  λLsinh
---------------------------------- k 1–( )  λLsinh  λ L x–( )sinh–[ ]  λxsinh+[ ]=

σ2 x( ) P
Wt2k  λLsinh
---------------------------------- k 1–( )  λ L x–( )sinh[ ]  λLsinh  λxsinh–+[ ]=

τ x( ) PλL
WLk  λLsinh
--------------------------------- k 1–( )  λ L x–( )cosh[ ]  λx cosh+[ ]=

k 1
E1t1
E2t2
-----------+=

λ2 G
t
---- 1

E1t1
----------- 1

E2t2
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

τ P WL( )⁄=

Figure 14.20.  Unbalanced Joint, k = 3. Shear 

stress in the adhesive  versus position 
along the joint x/L.

τ τ⁄
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As λL increases, the less effective the center of the adhesive area is in supporting
stress. For λL = 10, approximately 25% of the center region supports essentially zero
stress.

Balanced Joints
A balanced joint is achieved when the shear stresses at the ends are equal, τ (0) =τ (L).

From Equation 14.46, the shear stresses at the ends are:

 [Eq. 14.49]

These stresses are equal provided k – 1 = 1 or k = 2. Substituting k = 2 into
Equation 14.47, gives:

[Eq. 14.50]

Since W is the same for both plates, then the axial stiffnesses, EA = EWt, in a balanced
joint are equal:

[Eq. 14.51]

Hence the stresses for a balanced joint become:

[Eq. 14.52]

[Eq. 14.53]

[Eq. 14.54]

The axial stresses are normalized by the average stresses in the plates away from the joint
and the shear stress is normalized by the average shear stress in the adhesive:

; ; [Eq. 14.55]

Plots of the normalized stress distributions in a balanced joint are given in Figures 14.21
and 14.22.
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Effect of Parameter λ
For the case E1 = E2 and t1 = t2,

the parameter λ reduces to:

[Eq. 14.56]

and the dimensionless parameter λL
is:

[Eq. 14.57]

In practice, λL lies between 1 and 15. 

Normalized stress distribution
plots for the shear stress in the
adhesive (Figure 14.21) and for the
axial stress in the lower plate σ2
(Figure 14.22) are given for various
values of λL. 

When λL = 1, the shear stress in
the adhesive is essentially constant
and equal to the average value
(Figure 14.21). In addition, the axial
stress in the lower plate is linear,
evidence that the shear stress is
constant over the entire length of the
joint (Figure 14.22, Equation 14.35).

As λL increases, the less
effective is the central region of the
joint. For λL = 10, the shear stress in
the central 30% of the joint is almost
zero (between x/L = 0.35 and 0.65,

, Figure 14.21), and so
it does not contribute significantly to
load transfer. The central region of the adhesive is essentially stress-free. As a result, for
λ = 10, the axial stress in the lower plate is essentially constant over the central 30% of the
joint (between at x/L = 0.35 and 0.65,  varies by less than 6%, from 0.514 to 0.486,
Figure 14.22).

λ 2G
tE1t1
------------- 2G

tE2t2
-------------= =

λL 2G
tE1t1
------------- L 2G

tE2t2
------------- L= =

τ τ⁄ 0.160<

σ σ2⁄

Figure 14.22. Balanced joint, k = 2. Axial 

stress in the lower plate  versus 

position along joint x/L.

σ2 σ2⁄

Figure 14.21. Balanced joint, k = 2. Shear 

stress in the adhesive  versus position 
along joint x/L.

τ τ⁄
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Shear Stress Concentration Factor
The shear stress concentration

factor (SCF) is:

[Eq. 14.58]

The maximum shear stresses occur
at the ends of the joint (x = 0 and L),
and are equal when the joint is
balanced. 

The shear SCF for a balanced
joint is calculated using
Equation 14.52 at x = 0 or L. The
balanced joint SCF is plotted in
Figure 14.23 against λL. The SCF
can be approximated with a bilinear
model, indicated by the dotted line.

Provided that λL < 2, the SCF is
approximately constant and equal to
Kτ = 1. For this case, the shear stress
is essentially uniform in the adhesive
(Figure 14.21).

For values of λL greater than 2, the SCF for a balanced joint is approximately:

[Eq. 14.59]

For λL = 10, Kτ = 5, so , as shown in Figure 14.21. Likewise, for λL = 5,
Kτ = 2.5.

Joint Strength – Adhesive Failure
The adhesive fails when the maximum shear stress reaches the adhesive’s shear

strength τmax = τf . The failure load Pf  is related to τf  through the SCF:

[Eq. 14.60]

Provided λL > 2, Kτ = 0.5λL. The maximum load Pf  that can be transmitted through the
joint is then:

[Eq. 14.61]

Kτ
τmax

τ
-----------=

Kτ
λL
2

------=

τmax 5τ=

Pf τf WL( )
τf

Kτ
------WL= =

 Pf

2τfW

λ
------------ =

Figure 14.23. The shear stress concentration 
factor for a balanced joint is approximated by a 
bilinear model (dotted line): for λL < 2, Kτ = 1; for 

λL > 2, Kτ = 0.5(λL).
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An interesting feature of this equation is that the failure load is independent of adhesive
length L (!). 

When the design stress is exceeded, a natural reaction is to increase the length of the
joint in order to decrease the average stress and thus increase the failure load. With bonded
joints, this strategy does not work. Increasing the length increases the SCF by the same
factor, and no advantage is gained. For example, if L is doubled, the average shear stress 
is halved, but the SCF, , is also doubled; the maximum shear stress remains
the same.

Substituting the expression for λ from Equation 14.56 into Equation 14.61 gives the
failure load per unit width of a balanced joint:

[Eq. 14.62]

Besides modifying τf , strength can be increased by selecting an adhesive with a lower
shear modulus G, or by increasing the adhesive thickness t.

The shear modulus for available epoxy adhesives is approximately G ~ 1 GPa.
Changing the adhesive thickness t may be the only strategy available to increase the
strength of the joint. However, fracture is more likely in a thicker adhesive; thickness is
often limited by the fracture condition.

Example 14.6  Double Lap Joint

Given: A double lap joint consists
of three aluminum plates
(E = 10×106 psi) joined with an
adhesive (Figure 14.24). The
thickness of each of the outer plates
is to = 0.05 in. and of the inner plate
is ti = 0.2 in.; the width of each
plate is W = 2.0 in. The total load to
be transferred by the joint is
P = 3000 lb. The thickness of the
adhesive is t = 0.005 in. and the
shear modulus is G = 250,000 psi.
The length of the adhesive joint is
L = 1.5 in. 

Required: Determine the shear stress
at each end of the adhesive joint.

Solution: Since the joint is symmetric, only half needs be analyzed (Figure 14.24b): t1 = to
and t2 = ti/2. This configuration does not satisfy the balanced condition and consequently
the full set of relationships of Equations 14.44 through 14.48 is required.

τ
Kτ 0.5λL=

Pf

W
----- τf

tE1t1
G

------------- τf
tE2t2

G
-------------= =

Figure 14.24. (a) Double lap joint. (b) By 
symmetry, a double lap joint is analyzed as a 
single lap joint.
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The value of λ is given by Equation 14.48:

so:

and

Equation 14.47 gives the value of k:

The average shear stress in the adhesive is:

Equation 14.46 gives the shear stress in the adhesive, subjected to force P/2:

At the ends of the adhesive, the shear stresses are maxima:

Answer: 

Answer: 

The stress concentration factors at x = 0 and 1.5 in. are Kτ = = 6.13 and 12.3,
respectively. Since the joint is unbalanced, the shear stresses at the ends are unequal, as
shown by the solid line in Figure 14.24c. The transfer of the load between the plates and
the adhesive occurs primarily at the ends of the joint. The contribution of the central 60%
of the adhesive is small.

To achieve a joint with a more uniform shear stress, the value of λL should be decreased.
One method is to reduce the length of the adhesive to L = 0.5 in.

Then λL = (12.2)(0.5) = 6.1 and the average shear stress increases to:

λ2 G
t
----

1
E1t1
----------- 1

E2t2
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

250
3×10  psi

5.0
3–×10  in.( )

----------------------------------- 1

10
6×10  psi( ) 0.05 in.( )

------------------------------------------------------- 1

10
6×10  psi( ) 0.1 in.( )

----------------------------------------------------+ 150 
1

in.
2

--------= =

λ 12.25 in. 1–=

λL 12.25 in. 1–( ) 1.5 in.( ) 18.37= =

k 1
E1t1
E2t2
-----------+ 1.5= =

τ P 2⁄
WL
---------- 1500 lb

1.5 in.( ) 2.0 in.( )
----------------------------------------- 500 psi= = =

τ x( ) P 2⁄( )λL
WLk  λLsinh
--------------------------------- k 1–( )  λ L x–( )cosh[ ]  λxcosh+[ ]=

τ 0( ) 500 psi( ) 18.4
1.5 18.4sinh
----------------------------- 1.5 1–( ) 18.4cosh( ) 0cosh+[ ] 3062 psi= =

τ 1.5( ) 500 psi( ) 18.4
1.5 18.4sinh
----------------------------- 1.5 1–( ) 0cosh( ) 18.4( )cosh+[ ] 6123 psi= =

τ 0( ) 3.1 ksi=

τ 1.5( ) 6.1 ksi=

τ τ⁄
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Again using Equation 14.46 with the new values of λL and , the end shear stresses are:

Answer: 

Answer: 

By decreasing L, the average shear
stress increases. At the same time, the
SCFs have decreased to
Kτ(x = 0) = 2.05 and Kτ(x = 0.5) = 4.1.
The new normalized shear stress
distribution is the dashed line in
Figure 14.24c. 

The increase in  and the decrease in
SCF offset each other. While the shear
stress distribution has become more
uniform, the maximum shear stresses
remain the same. 

14.5  Design Problem

In a space vehicle, a thin panel is
attached to a primary member by means of
an aluminum T-joint (Figure 14.25a). The
panel is aluminum, with a thickness of
0.080 in., and is to support a maximum
tensile force per unit width (into the paper)
of P/W = 600 lb/in. An adhesive of
thickness t = 0.005 in. is to be used. 

The goal is to design the joint by
specifying the thickness of the angle
members to , and the length of the joint L.
The shear strength of the adhesive is
unknown, but can be determined with tests.

τ 1500 lb
0.5 in.( ) 2.0 in.( )

----------------------------------------- 1500 psi= =

τ

τ 0( ) 1500( ) 6.1
1.5  6.1sinh
------------------------------ 1.5 1–( )  6.1cosh( )  0cosh+[ ] 3077 psi= =

τ 0.5( ) 1500( ) 6.1
1.5  6.1sinh
------------------------------ 1.5 1–( )  0cosh( ) 6.1( )cosh+[ ] 6114 psi= =

τ 0( ) 3.1 ksi=

τ 1.5( ) 6.1 ksi=

τ

Figure 14.24. (c) Shear stress distribution 
in joint. 

Figure 14.25.  (a) Secondary member in 
space vehicle.
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Experiment to Determine Shear Strength of Adhesive
To estimate the shear strength of the

adhesive, the test coupon (specimen) shown
in Figure 14.25b is tested to failure. The
coupon is a 1.0 in. wide aluminum
(E = 10.0 Msi) joint with joint length 1.5 in.
The thickness of each outer plate is
0.09375 in. (3/32 in.), the thickness of the
center plate is 0.1875 in. (3/16 in.), and the
thickness of the adhesive is t = 0.005 in. The
shear modulus of the adhesive is G =
100 ksi.

During the test, failure occurs by shear
in the adhesive when the applied load is
P = 1150 lb. The shear strength of the
adhesive must now be determined.

The test specimen is symmetric about
the center so it may be analyzed as a single
lap joint. In addition, since the inner plate is
twice the width of each outer plate, and all
are made of the same material, the joint is
balanced.

From Equation 14.48, with t1 = t2 = 0.09375 in.: 

so

and

From Equation 14.59 or Figure 14.23 the stress concentration factor is:

At failure, the average shear stress is:

The maximum shear stress in the adhesive at failure is the shear strength τf of the
adhesive:

λ2 G
t
----

1
E1t1
----------- 1

E2t2
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 0.1

6×10  psi
0.005 in.

----------------------------
2

10
6×10  psi( ) 0.09375 in.( )

----------------------------------------------------------------= =

λ 6.532 in. 1–=

λL 9.80=

Kτ
λL
2

------ 4.9= =

τ P 2⁄
WL
---------- 1150 lb( ) 2⁄

1.0 in.( ) 1.5 in.( )
----------------------------------------- 383 psi= = =

τf Ktτ 4.9( ) 383 psi( ) 1877 psi= = =

Figure 14.25.  (b) Test coupon.
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Design of Joint
The joint is shown in Figure 14.25a. The thickness of the angles to and the length of

the joint L must be determined. A balanced design is a practical choice, so the thickness of
the angle connections is half the inner plate member thickness:

the value of λ for the T-joint is then given by:

from which:

The failure load per unit width for a single lap joint is (Equation 14.61):

For a double lap joint, twice the area transfers the load, so the failure load is:

OK

The maximum load per unit width on the member is to be P/W = 600 lb/in. The T-joint
that joins the panel to the structural member is sufficient.

The failure strength is independent of joint length for L > 0.2 in. (λL = 2). For ease of
manufacture, select a joint length of about 0.5 in. (λL = 5).

Thus, for the design of the panel T-joint: to = 0.04 in. and L = 0.5 in.

to
ti
2
--- 0.080 in.

2
--------------------- 0.04 in.= = =

λ2 G
t
----

1
Eoto
----------- 1

Ei ti 2⁄( )
--------------------+ 0.1

6×10  psi
0.005 in.

----------------------------
2

10
6×10  psi( ) 0.040 in.( )

---------------------------------------------------------- 100 in. 2–= = =

λ 10.0 in. 1–=

Pf

W
-----

2τf

λ
-------=

Pf

W
-----

4τf

λ
------- 4 1877 psi( )

10 in. 1–
----------------------------- 750 lb/in.= = = 600 lb/in.>
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Chapter 15 Composites

15.0  Introduction

Weight-saving is a significant driver in the
development of new products. Reducing the weight of an
airplane allows its payload to be increased. Minimizing
weight reduces the amount of energy required to launch
spacecraft. Weight reduction also improves performance
in automobiles, bicycles, and sports equipment such as
racquets and golf clubs. 

Consider a bar of cross-sectional area A and length L
subjected to tensile load P (Figure 15.1). The elongation
of the bar is taken as the primary design consideration.
The mass of the bar is:

[Eq. 15.1]

where ρ is the mass density of the material. The
elongation of the bar is:

[Eq. 15.2]

Eliminating A from Equations 15.1 and 15.2 gives the mass:

[Eq. 15.3]

For a given system stiffness P/Δ (system performance) and length L, the mass of the bar is
minimized by selecting a material with a low value of ρ/E, or a high value of E/ρ. The ratio
E/ρ is the specific modulus (stiffness per unit density).

 Table 15.1 gives typical values for E/ρ for five representative composite materials, as
well as for structural steel and structural aluminum. The table illustrates that a bar can be
made significantly lighter if made of a composite material such as graphite/epoxy
(graphite fibers in an epoxy matrix) instead of steel or aluminum.

If strength is the primary design consideration, the load at failure is:

[Eq. 15.4]

m ρAL=

Δ PL
AE
-------=

m P
Δ
---

ρ
E
--- ⎝ ⎠

⎛ ⎞ L2=

Pu ASu=

Figure 15.1. Tension 
bar subjected to load P.
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where Su is the ultimate strength of the material. Eliminating A from Equations 15.1 and
15.4 gives the mass:

[Eq. 15.5]

For a specified failure load Pu and length L, the mass of the bar is minimized by selecting
a material with a low value of ρ/Su, or a high value of Su/ρ. The ratio Su/ρ is the specific
strength.

Table 15.1 lists typical values of Su/ρ for a number of representative materials.
Although the specific strength rankings are different from those for specific modulus,
composites again rank high. 

The specific properties of composites tend to be higher than those of conventional
materials. What is a composite? And what is it about composites that gives them superior
specific properties?

m Pu
ρ
E
--- ⎝ ⎠

⎛ ⎞ L=

Notes: PMC: Polymer Matrix Composite; MMC: Metal Matrix Composite; CMC: Ceramic Matrix
Composite.

Sources for Tables 15.1, 15.2, 15.3, 15.4, and 15.5:
1. Daniel, I.M., and Ori, I., Engineering Mechanics of Composite Materials, Oxford University

Press, 1994, pp. 34–35. Reproduced with permission of Oxford University Press.
2. Barbero, E.J., Introduction to Composite Materials Design, Taylor and Francis, 1999, p. 8.

Reproduced with permission of Routledge, Inc., a division of Informa plc.
3. Agarwal, B.D., and Broutman, L.J., Analysis and Performance of Fiber Composites, J.Wiley and

Sons, 1980.
4. Mallick, P.K., Fiber-Reinforced Composites: Materials Manufacturing and Design, 2nd ed.,

Marcel Dekker, 1993.
5. Jones, R.M., Mechanics of Composites Materials, 2nd ed., Taylor and Francis, 1999. 
6. Chawla, K.K., Composite Materials, Springer-Verlag, 1987. 
7. Chawla, K.K., Fibrous Materials, Cambridge University Press, 1998.

Table 15.1.  Representative values of Specific Modulus and Specific Strength
for various composites, steel, and aluminum. 

Material [source]

Fiber 
Volume 

Fraction, 
f

Density, 
ρ

(kg/m3)

Modulus 
in Fiber 

Direction, 
E (GPa)

Tensile 
Strength, 

Su 
(MPa)

E/ρ
(rank)

Su/ρ
(rank)

Graphite/Epoxy (PMC) [1] 0.57 1.59 294 589 185 (1) 370 (4)

Carbon/Epoxy (PMC) [2] 0.60 1.58 142 1830 90 (2) 1160 (1)

E-glass/Epoxy (PMC) [2] 0.60 2.10 45 1020 21 (7) 486 (3)

Boron/Aluminum (MMC) [1] 0.50 2.65 235 1370 89 (3) 517 (2)

SiC/CAS (CMC) [1] 0.39 2.72 121 393 44 (4) 144 (5)

Steel A36 n/a 7.85 210 450 25 (6) 57 (7)

Aluminum 6061-T6 n/a 2.70 70 310 26 (5) 115 (6)
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15.1  Composite Materials

A composite is a material system in which
two physically distinct materials are combined to
create a new material. An everyday example of a
composite is steel–reinforced concrete; the steel
rebar gives tensile strength to the concrete,
which is otherwise weak in tension.

There are different types of composites, but
the most efficient in terms of stiffness and
strength are continuous fiber composites, which
are the focus of this chapter. Long fibers of small
diameter (~100 μm) are embedded in a matrix or
host material (Figure 15.2).

Composites are identified by their
constituents. The convention is to first indicate
the fiber material and then the matrix material.
For example, from Table 15.1, the polymer
matrix composite graphite/epoxy consists of
graphite fibers in an epoxy matrix, while the
metal matrix composite boron/aluminum (B/Al)
consists of boron fibers in an aluminum matrix.
Composites are normally produced in the form
of a long tape or as a sheet called a lamina or a
ply (Figure 15.2). Several laminae (plies) are
stacked together and subjected to heat and
pressure to bond them into a single unit called a
laminate (Figure 15.3).

Fiber
Continuous fiber composites consist of long

fibers of small diameter typically between 10
and 150 μm. Glass, carbon, and graphite fibers
are of smaller diameter, while ceramic fibers
such as silicon carbide and boron are generally
of larger diameter.

Ceramic fibers are strong and stiff, and tend
to be used in high performance materials.
Typical properties for boron and silicon carbide
fibers are given in Table 15.2; Su and E are both
high. If the fiber diameter is made less than the

Figure 15.3. (a) Three laminae or 
plies formed into (b) a laminate.

Figure 15.2. Continuous fibers are 
embedded in a matrix to form a 
lamina or ply.
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critical crack length for the material, then fracture of the fibers due to internal flaws is
avoided.

Glass fibers are commonly used in low- to medium-performance components because
of their high strength and low cost; however, their moduli are typically small
(Eglass ~ Ealuminum). Graphite fibers are stiff but relatively weak; conversely, carbon fibers
are strong, but not stiff. 

Matrix
The most common matrix material is some form of polymer or epoxy, resulting in a

polymer matrix composite or PMC. Polymers typically have low stiffness and low
strength, and must be used at moderate temperatures. Young’s modulus for a polymer is
typically 5 GPa or less and the ultimate strength is 120 MPa or less. Typical epoxy matrix
properties are given in Table 15.3.

Metal matrix composites, MMCs, are used in applications involving high temperatures
upwards of 700°C. Ceramic matrix composites, CMCs, are used in higher temperature
applications, such as in gas turbines where temperatures exceed 1000°C. Although
ceramics are inherently brittle, careful materials engineering can produce CMCs that
exhibit ductile behavior.

Table 15.2.  Representative values for Fiber materials.

Fiber [source]
Density, ρ
(kg/m3)

Modulus, 
E (GPa)

Strength, 
Su (MPa)

Poisson’s 
ratio, ν

Diameter, 
d (μm)

Graphite [3,4,6] 1.9 390 2100 0.2 8

Carbon (AS-4) [2,4] 1.8 240 4000 0.2 7

E-glass [1-6] 2.55 72 3400 0.2 10

Boron [1,2,4-6] 2.6 400 3400 0.2 140

Silicon Carbide [1,2,4,6] 3.1 400 3500 0.2 140

Steel wire [5,7] 7.9 210 4000 0.3 100

Table 15.3.  Representative values for Matrix materials.

Matrix [source]
Density, ρ
(kg/m3)

Modulus, E
(GPa)

Strength, Su
(MPa)

Poisson’s 
ratio, ν

Epoxy [4] 1.3 3 100 0.4

Aluminum [4,6,7] 2.7 70 300 0.33

Titanium 6Al-4V [4,6] 4.5 110 900 0.3

Sources for Tables 15.2 and 15.3: see Sources for Table 15.1.
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Volume Fraction
The role of the fiber is to carry the stress and

that of the matrix is to locate the fibers. The fibers
are sometimes referred to as the reinforcement since
they make the matrix or host material stronger. The
amount of reinforcement is defined by the fiber
volume fraction, which is the ratio of the volume of
the fibers Vf  to the total volume of the composite V :

[Eq. 15.6]

For continuous fiber composites, the fiber is the
same length as the composite, so the volume fraction
reduces to the area fraction:

[Eq. 15.7]

where Af is the cross-sectional area of the fibers and A is the total cross-sectional area of
the composite (Figure 15.4).

The volume (area) fraction of the matrix is then:

[Eq. 15.8]

The mass of the composite is:

[Eq. 15.9]

where ρ f is the density of the fiber and ρm is the density of the matrix. Dividing by the
total volume gives the density of the composite, a weighted average of the fiber and matrix
densities:

[Eq. 15.10]

This form of equation – a weighted average based on the volume fractions – is called the
rule of mixtures.

Example 15.1  Density and Mass of a Composite Engine Rod

Given: An engine rod is made of the composite SiC/Ti. The fibers are silicon carbide
(ρ f = 3100 kg/m3) and the matrix is titanium (ρm = 4500 kg/m3). The fiber volume
fraction is f = 0.32. The rod is of solid circular cross-section with diameter D = 12 mm and
length, L = 0.75 m.

Required: Determine (a) the density of the composite and (b) the mass of the composite rod.

Solution: The density of the composite and the mass of the rod are:

 f
Vf

V
----- =

 f
Af

A
----- =

 fm 1 f –=

m Vf ρf V Vf–( )ρm+=

ρ fρf 1 f–( )ρm+=

Figure 15.4.  For continuous 
fiber composites, the fiber area 
fraction equals the fiber volume 
fraction.
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Answer: 

Answer: 

15.2  Properties of a Lamina (Ply)

A plan view of a lamina subjected to in-
plane stresses σx , σy , and τxy , is shown in
Figure 15.5. The local axes x–y are selected
so that the x-axis coincides with the fiber
direction. Because the fibers have higher
modulus and strength than the matrix, it is
expected that the stiffness and strength of the
lamina measured in the x-direction, or
longitudinal direction, are greater than those
in the y-direction, or transverse direction.

The elastic properties of composite
lamina are provided by manufacturers.
Representative values are given in
Table 15.4. Ex is the modulus in the
longitudinal (fiber) direction; Ey is the
modulus in the transverse direction,
perpendicular to the fibers. For comparison
purposes, structural steel and aluminum are
also included. 

Strength properties are given in Table 15.5.

When the material properties in the x- and y-directions differ, the material is said to be
anisotropic. The modulus or stiffness ratio, Ex/Ey , is a measure of the degree of
anisotropy of a composite material. Metals are isotropic since their properties are the same
irrespective of the direction of applied stress.

For the PMC graphite/epoxy lamina, the elastic moduli are: 

Ex = 294 GPa, Ey = 6.4 GPa, Gxy = 4.9 GPa

The longitudinal modulus Ex is 46 times greater than the transverse modulus Ey . The in-
plane shear modulus Gxy is also small compared to the longitudinal modulus. Design using
materials of high anisotropy is difficult because of the need to match the stiffnesses of
joined components.

ρ fρf 1 f–( )ρm+ 0.32( ) 3100 kg/m3( ) 1 0.32–( ) 4500 kg/m3( )+= =

ρ 4050 kg/m3=

m ρAL 4050 kg/m3( ) π 0.012 m( )2

4
------------------------------- 0.75 m( ) 0.344 kg= = =

m 0.344 kg=

Figure 15.5.  Plan view of a lamina 
showing its coordinate system, having 
applied longitudinal stress σx , 
transverse stress σy , and shear stress 
τxy .
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For the MMC boron/aluminum, the stiffness ratio Ex/Ey is 1.72, while for the CMC
SiC/CAS, the stiffness ratio is 1.08. The relatively stronger and stiffer matrices of MMCs
and CMCs generally make them less anisotropic than PMCs.

Elastic Relationships
The strains in the x- and y-directions of a lamina caused by applied longitudinal and

transverse stresses, σx and σy , are:

and [Eq. 15.11]

In the Poisson’s ratio terms, the first subscript specifies the stress direction that causes the
Poisson effect, and the second specifies the direction of the appropriate strain. Thus, νyx is
the Poisson’s ratio relating the stress in the y-direction to the resulting transverse strain in
the x-direction. Because the composite ply is anisotropic, the two terms νyx and νxy are
different.

The shear strain–shear stress relationship is:

[Eq. 15.12]

Mathematical descriptions in matrix form are very convenient for composite
calculations. The flexibility matrix (or compliance matrix) F of a lamina is defined in
terms of the strain and stress vectors, ε and σ:

[Eq. 15.13]

or

[Eq. 15.14]

The term γxy /2 is used for the shear strain to simplify calculations, as was done in
Chapter 8 (Transformation of Stress and Strain). The flexibility matrix is symmetric, so
that:

[Eq. 15.15]

The stiffness matrix K is defined by:

 [Eq. 15.16]

where:

εx

σx

Ex
------ νyx

σy

Ey
------–= εy

σy

Ey
------ νxy

σx

Ex
------–=

γxy

τxy

Gxy
---------=

ε Fσ=

εx

εy

γxy 2⁄

1 Ex⁄ νyx– Ey⁄ 0

νxy– Ex⁄ 1 Ey⁄ 0

0 0 1 2Gxy⁄

σx

σy

τxy

=

νxy

Ex
--------

νyx

Ey
--------=

σ Kε=
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[Eq. 15.17]

The stiffness matrix is always symmetric, so that:

[Eq. 15.18]

which is the same relationship given in Equation 15.15. 

Since the moduli are different in each direction, there are two values for Poisson’s
ratio. The larger ratio is the major Poisson’s ratio and the smaller ratio is the minor
Poisson’s ratio. Since Ex > Ey , then the major Poisson’s ratio is νxy and the minor
Poisson’s ratio is νyx .

Example 15.2  Flexibility and Stiffness of a Graphite/Epoxy Lamina

Given: A graphite/epoxy composite lamina having the properties given in Tables 15.4 and
15.5.

Required: Determine (a) the flexibility matrix, (b) the strains when the applied stresses
are: σx = 300 MPa, σy = 15 MPa, and τxy = 25 MPa, and (c) if the applied stresses cause
failure.

Solution: Step 1. From Table 15.4, the elastic properties are: 

Ex = 294 GPa; Ey = 6.4 GPa; G = 4.9 GPa; νxy = 0.23; νyx = 0.005

and from Table 15.5 the tensile and shear strengths are: 

Su,x = 589 MPa; Su,y = 29 MPa; τu = 49 MPa

Note that the condition  is satisfied: 

and

Step 2. The flexibility matrix F is:

K F 1–

Ex

1 νxyνyx–( )
------------------------------

νxyEy

1 νxyνyx–( )
------------------------------ 0

νyxEx

1 νxyνyx–( )
------------------------------

Ey

1 νxyνyx–( )
------------------------------ 0

0 0 2Gxy

= =

νyxEx νxyEy=

νyxEx νxyEy=

0.005( ) 294 GPa( ) 1.47 GPa= 0.23( ) 6.4 GPa( ) 1.47 GPa=

F

1
Ex
------   

νyx–

Ey
-----------  0

νxy–

Ex
----------- 1

Ey
------ 0

0 0
1

2Gxy
------------

1
Ex
------

1
νyxEx–

Ey
----------------- 0

νxy–
Ex

Ey
------ 0

0 0
Ex

2Gxy
------------

= =
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Answer: 

Step 3. The strains are determined from the stress–strain law, : 

Answer: 

Although stress σx is over 10 times greater than either σy or τxy , the strain in the x-
direction has the smallest value since Ex is very large (Ex/Ey = 46).

Step 4. The applied stresses σ and relevant strengths S of the laminate are, respectively:

and

The relevant strength components are all greater than the applied stresses, so:

Answer: The ply does not fail.

Comparison of Ply Properties
There are numerous composite materials. Suppliers provide tables of properties for

their particular products. The material properties given in Tables 15.4 and 15.5 are
representative of various types of composites.

Because glass fiber composites are inexpensive, they are used in many applications.
They have high strength, but low stiffness. In terms of specific properties (Table 15.1),
they rate well in specific strength, but are at the bottom of the list of specific stiffness.
Hence they are used when strength and cost are important design considerations. The ratio
of moduli, or degree of anisotropy, is Ex/Ey = 3.8. A common composite is fiberglass,
which consists of non-continuous fibers or whiskers (the analysis of such composites is not
presented here).

A carbon fiber reinforced polymer (CFRP) composite – a polymer matrix composite
(PMC) – consists of carbon fibers in an epoxy matrix. CFRPs are of moderate cost and

F 1
294 GPa
---------------------=

1 0.23– 0

0.23– 45.9 0

0 0 30

ε Fσ=

εx

εy

γxy 2⁄

F
σx

σy

τxy

1
294 GPa
---------------------

1 0.23– 0

0.23– 45.9 0

0 0 30

300

15

25

 MPa= =

εx

εy

γxy 2⁄

1.01
3–×10

2.11
3–×10

2.55
3–×10

0.10

0.21

0.26

%= =

σx

σy

τxy

300

15

25

 MPa=

Su x,

Su y,

τu

589

29

49

 MPa=
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have the highest specific strength and good specific stiffness (Table 15.1). The degree of
anisotropy is Ex/Ey = 13.8. Their application is in aircraft and automobile components.

Graphite fibers reinforced polymers (GFRP) are generally expensive. They are very
stiff with the highest specific stiffness in Table 15.1, and are often used in space
applications. The degree of anisotropy is high with Ex/Ey = 46. Their typical strength,
however, is not as great as that of carbon/epoxy.

Boron/aluminum (B/Al) is a metal matrix composite (MMC). The composite has good
specific stiffness and specific strength. The degree of anisotropy of B/Al is small with
Ex/Ey = 1.7; MMCs are more isotropic than PMCs. Boron/aluminum has been used in
space applications. Another common class of MMCs are silicon carbide/titanium (SiC/Ti)
composites, which are generally used in high-temperature applications (>400°C) due to
titanium’s high-melting temperature and resistance to oxidation.

SiC/CAS is a ceramic matrix composite (CMC). Although not as strong or stiff as the
other composites, because they are made of ceramics, they are used in high-temperature
applications (>800°C). The stiffness ratio is Ex/Ey = 1.08, so that they are almost isotropic.
However, they have poor transverse strength; their strength ratio is high Su,x/Su,y = 18.

15.3  Approximating the Elastic Properties of a Lamina

The properties of a lamina or ply are generally obtained from mechanical tests on the
actual material. In the absence of hard data, the anisotropic properties of a lamina can be
estimated by simple calculations.

A lamina with continuous longitudinal fibers is shown in Figure 15.6. The fiber has
modulus Ef , shear modulus Gf , Poisson’s ratio νf , and ultimate tensile strength Su,f . The
corresponding values of the matrix are Em , Gm , νm, and Su,m . The fiber volume fraction
is f, and the matrix volume fraction is (1–f ). 

The elastic properties of a lamina (ply) are estimated below. 

Longitudinal Elastic Properties
Consider a lamina, with total cross-

sectional area normal to the fibers A,
subjected to applied stress in the fiber-
direction σx (Figure 15.6). The stress in the
fibers is σf and in the matrix is σm ; these
stresses are not equal. The lamina strain in
the longitudinal direction is εx and in the
transverse direction is εy . Because they are
bonded together, the fibers and matrix have
the same longitudinal strain as the lamina:

[Eq. 15.19]εx εf εm= =

Figure 15.6. (a) A lamina subjected to 
tensile stress in the fiber direction. 
(b) Top view of lamina.
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From Hooke’s Law:

[Eq. 15.20]

where Ex is the longitudinal modulus of the lamina. Considering equilibrium at any cross-
section, the applied force equals the sum of the forces in the fibers and matrix:

[Eq. 15.21]

where Af and Am are the total cross-sectional areas of the fibers and the matrix,
respectively. Dividing both sides of Equation 15.21 by A gives:

[Eq. 15.22]

Rewriting σf and σm in terms of strain and moduli (Equation 15.20) results in:

[Eq. 15.23]

The lamina modulus in the x-direction, Ex = σx /εx , is thus a weighted average – rule of
mixtures – of the moduli of the composite constituents:

[Eq. 15.24]

The relation between longitudinal modulus Ex and volume fraction f is linear, as shown in
Figure 15.7.

The stresses in the fiber and matrix
in terms of the longitudinal strain εx are:

[Eq. 15.25]

The constituent with the larger modulus
– usually the fiber – is subjected to the
larger stress since both constituents must
strain by the same amount.

Due to the Poisson effect, the
transverse strains in the fiber and matrix
are:

[Eq. 15.26]

Since the matrix and fiber are aligned,
their individual transverse strains both

εx

σx

Ex
------ εf

σf

Ef
----- εm

σm

Em
-------= = = = =

Aσx Af σf Amσm+=

σx fσf 1 f–( )σm+=

σx f ε f Ef 1 f–( )εmEm+=

εx fEf 1 f–( )Em +[ ]=

Ex fEf 1 f–( )Em+=

σf Ef εx=

σm Emεx=

εy f, νf– εx=

εx m, νm– εx=
Figure 15.7. Graph of modulus versus volume 
fraction f, for the MMC B/Al (Ef /Em ~ 5.7). The 
hollow circles represent tabulated moduli Ex 
and Ey (Table 15.4).
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contribute to the total transverse strain according to their volume fractions. The total
transverse strain is:

[Eq. 15.27]

The Poisson’s ratio for loading in the fiber (x-) direction, causing strain in the transverse
(y-) direction is:

[Eq. 15.28]

Transverse Elastic Properties
Consider a lamina with applied transverse

stress σy in the y-direction, perpendicular to the
fibers (Figure 15.8a). To simplify the
calculations, but still approximate the physics,
the composite is modeled as shown in
Figure 15.8b. In the model, the load is no longer
shared in a complex way between the cylindrical
fiber and the surrounding matrix; both are now
simply subjected to σy . 

The fiber and matrix strains in the load
direction are:

and [Eq. 15.29]

The total strain εy is the weighted sum of the
strains of the constituents: 

[Eq. 15.30]

Hence, the composite modulus in the transverse
direction, Ey , is:

[Eq. 15.31]

or

[Eq. 15.32]

εy f νf εf– 1 f–( )νmεm–=

νxy

εy

εx
-----– f νf 1 f–( )νm+= =

εf

σy

Ef
------= εm

σy

Em
-------=

εy f εf 1 f–( )εm+ σy
f

Ef
----- 1 f–( )

Em
---------------+= =

1
Ey
------

εy

σy
------ f

Ef
----- 1 f–( )

Em
---------------+= =

Ey

Ef Em

fEm 1 f–( )Ef+
-------------------------------------=

Figure 15.8. (a) Lamina under 
transverse stress; isometric view 
and view along fiber direction. 
(b) Simplified model of lamina 
under transverse stress; isometric 
view and view along fiber 
direction.
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The variation of transverse modulus Ey is shown in Figure 15.7. For small values of f, the
transverse modulus Ey is generally weakly dependent on Ef , i.e., the change in Ey from Em
at f = 0  to its value at f = 0.5 is relatively small. The transverse properties are generally
dominated by the matrix properties.

Since the stiffness and flexibility matrices are symmetric (Equations 15.14, 15.17), the
Poisson’s ratio for stresses in the transverse (y-) direction causing strains in the fiber (x-)
direction is:

[Eq. 15.33]

In-Plane Shear Elastic Properties
When a lamina, as modeled in Figure 15.8b, is subjected to in-plane shear stress τxy ,

both fiber and matrix are subjected to τxy (Figure 15.9a). Hence, the shear stresses in the
fiber and matrix are equal:

[Eq. 15.34]

The corresponding shear strains are different since the shear moduli of the fibers and
matrix are different (Figure 15.9b). The shear strains are:

and

[Eq. 15.35]

Adding the contribution of each constituent
according to their respective volume
fractions gives:

[Eq. 15.36]

Hence, the composite shear modulus is:

[Eq. 15.37]

or

[Eq. 15.38]

νyx

Ey

Ex
------νxy=

τf τm τxy= =

γf

τxy

Gf
-------= γm

τxy

Gm
--------=

γxy f γf 1 f–( )γm+=

τxy
f

Gf
----- 1 f–( )

Gm
---------------+

τxy

Gxy
---------= =

1
Gxy
--------- f

Gf
----- 1 f–( )

Gm
---------------+=

Gxy

Gf Gm

fGm 1 f–( )Gf+
--------------------------------------=

Figure 15.9.  (a) Lamina under shear 
stress. (b) The fiber is generally stiffer 
than the matrix, and so has smaller 
shear strains.
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Summary of Elastic Constants
The components of a laminate’s flexibility and stiffness matrices (Equations 15.14,

15.17) can be determined from the approximate equations:

[Eq. 15.39]

[Eq. 15.40]

[Eq. 15.41]

[Eq. 15.42]

[Eq. 15.43]

The equations for Ex and Ey are plotted in Figure 15.7 (Ef /Em~5.7) and in
Figure 15.10 (Ef /Em~80). Tabulated moduli are also included in the graphs.

The expression for Ex approximates actual composite values well; both fiber and
matrix must strain by the same amount since the constituents act in parallel. The
expression for Ex is generally an upper bound to actual data.

As Ef /Em increases, the transverse
response Ey becomes less dependent on
volume fraction; i.e., Ey is approximately
constant over a larger range of values
(compare Figures 15.7 and 15.10).
Although the expressions for Ey and Gxy
are based on a simplified model (the
constituents are assumed to act in series),
they provide a lower bound to actual
values, and generally have the same
trend as experimental data. 

Poisson’s ratio νxy is the major
Poisson’s ratio; it is associated with the
transverse (y-) strain caused by
longitudinal stress σx . Ratio νyx is the
minor Poisson’s ratio (it is less than
νxy ); it is associated with the
longitudinal (x-) strain caused by
transverse stress σy . 

Ex fEf 1 f–( )Em+=

Ey

Ef Em

fEm 1 f–( )Ef+
-------------------------------------=

νxy f νf 1 f–( )νm+=

νyx

Ey

Ex
------νxy=

Gxy

Gf Gm

fGm 1 f–( )Gf+
--------------------------------------=

Figure 15.10.  Modulus versus volume 
fraction a carbon/epoxy PMC (Ef /Em~80). 
The matrix properties dominate the 
transverse properties. The hollow circles 
represent tabulated moduli Ex and Ey 
(Table 15.4).
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The theoretical volume fraction limit for
cylindrical fibers all having the same radius
is 0.907, when the fibers are touching
(Figure 15.11a). The circular cross-sections
form a hexagonal array, with the side of each
hexagon equal to the diameter of the fiber.
Such extreme packing can damage the fibers
and does not provide for good bonding
between the fiber and matrix. Practical
values of fiber reinforcement are typically
between f = 0.30 and 0.60 (Figure 15.11b). 

Example 15.3  Elastic Properties of a Carbon/Epoxy Lamina (Ply)
Given: A composite is made with carbon fibers in an epoxy matrix and has a volume
fraction of f = 0.60. The elastic properties of the fiber and matrix are, from Tables 15.2, 15.3:

Fibers: Ef = 240 GPa, νf = 0.2, Gf = 100 GPa, approximated from: 

Matrix: Em = 3 GPa, νm = 0.3, Gm = 1.2 GPa, approximated

Required: Estimate the elastic properties of a unidirectional carbon/epoxy lamina with
f = 0.60, and compare with those found in Table 15.4.

Solution: Step 1. The longitudinal modulus is calculated to be:

Answer: 

The other elastic constants are:

Answer: 

Answer: 

Answer: 

Answer: 

G E
2 1 ν+( )
--------------------=

Ex fEf 1 f–( )Em+ 0.6( ) 240 GPa( ) 0.4( ) 3 GPa( )+= =

Ex 145 GPa=

Ey

Ef Em

fEm 1 f–( )Ef+
------------------------------------- 240( ) 3( )

0.6( ) 3( ) 0.4( ) 240( )+
-----------------------------------------------------= =

Ey 7.4 GPa=

νxy fνf 1 f–( )νm+ 0.6( ) 0.2( ) 0.4( ) 0.3( )+= =

νxy 0.24=

νyx

Ey

Ex
------νxy

7.4
145
--------- 0.24( )= =

νyx 0.012=

Gxy

Gf Gm

fGm 1 f–( )Gf+
-------------------------------------- 100( ) 1.2( )

0.6( ) 1.2( ) 0.4( ) 100( )+
----------------------------------------------------------= =

Gxy 3 GPa=

Figure 15.11.  (a) Maximum theoretical 
volume fraction. (b) Typical volume 
fraction for PMC composites.
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Step 2. Table 15.6 compares the tabulated (Table 15.4) and approximated elastic properties
of the composite. The formula for the longitudinal modulus Ex approximates the actual
modulus well, and in general overestimates the modulus. The formulae for the transverse
and shear properties are not as accurate, and in general underestimate the actual properties.
The main point to note, however, is that the transverse and shear properties for the epoxy–
matrix composite are low, which is reflected in the results of the approximate calculations.
The primary goal of the estimates is to quickly calculate ply properties during the design
process, before the composite is actually manufactured. Mechanical tests on the as-
manufactured composite are used to determine their actual properties.

Polymer Matrix Lamina Approximations

In polymer matrix composites, the matrix modulus Em is much smaller than the fiber
modulus Ef . The matrix stiffness can therefore be neglected in the longitudinal stiffness Ex
expression of Equation 15.40, resulting in:

[Eq. 15.44]

The Ex versus f response is shown in Figure 15.10 for Ef /Em = 80 (carbon/epoxy). The
modulus starts at essentially zero (3 MPa) and increases linearly with a slope of Ef
( Ex = 237 GPa and Ef = 240 GPa differ by only 1.3%). The stress in the longitudinal
direction is supported primarily by the much stiffer fibers; the contribution of the matrix is
negligible. Thus the longitudinal ply strength can be approximated by:

[Eq. 15.45]

where Su, f is the strength of the fibers.

For the transverse modulus Ey , since Ef >> Em , Equation 15.41 can be reduced to the
approximate expression:

[Eq. 15.46]

The Ey versus f response is also shown in Figure 15.10 for Ef /Em = 80. At f = 0.75, the
approximate equation gives Ey = 4Em (3.9Em if the full expression is used,
Equation 15.41), which is only 0.05Ef . In the transverse direction, the strength is also
governed by the weaker matrix, and is approximated by: 

[Eq. 15.47]

where Su,m is the strength of the matrix.

 Ex fEf =

Δ

 Su x, f Su f,  =

Ey

Em

1 f–
----------=

Su y, Su m,=

Table 15.6.  Comparison of tabulated and approximated lamina properties.

Material
Carbon/Epoxy

 f
 Ex 

(GPa)
Ey

(GPa)
Gxy

(GPa)
νxy νyx

Tabulated 0.60 142 10.3 7.2 0.27 0.02

Approximate 0.60 145 7.4 3 0.24 0.012
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The shear modulus and shear strength are also governed by the more flexible and
weaker matrix:

[Eq. 15.48]

[Eq. 15.49]

15.4  Laminates

A single composite lamina (ply) has
good properties in the fiber or longitudinal
direction, but not so good properties in the
transverse and shear directions. This is
especially true of PMCs for which the
transverse stiffness and strength are
approximately 5–10% of the longitudinal
values. The properties in the longitudinal
direction are fiber-dominated, while those in
the transverse and shear directions are
matrix-dominated.

When composites are used in cylindrical
pressure vessels (Figure 15.12), the material
must have sufficient strength in both the
hoop and axial (H- and L-) directions. To
support the biaxial stresses, it is necessary to
add fibers in a second direction. Two or more
laminae, or plies, are bonded together, and
the resulting material system is known as a
laminate. A cylindrical pressure vessel is
examined in Example 15.4.

Two-Ply Laminate
A laminate consists of two or more laminae or plies, with various fiber orientations,

stacked together and bonded to form one unit. In practice, laminates can be quite complex,
having several layers of plies at various orientations and of various thicknesses. 

The global stresses applied to a laminate system are generally known from design
requirements. The resulting global strains need to be determined, as well as the local
stresses and strains within a single ply (laminate). The global (overall) stress–strain
response is found by determining the global stiffness of the laminate, which depends on
the individual ply stiffnesses, their orientations with respect to the global laminate
coordinate system, and the number and thicknesses of the plies in each orientation. The

Gxy

Gm

1 f–
----------=

τu τu m,=

Figure 15.12.  (a) Pressure vessels are 
subjected to biaxial stresses. (b) Several 
laminae (plies) may be formed into a 
laminate so that fibers are aligned in 
more than one direction. Possible (but 
not best) reinforcement directions for a 
cylindrical pressure vessel are shown.
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stresses and strains developed in an
individual ply depend on the ply’s local
stiffness and its orientation with respect
to the global coordinate system.

The essential ideas can be illustrated
with a two-ply laminate, made of two
identical plies oriented symmetrically
about the global X-axis, as shown in
Figure 15.13. A stress element of the
laminate in the global X–Y coordinate
system is subjected to global stresses
σX, σY, and τXY (Figure 15.13a). The
corresponding global strains in the X–Y
system are εX, εY, and γXY .

The laminate is made of two plies, A
and B, of equal thickness t, and oriented
symmetrically about the X-axis at angles
±θ (Figures 15.13b,c). The aim is to
determine the stiffness of the laminate
as a whole, as well as the in-ply (local)
stresses and strains of the individual
plies due to the applied global stresses.

Local Stiffness of Each Ply
Consider ply B, whose fibers are

oriented at angle θ clockwise from the
global X-axis (Figure 15.13c). The local
coordinate system of ply B is xB–yB ,
where the xB-axis is parallel to the
fibers, and the yB-axis is perpendicular
to the fibers. The local stresses and
strains in ply B are: 

[Eq. 15.50]

[Eq. 15.51]

σB

σx

 σy 

τxy

=

B

εB

εx

εy

γxy 2⁄

=

B

Figure 15.13.  (a) A laminate of two plies 
(laminae), subjected to global stresses σX, 
σY, and τXY . The plies are oriented at ±θ. 
(b) Ply A is at +θ, and is subjected to local 
ply stresses (σx, , σy , τxy)A. (c) Ply B is at –θ, 
and is subjected to local ply stresses 
(σx, , σy , τxy)B.
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The local stiffness of ply B in its local x–y coordinate system is found from
Equation 15.17:

[Eq. 15.52]

The local stress–strain relationship in matrix form is then:

[Eq. 15.53]

Similarly for ply A, the local stresses σA are related to the local strains εA by the local
stiffness of ply A, KA :

[Eq. 15.54]

For this analysis, the plies are taken to be identical so that their local stiffnesses are the
same:

[Eq. 15.55]

Global Stiffness of Laminate

Stress and Strain Transformation

The local stresses and strains in ply B (σ B and ε B) are transformed to the global
directions, X–Y, using the transformation relationships:

[Eq. 15.56]

where σ B,G and εB,G are the global stresses and strains in ply B in the global X–Y system.
The transformation matrix TB corresponds to a counterclockwise rotation of θ :

[Eq. 15.57]

where c = cos θ and s = sin θ (see Chapter 8: Transformation of Stress and Strain,
Equation 8.22). Angle θ is between 0 and 90°.

KB

Ex

1 νxyνyx–( )
------------------------------

νxyEy

1 νxyνyx–( )
------------------------------ 0

νyxEx

1 νxyνyx–( )
------------------------------

Ey

1 νxyνyx–( )
------------------------------ 0

0 0 2Gxy
B

=

σB KBεB=

σA KAεA=

K KA KB= =

σB G, TBσB=

εB G, TBεB=

TB

c2 s2 2sc

s2 c2 2sc–

sc– sc c2 s2–

=
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Performing the same operations on ply A, but noting that the rotation θ must be
clockwise, then the local stresses and strains in ply A (σA and εA) are transformed to the
global directions, X–Y :

[Eq. 15.58]

where σA,G and εA,G are the global stresses and strains in ply A in the global directions, X
and Y. The transformation matrix TA corresponds to a clockwise rotation of θ :

[Eq. 15.59]

where c = cos θ and s = sin θ. Angle θ is between 0 and 90°.

Since matrices TB and TA correspond to equal but opposite rotations of θ (the sign of θ
is taken as positive in both matrices), then: 

[Eq. 15.60]

Compatibility

Compatibility requires that the global strains of the individual plies, εB,G and εA,G , be
the same as the global strains of the laminate εG , so: 

[Eq. 15.61]

The global stresses in ply B, σ B,G  are related to the local stresses in ply B, σ B , by
Equation 15.56:

[Eq. 15.62]

Substituting the local stress–strain relationship from Equation 15.53 ( ), and
the strain transformation from Equation 15.56 ( ), relates the global stresses
in ply B to the global strains εG :

[Eq. 15.63]

Matrix KB,G is the global stiffness of ply B, i.e., its stiffness in the X–Y coordinate system:

[Eq. 15.64]

Following the same procedures for ply A gives its global stiffness KA,G :

[Eq. 15.65]

σA G, TAσA=

εA G, TAεA=

TA

c2 s2 2– sc
s2 c2 2sc
sc s– c c2 s2–
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Since the plies are of the same thickness, and the global stiffness of each ply is known,
the global stiffness of the laminate KG is the average of the two:

[Eq. 15.66]

Note that the actual number of plies and their thicknesses can vary. Equation 15.66 is valid
as long as there are only two symmetric orientations, and the total ply thickness in each
orientation is the same.

Without derivation, Equation 15.66 can be extended for the general case of many plies
with various orientations. The laminate stiffness is:

[Eq. 15.67]

where t is the total thickness of n plies and ti , Ti and Ki are the thickness, transformation
matrix, and local stiffness of the ith ply.

Given the applied global stresses, σG , the global strains of the laminate are calculated:

[Eq. 15.68]

Stresses in Individual Plies
The local strains in the xB–yB plane of ply B are found using the transformations of

Equation 15.56 and the stress–strain relationship of Equation 15.68:

[Eq. 15.69]

Applying Equation 15.53, the local stresses in ply B, σ B , in terms of the applied global
stresses σG , are thus:

[Eq. 15.70]

Likewise, the local stresses in ply A, σA , are:

[Eq. 15.71]

These matrix calculations are easy to do using computer software such as MATLAB or
Mathcad. The examples below demonstrate how the calculations are performed.

Failure of a Ply
Once the local stresses in each ply are determined, ply integrity can be assessed.

Equations 15.70 and 15.71 each represent three in-plane ply stresses: σx , σy, and τxy .
Failure occurs in a ply when any of the stresses exceed its corresponding ply strength
(Table 15.5). The possible ply failure modes are: longitudinal tension (e.g., fiber failure),
longitudinal compression (e.g., buckling of fibers or compressive failure of system),
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transverse tension (e.g., debonding of fiber and matrix, or matrix failure), transverse
compression (e.g., matrix failure), and in-plane shear failure (e.g., matrix failure). 

When the first ply fails, the laminate response changes. The system becomes less stiff
but continues to support load, analogous to yielding in metals. In composites with many
plies, the plies progressively fail until the system breaks in to two. For elastic design, the
global load to cause the first ply to fail is taken as the strength of the laminate. 

Failure due to out-of-plane stresses (perpendicular to the plies) is not considered in
this treatment. Also not considered is the effect of non-symmetric ply lay-ups about the
center plane of the laminate (a plane parallel to the plies).

Example 15.4  Cylindrical Pressure Vessel

Given: A cylindrical pressure vessel is
modeled as a two-ply laminate of carbon/
epoxy. The plies are wound so that they are
at angles θ = ±35° to the hoop direction
(Figure 15.14). The thicknesses of the plies
in each orientation are equal. The actual
composite is made of many plies, but as long
as there are only two ply orientations, each
having the same total thickness, the two-ply
laminate model can be used.

The stresses in the pressure vessel wall are
σ H = 360 MPa in the hoop direction and
σ L = 180 MPa in the longitudinal direction.
The diameter and length of the vessel are
D = 0.30 m and L = 1.0 m, respectively.

The local elastic properties of each ply are,
from Table 15.4:

Ex = 142 GPa, Ey = 10.3 GPa

G = 7.2 GPa

νxy = 0.27, νyx = 0.02

The local ply strengths in each direction are,
from Table 15.5:

Longitudinal (tension, compression): Su,x = 1830 MPa, Sc,x = 1096 MPa

Transverse (tension, compression): Su,y = 57 MPa, Sc,y = 228 MPa

Shear: τu = 71 MPa

Required: Determine (a) the stresses in plies A and B, (b) the factor of safety of the
system for failure of the first ply, and (c) the changes in diameter and length of the vessel.

Figure 15.14.  (a) Pressure vessel with 
(b) plies oriented at ±35°. 
(c) Ply stresses.
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Solution: Step 1. Since the plies are of the same material, their local stiffnesses are equal:

Step 2. Since the plies have equal thickness, the stiffness of the laminate is:

where TB and TA are the transformation (rotation) matrices for , respectively:

where ;

With these matrices determined, the global stiffness and flexibility matrices, KG and FG ,
are calculated:

 From KG or FG , the elastic global properties of the laminate are found to be:

EH = 42.6 GPa EL = 16.2 GPa GHL = 33.4 GPa

νHL = 1.05 νLH = 0.40
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Step 3. The stresses in each ply are: 

and

where

Solving for the local stresses in each ply:

Answer: and

The longitudinal stress in each ply is 501 MPa in tension, the transverse stress is 39.2 MPa
in tension, and the shear stress is ±11.8 MPa. The ply normal stresses in its local
coordinate system are all tensile, and are the same in each ply. 

Since the plies have equal and opposite rotations, the local shear stresses are of equal
magnitude but of opposite sign, which is necessary to maintain compatibility between the
two individual plies.

Step 4. The corresponding tensile and shear strengths for each ply are:

The factor of safety for each mode of failure is then:

The smallest value determines the system factor of safety:

Answer: 

corresponding to failure in tension in the transverse direction.

Step 5. The global strains are:

The changes in diameter and length of the vessel are:
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Answer: 

Answer: 

Effect of Ply Angle on Laminate Stiffness
It is necessary when designing a composite lay-up to understand the effect of ply angle

θ on the global stiffness. Equation 15.66 defines the global stiffness of a laminate, having
an equal number of identical plies at +θ and –θ, in terms of the ply stiffnesses and angles.
The equation is repeated here:

[Eq. 15.72]

Using a speadsheet program such as Excel, or a mathematical analysis tool such as
Mathcad or MATLAB, the laminate stiffness and flexibility matrices can be calculated,
and the effect of ply orientation studied.

The global stress–strain relationship is:

 [Eq. 15.73]

where EX , EY , GXY, νXY, and νYX are the global elastic properties of the composite. These
properties all depend upon the orientation of the plies θ.

Effect of Ply Angle on Graphite/Epoxy

Figure 15.15 shows the variation of elastic properties in a two-ply graphite/epoxy
composite with ply angle ±θ. The elastic properties for a single ply are found in
Table 15.4: Ex = 294 GPa, Ey = 6.4 GPa, and Gxy = 4.9 GPa.

The vertical axis is normalized (divided) by 294 MPa, the longitudinal modulus of a single
ply. The global flexibility matrix of the laminate for different orientations ±θ
(Equation 15.73), can be calculated from the local ply stiffnesses and the transformation
equations (Equation 15.72). Once the flexibility matrix is known for a given orientation ±θ,
determining the global elastic constants of the laminate, EX , EY , GXY , νXY , and νYX, is
straightforward. 

When θ = 0º, the laminate stiffness is the same as for a single ply since plies A and B are
both oriented in the global X-direction, i.e.: EX = 294 GPa, EY = 6.4 GPa, and GXY = 4.9 GPa.
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When θ = ±35° – the ideal angle for a cylindrical pressure vessel – the stiffness in the
global X-direction is reduced by a factor of more than 6 compared to the θ = 0º orientation,
while the global shear stiffness is increased by a factor of over 12. There is a trade-off – a
gain in the shear modulus is achieved at the expense of the longitudinal modulus.

The largest global shear stiffness is realized at θ = ±45°, where GXY ~ 0.25EX . At this
angle, the global shear loads are carried parallel and perpendicular to the fiber direction of
each ply. Since the local ply longitudinal modulus Ex is dominated by the fibers, then the
global shear modulus GXY at θ = ±45° is also dominated by the fibers. 

Example 15.5  Carbon/Epoxy Torsion Tube

Given: A thin-walled torsion tube is modeled as a two-ply laminate of carbon/epoxy
(Figure 15.16). The thicknesses of the plies are equal. The plies are wound at angles
θ = ±45°. The diameter and length of the tube are D = 40 mm and L = 1.0 m, respectively. 

The elastic properties of each lamina, or ply, are, from Table 15.4:

Ex = 142 GPa, Ey = 10.3 GPa, G = 7.2 GPa

νxy = 0.27, νyx = 0.02

Figure 15.15.  Variation of elastic moduli in a symmetric laminate, 
fibers oriented at ±θ. Dashed line “0/90 Ex , Ey” represents the 
modulus of a 0/90 composite in one of the primary fiber directions.
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The strengths are, from Table 15.5:

Longitudinal (tension, compression):

Su,x = 1830 MPa, Sc,x = 1096 MPa

Transverse (tension, compression):

Su,y = 57 MPa, Sc,y = 228 MPa

Shear:

τu = 71 MPa

The global directions, X- and Y- are the
circumferential (hoop) and axial directions of the
tube, respectively. Note that since θ = ±45°, the
longitudinal direction of one ply is along the
transverse direction of the other; i.e., the fibers in
the ply A are perpendicular to those in ply B.

Required: Determine (a) the elastic properties
of the laminate, (b) the maximum shear stress
that can be applied to the tube, and the
corresponding failure mode, and (c) the angle of
twist of the tube at failure.

Solution: Step 1. The stiffness of each ply in its
local coordinate system is:

Step 2. The stiffness of the laminate is
(Equation 15.72):

where TA and TB are the transformation matrices:

where s = sin45° and c = cos45°

Hence

Following similar calculations, or, since TA = TB
–1:
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Figure 15.16. (a) Composite shaft in 
torsion bar with (b) plies oriented at 
±45°. (c) Local ply stresses.
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Substituting these values into Equations 15.72 and 15.73 gives the global stiffness and
flexibility matrices, KG and FG .

From the global flexibility matrix, the elastic properties of the laminate are:

Answer: 

Answer: 

Answer: 

Step 3. Substituting to find the stresses in each ply: 

and

To determine the strength of the system, the stresses in each ply must be determined from
the applied load. The stresses in each ply are then compared to the corresponding strength
of the ply (longitudinal tension, longitudinal compression, transverse tension, transverse
compression, and shear) to determine if the laminate fails.

Step 4. One approach to find the strength is to apply a global test load, calculate the in-ply
stresses, and then determine the factor of safety for that load based on the strengths of each
ply. Multiplying the test load by the factor of safety gives the actual strength.

Assume that the tube supports a global shear stress of τXY = 400 MPa (Figure 15.16d), so
the global stress vector is:

The stresses in each ply are then calculated
to be:

and
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Figure 15.16. (d) Applied shear stress. 
(e) Stresses in ply A and B due to 
applied shear stress.
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In ply A, the longitudinal stress is 759 MPa in tension, the transverse stress is 41 MPa in
compression, and the shear stress is zero (Figure 15.16e). The corresponding strengths are
Su,x = 1830 MPa (longitudinal tension), Sc,y = 228 MPa (transverse compression), and
τu = 71 MPa (shear). Comparing the appropriate strengths of each ply to the
corresponding stresses, the factors of safety for ply A are:

In ply B, the longitudinal stress is 759 MPa in compression, the transverse stress is
41 MPa in tension and the shear stress is zero (Figure 15.16e). The corresponding
strengths are Sc,x = 1096 MPa (longitudinal compression), Su,y = 57 MPa (transverse
tension), and τu = 71 MPa (shear). Comparing the corresponding strengths and stresses,
the factors of safety in ply B are:

The lowest factor of safety, 1.39, corresponds to the failure mode, or failure mechanism, of
the composite. As the applied shear stress is increased from zero, the first factor of safety
to reach unity (1.0) is that for transverse tension of ply B. Composite failure begins in
ply B, transverse to its fibers.

Step 5. The tube fails when the transverse stress in ply B equals 57 MPa. The original
value of the applied test stress τXY = 400 MPa can be scaled up to give the applied global
shear stress at failure:

Answer: 

Step 6. The angle of twist of the shaft when τ = τf is:

Answer: 

The angle of twist is very large for this composite. Carbon epoxies are strong, but not stiff.

Failure of Composite Tubes in Torsion
The failure mode of a laminate depends on the properties and orientations of the plies

that make up the laminate. The ply properties depend on the fiber and matrix properties
and the fiber volume fraction. 

For the thin-walled tube in torsion, with fibers oriented at θ = ±45°, then the
principal stresses in each ply are parallel and perpendicular to the fibers, as shown in
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Figure 15.16e. The magnitudes of the in-ply stresses depend on the elastic properties of
the materials. Failure may occur by axial tension or compression of the fibers, or by
transverse tension or compression of a ply.

The analysis of Example 15.5 is repeated for several composite systems, and the
results are shown in Table 15.7. A weak matrix usually causes the plies loaded in
transverse (cross-ply) tension to fail first. For the graphite/epoxy system, failure is by
compression of the fibers. The very stiff graphite fibers in one ply shield the transversely
loaded matrix in the other ply. Since graphite fibers are weaker in compression than in
tension, the plies with fibers loaded in compression fail first.

Orientation of Plies in Design
The above discussions demonstrate that to take full advantage of the stiffness of the

fibers, they must be properly oriented. For example, ski-boards made from PMC laminates
have fibers that are in the ski-direction at the center where there is maximum flexural
bending moment, and fibers that flare out at the ends to resist twisting.

Simple rules can be suggested for composite design:

• Uniform uniaxial loading is supported efficiently by fibers oriented with the stress. 
Examples include axial members and the material furthest from the neutral axis of 
beams in bending (e.g., the flanges of I-beams). In order to support compressive 
loads and resist buckling, a few plies oriented at 90° from the load direction are 
also included. 

• Shear loading is supported efficiently using plies at ±45º to the shear direction; 
examples include shafts in torsion and webs of beams in shear.

An advantage of laminate composites is that the plies can be oriented to most
efficiently support the anticipated loads on the structure and the number of plies can be
varied as necessary. In other words, the material can be engineered.

Cylindrical Pressure Vessels

In the pressure vessel example (Example 15.4), it was assumed that the ply angle was
θ = ±35° from the hoop direction (Figure 15.14). Applying the laminate analysis for
various ply angles shows that for polymer matrix composites (PMCs), the greatest strength
is achieved when the ply angle is approximately θ = ±35°.

Table 15.7.  Shear Modulus, In-Plane Shear Strength, and Failure Mode of a 
Two-Ply composite, θ = ±45°, when loaded in In-Plane Shear.

Composite G (GPa) τu (MPa) Failure Mode in Plies

Graphite/Epoxy 74.5 250 Axial (fiber-direction) compression

Carbon/Epoxy 36.8 550 Transverse (cross-ply) tension

E-glass/Epoxy 13.2 108 Transverse tension

Boron/Al 76.5 178 Transverse tension
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Torsion Tubes

In the torsion tube example (Example 15.5), the ply angle is ±45° (Figure 15.16).
Applying the laminate analysis for various ply angles shows that for PMCs, the greatest
strength is achieved when the ply angle is θ = ±45°. While the globally applied laminate
load is a shear stress, each ply primarily supports the load in the local fiber direction in
tension or compression.

Beams in Bending and in Shear

A beam supports both bending moments and shear forces (Figure 15.17). The bending
moment is carried primarily by tensile and compressive stresses at the top and bottom
flanges of the beam, while the shear force is carried primarily by the web. Consequently,
most of the plies in the flanges are aligned with the axis of the beam, i.e., θ = ±0°, with a
few at 90° to resist buckling. Most of the plies in the web are aligned at θ = ±45° to the
beam axis because of the superior shear properties of this layup.

Figure 15.17.  (a) Simply supported beam under center load. 
(b) FBD of beam segment from 0 to x. (c) Side and cross-
sectional views of beam. In the flanges, the plies are primarily 
oriented at 0° to support the tensile and compressive bending 
stresses. In the web, the plies are primarily oriented at ±45°, the 
best way to support shear loads. Joining the flange plies to the 
web plies is an important part of the manufacturing process.
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Chapter 16 Smart Systems

16.0  Introduction

Many engineering systems are
designed to incorporate the coupled
mechanical and electrical (or thermal)
characteristics of a material. Such
systems are known as smart systems.

A smart system may exhibit a
mechanical response to an electrical or
a thermal input, or an electrical
response to a mechanical input.
Example applications include air bag
accelerometers, engine valve actuators,
morphing structures that change shape
due to input voltages (Figure 16.1), and
instruments that measure the small
forces in biological systems.

Devices that change shape and apply forces due to input voltages are known as
actuators. Devices that produce electrical signals due to forces or other physical
phenomena are known as sensors. 

Three types of smart systems are introduced in this chapter:

1. micro-electromechanical systems (MEMS), 
2. piezoelectric materials, and 
3. shape memory alloys.

MEMS and piezoelectric systems are used as small-scale and often high-precision electro-
mechanical actuators and sensors. Shape memory alloys have stress–strain characteristics
that depend on temperature; they can also be used in actuators and sensors. Understanding
the coupled effects of mechanical forces, electrical potentials, and thermal loads are
necessary to determine the total response of a smart system.

When two disciplines are combined, the symbols that describe various physical
quantities may conflict with each other. Different vocabularies and conventions cause
basic communication challenges in all interdisciplinary studies. It is important to explicitly
define the meaning of the symbols used. In this chapter, Y represents Young’s

Figure 16.1. A voltage applied to a bimorph 
beam causes it to deflect. This piezoelectric 
system is acting as an actuator.
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Modulus, while E represents the electric field. The symbol Sj represents strain, where j
represents the direction (1-, 2-, 3-) or the type of strain (mechanical or electrical, m or e).
The symbols ε and εo represent the permittivity, or dielectric constant, of a material. By
using electrical variables in this chapter in favor of mechanical ones, the reader will be
more familiar with the electrical properties of materials given in manufacturer’s catalogs.

16.1  MEMS

MEMS is short for micro-electromechanical systems. MEMS used to apply forces or
displacements are actuators, those used to measure motion are sensors. MEMS are used in
such applications as accelerometers for deploying air bags, and in testing machines for
measuring the properties of thin films. The entire device is typically on the scale of a few
millimeters, and the components in the device are measured in micrometers (µm).

The behavior of MEMS devices depends
on the electrostatic properties of parallel
plates subjected to a voltage difference. Two
common configurations are as follows:
(1) the parallel plate capacitor (Figure 16.2)
and (2) the comb drive (Figure 16.3).

Parallel Plate Capacitor

In this device, two parallel plates are
separated by a small distance and move
normal to the plate areas (Figure 16.2a). The
non-conducting material between the plates
is known as the dielectric. In most
mechanical devices, the dielectric is air.

In an electric circuit, current (moving
charge) can flow to and from a capacitor, but
not through it since the plates are not
connected by a conducting material. When
current does not have a closed circuit or path
to follow, the system is an open circuit. If an
RC (resistor–capacitor) circuit is subjected
to a constant voltage source, the capacitor
will eventually charge to the value of the
voltage source (Figure 16.2b). One plate will
be positively charged, while the other will be
negatively charged. The separation of charge
creates an electric field between the plates,
and forces within the system. The charge on

Figure 16.2. (a) Parallel plate capacitor. 
(b) Due to constant voltage V, the 
capacitor will charge to voltage V and 
current will drop to 0. (c) A short-
circuited capacitor stores no voltage and 
does not impede current flow.
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the plates is key to the workings of the microdevice.

When current has a continuous path, the system is a
closed circuit or loop. For a constant current to freely
flow through a capacitor, the plates must be short-
circuited, or connected by a conductor (Figure 16.2c).

Comb Drive
In this configuration, many parallel plates make up

the teeth of a comb, and the teeth of two combs overlap
(Figure 16.3). The distance between the parallel plates is
constant and the combs move parallel to the plate areas.
Comb drives are used for both actuation and sensing.

16.2  Parallel Plate Capacitors

Capacitance and Internal Energy
Consider two parallel plates, each of area A,

separated by distance d (Figure 16.4a). Distance d
is much smaller than the plate size . The space
between the plates may or may not contain a
dielectric material. Voltage V (measured in volts, V)
is applied across the plates. The application of V
causes an electric charge Q (in coulombs, C) on
the plates, one being positive, the other being
negative.

Experiments that measure V and Q in
capacitors show a linear relationship:

[Eq. 16.1]

where C is the capacitance (Figure 16.4b). The
unit of capacitance is coulombs per volt, known as
a farad (F). The capacitance for practical capacitors
is small and in the picofarad (1 pF = 10–12 F) to
microfarad (1 µF = 10–6 F) range.

The region between the plates stores energy in
an electric field. The energy stored in a parallel
plate capacitor with voltage V and charge Q is the
area under the V–Q curve.

A

Q CV=

Figure 16.4. (a) Capacitor with 
applied voltage V. (b) Capacitor 
voltage–charge relationship.

Figure 16.3.  Comb drive.



www.manaraa.com

522 Ch. 16 Smart Systems

The energy needed to increase the charge of a
capacitor by an incremental amount δQ at voltage V
(Figure 16.5) is:

[Eq. 16.2]

Integrating gives the internal energy stored in the
capacitor in terms of charge Q. No energy is stored
when the charge is zero, so:

[Eq. 16.3]

which is the area under the V–Q curve. The internal
energy in terms of voltage V is:

[Eq. 16.4]

Capacitance in Terms of Material Properties
It is convenient to calculate capacitance in terms of the electrical properties of the

dielectric, the material between the plates. The properties of the dielectric are found from
experiments using the set-up shown in Figure 16.4, in which V and Q are measured. To
determine the properties independent of the area and distance of the plates, two
definitions, analogous to stress and strain, are introduced.

The electric field E (analogous to stress) is the ratio of voltage to distance d, i.e., the
voltage gradient:

[Eq. 16.5]

The electric (charge) flux density, or electric displacement D (analogous to strain) is:

[Eq. 16.6]

A graph of the relationship between electric field E and flux density D (Figure 16.6)
follows the linear relation:

[Eq. 16.7]

where ε is the permittivity, or dielectric constant, of the material between the plates.
Permittivity is the electric flux density per unit electric field stored in the dielectric
material between the plates. Permittivity has dimensions of farads per meter (F/m), as
shown by a check of the units:

[Eq. 16.8]
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Figure 16.5. The energy 
stored in the capacitor is the 
area under the V–Q curve.
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The permittivity of a material is usually
given in terms of the permittivity of a
vacuum, εo:

[Eq. 16.9]

where  and εr is the
relative permittivity or relative dielectric
constant. The relative permittivity is the
dimensionless ratio of the material
permittivity to that of a vacuum. For mica,
εr = 5.4, so its permittivity is . In
mechanical applications, the gap between
the plates is air for which the relative
permittivity is taken to be unity (εr = 1.0).

Equating Equations 16.6 and 16.7, and
substituting V/d for E, gives the charge:

[Eq. 16.10]

Comparing this result with Equation 16.1,
the capacitance is:

[Eq. 16.11]

The linear Q–V relation holds for a
typical air gap capacitor (ε = εo) provided
that the electric field E = V/d is less than
about 3×106 V/m. Above this value, electric
breakdown can occur by sparking, or arcing,
across the plates, transferring charge across
the air gap.

In MEMS devices, the plates are coated,
and an electric field with a strength in order
of magnitude higher (~30 to 50×106 V/m)
may generally be sustained before
breakdown.

The variation of the capacitance per
plate area C/A with air gap distance d is
shown in Figure 16.7. Capacitance decreases
with increasing gap distance.

ε εrεo=

εo 8.85
12–×10  F/m=

ε 5.4εo=

Q εA
d

------V=

C εA
d

------=

Figure 16.7.  Air-gap capacitance per 
unit area versus plate distance:
C/A = εo /d.

Figure 16.6. Electric field versus 
flux density (electric displacement).
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Example 16.1  Capacitance 

Required: Determine the capacitance of a parallel plate capacitor of area 10 µm × 20 µm
with an air gap d = 3 µm.

Solution: For air, ε = εo, so:

Answer: 

Force on a Parallel Plate Capacitor
Due to the attraction between the two oppositely charged capacitor plates, a resisting

force F is required to keep them in place. In the absence of a sufficient force, the plates
will snap together. The required force can be calculated using energy methods, in which
the gap d is increased to d+δd, where δd is a small increment of displacement. There are
two standard ways of performing the energy calculations:

1. the charge Q remains constant during displacement. This can be achieved by 
charging the plates to Q, and then electrically isolating each plate so that 
charge cannot be added or removed;

2. the voltage V remains constant. This is achieved by connecting the plates across a 
constant voltage source; current (i = dQ/dt) is permitted to flow to and from 
the plates so that charge may be added or removed.

The work done on a capacitor by force F moving incremental distance δd is:

[Eq. 16.12]

and the electrical energy supplied due to voltage V experiencing incremental charge δQ is
(Equation 16.2):

[Eq. 16.13]

Hence, the increase in total stored energy is:

[Eq. 16.14]

Method 1. Energy Calculation for Constant Charge
Charge Q is held constant (δQ = 0) by electrically isolating the capacitor so that it

cannot discharge. The capacitor gap is then increased from d to d+δd. The total internal
energy U(d) for constant Q is:

[Eq. 16.15]

C
εoA

d
--------- 8.85

12–×10  F/m( ) 10
6–×10  m( ) 20

6–×10  m( )

3
6–×10  m

-------------------------------------------------------------------------------------------------------------= =

C 590
18–×10  F=
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The internal energy U(d+δd) corresponding to gap d+δd is:

[Eq. 16.16]

so the change in total internal energy during the displacement is:

[Eq. 16.17]

The work done by F to displace the plates by distance δd is:

[Eq. 16.18]

Since the plates are electrically isolated, there is no additional electrical energy supplied
by an external voltage source (δUE = 0). The increase in internal energy is due only to the
mechanical work F δd. Thus, , which gives:

[Eq. 16.19]

Using Equation 16.10, the force is also given in terms of the voltage V by:

[Eq. 16.20]

Method 2. Energy Calculation for Constant Voltage

The capacitor voltage V is held constant (δV = 0) by connecting it to a constant voltage
source. The capacitor gap is then increased from d to d+δd. The total internal energy U(d)
for constant V is:

[Eq. 16.21]

The change in total internal energy δU due to an increase in gap distance of δd is:

[Eq. 16.22]

Since, δd/d << 1, the increment of internal energy can be reduced to:

[Eq. 16.23]

The change in charge δQ due to increment δd is:

[Eq. 16.24]
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Since δd/d << 1, δQ reduces to:

[Eq. 16.25]

Since capacitance decreases with increasing gap distance, and V is constant, the capacitor
loses charge (Q = CV ).

Repeating Equation 16.14, the incremental energy balance is:

[Eq. 16.26]

Substituting for δQ and δU:

 [Eq. 16.27]

results in the force required to keep the plates apart:

[Eq. 16.28]

which is the same result found using Method 1 (Equation 16.20). In practice, voltage V is
controlled, so the expression for force F in terms of V is generally used, as opposed to the
expression for F in terms of charge Q (Equation 16.19).

Electrostatic breakdown (short-circuiting of the plates by arcing across the air-gap)
occurs when the electric field (E = V/d) in the MEMS device is approximately
40×106 V/m. The maximum value of
the force per area on the plates
with an air gap is therefore:

The variation of the force per plate
area F/A with air gap distance d is
shown in Figure 16.8; force
decreases with increasing gap
distance. The maximum force is
limited by electrostatic
breakdown.

Qδ
εoAV–

d2
---------------- dδ=

F d V Qδ+δ Uδ=

F d V
εoAV–

d2
---------------- dδ

⎝ ⎠
⎜ ⎟
⎛ ⎞

+δ
ε– oAV2

2d2
------------------- dδ=

F
εoA

2
--------- V

d
--- ⎝ ⎠

⎛ ⎞ 2
=

F
A
--- ⎝ ⎠

⎛ ⎞
max

εo

2
----- V

d
--- ⎝ ⎠

⎛ ⎞
max

2
=

8.85
12–×10( )

2
-------------------------------- 40

6×10( )2
=

7080 N/m2=

Figure 16.8. Force required to keep parallel 
plates apart for an air-gap capacitor. 
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Example 16.2  Parallel Plate

Given: A parallel plate capacitor 10 µm × 20 µm with an air gap d = 3 µm. 

Required: Determine (a) the attractive force between the plates if the voltage is 5 V,
(b) the maximum voltage that the capacitor can tolerate without electrostatic breakdown at
Emax = 40×106 V/m, and (c) the corresponding force at breakdown.

Solution: Step 1. The attractive force is:

Answer: 

Step 2. Electrostatic breakdown occurs when E = V/d = 40×106 V/m, so: 

Answer: 

Step 3. The corresponding force at breakdown is:

Answer: 

16.3  Capacitive Accelerometer

One application of a capacitor in MEMS technology is as an accelerometer. In this
design, two plates are fixed to a MEMS device and a movable or suspended plate of mass
m is mounted on elastic supports of stiffness k (Figure 16.9a, elastic supports not shown).
The suspended plate can have motion with respect to the device. The MEMS device itself
is attached to the system (e.g., a car), and so it has the same acceleration as the system.

Each plate has area A and the plates are initially distance d apart. The three plates form
two capacitors that make up part of an energized AC (alternating current) electrical circuit.
For now, the details of the electric circuit are omitted.

With no acceleration, the upper fixed plate and suspended plate have a capacitance of:

[Eq. 16.29]

Likewise, the suspended plate and lower fixed plate have a capacitance of:
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[Eq. 16.30]

The capacitors have the same values.
Hence, when subjected to the same AC
current, the AC voltage across each
capacitor is the same. The difference in
peak voltages across the capacitors is zero.

The system is now subjected to
acceleration a, as shown in Figure 16.9b.
Due to its inertia (mass), the suspended
plate moves closer to the lower plate by
distance x (x << d), which equals the
inertial force ma divided by the spring
stiffness of the elastic supports k:

[Eq. 16.31]

The distance x is proportional to
acceleration, and is small compared to the
overall plate distance d.

Due to the acceleration, the upper fixed plate and the suspended plate have a new
capacitance:

[Eq. 16.32]

Likewise, the suspended plate and lower fixed plate have a new capacitance:

[Eq. 16.33]

The difference in the new capacitor values is:

[Eq. 16.34]

Since x is small compared to d, the x2 term in the denominator is negligible. Thus the
difference in capacitance between the two capacitors is proportional to x, which in turn is
proportional to a:

[Eq. 16.35]

Since there is now a difference in capacitance, there is a difference in the output voltage of
the AC circuit.
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Figure 16.9. (a) Suspended plate of 
mass m between two fixed plates (side 
view). (b) System subjected to 
acceleration a.
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Another way of understanding the basic system response is as follows. When
subjected to an AC current, the peak voltage across a capacitor is inversely proportional to
its capacitance. Thus, when subjected to the same AC current, the peak voltage across the
upper and suspended plates (Vp1) and across the suspended and lower plates (Vp2) during
acceleration are:

and [Eq. 16.36]

Constant B depends on the voltage and frequency of the AC source and the characteristics
of other circuit elements. The difference in the peak voltages is proportional to movement
x, and thus to acceleration a:

[Eq. 16.37]

With appropriate circuitry, the peak voltage difference is amplified. This amplified
signal is the output of the circuit. If the resulting output voltage due to the movement of
the plate is large enough, indicating a critical acceleration, the output will trigger a system
response, e.g., the deployment of an air bag, or the lock-down of a laptop’s hard drive.

Example 16.3  Accelerometer

Given: The accelerometer in
Figure 16.10a consists of two fixed
plates. Between the fixed plates is a
suspended plate with dimensions
700 × 70 × 10 μm. The system is
made of silicon oxide with Young’s
modulus Y = 130 GPa and density
ρ = 2328 kg/m3. The suspended
plate is d = 3 μm from each fixed
plate, and is supported by four
silicon oxide beams that are doubled
back upon themselves and fixed to
the moving system. The beams are
150 μm long, with square cross-
sections that are 25 μm2.

Required: Determine (a) the stiffness of the system k, (b) the natural frequency of the
system , (c) the maximum deflection of the mass when the system is
subjected to a negative acceleration (e.g., during a collision) of magnitude 5g (~49 m/s2),
and (d) the difference in capacitor values ΔC due to the 5g acceleration.

Solution: Step 1. The mass of the suspended plate is:

Vp1
B

C1
------ B d x+( )

Cod
--------------------= = Vp2

B
C2
------ B d x–( )

Cod
--------------------= =

ΔVp Vp1 Vp2– 2B
Cod
---------- x 2B

Cod
----------ma

k
-------= = =

ωo k m⁄=

Figure 16.10. (a) Side view of two fixed plates 
and a suspended plate. The suspended plate is 
connected to the device base by four double 
cantilevers. Not to scale.
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Step 2. Spring stiffness. The moment of inertia of each cantilever’s square cross-section is:

An enlargement of the upper left double-cantilever ABCD is shown in Figure 16.10b. The
stiffness of one double-cantilever is calculated using Figures 16.10b, c and d. AB and CD
are elastic cantilevers, while member BC is rigid. The upper cantilever AB is attached to
the suspended plate at point A, and point D is fixed to the system. When the suspended
plate displaces distance δ with respect to the system, point A displaces δ and points B and
C displace δ /2. The midpoint of AB must therefore deflect by 3δ/4, and the midpoint of
CD by δ /4. Due to the rigid connector BC, the slope of the beams at B and C are zero. The
dynamic load on ABCD to cause displacement δ is P = ma/4 (there are four cantilevers). 

By symmetry, the left half of cantilever AB,
BF, is a cantilever beam of length L/2 under
tip load P, having relative deflection δ/4
(Figure 16.10d). By observation, point F is
an inflection point of beam AB (the
curvature at F is zero) so there is no internal
moment there. Thus, the load–displacement
equation is:

where Y is Young’s modulus. The stiffness
of one double-cantilever is therefore:

The total spring stiffness of the four
cantilevers is:

Answer: 
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Figure 16.10.  (b) A double-cantilever. 
(c) Displacement of double-cantilever δ 
due to force P at point A. (d) The 
relationship between P and δ is 
determined by observing that double-
cantilever ABCD with all four ends fixed 
against rotation is four tip-loaded 
cantilevers back-to-back.
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Step 3. The natural frequency of the system is:

Answer: 

The natural frequency of practical microsystems is high (20+ kHz) since they must be
insensitive to background noises, which are of low frequencies.

Step 4. Response to acceleration. If the deceleration is 5g, the inertial force on the
movable mass is:

Due to this force, the static deflection of the movable mass is:

Answer: 

The difference in capacitor values ΔC due to the 5g-magnitude acceleration is, from
Equation 16.35:

Here:

so:

Answer: 

Due to the acceleration, the values of the capacitances change. When subjected to the
same AC current, the voltage across each capacitor will be different. This voltage
difference is amplified, and if the output voltage is large enough, it will trigger action
within the larger system; e.g., an airbag will deploy.
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16.4  Electrostatic Snap-Through in MEMS Devices

A problem with parallel plate capacitors
that occurs in practice is when the support
structure is unable to withstand the attractive
electrostatic forces. If the electrostatic force
between plates is sufficiently large, the
system will snap-through, with the capacitor
plates binding together. 

The design problem can be modeled as a
suspended capacitor plate supported by a
spring of stiffness k; the other end of the
spring is fixed (Figure 16.11). The lower
capacitor plate is fixed in position. The plates
have area A and are initially distance d apart;
the spring is initially unstretched. Both plates
have an initial voltage of V = 0 so that there is
no attraction between them. 

Voltage V is slowly applied across the
plates, which causes the plates to attract and
the spring to deflect by distance x. The
upward force applied by the spring due to the
displacement of the suspended plate is:

[Eq. 16.38]

The downward electrical force is:

[Eq. 16.39]

From equilibrium, the displacement–voltage relationship is:

[Eq. 16.40]

Rearranging to solve for V in terms of displacement x gives:

[Eq. 16.41]

A normalized plot of voltage V against resulting displacement x for equilibrium
conditions is shown in Figure 16.12. The voltage is normalized by dividing by:

Fs kx=

F
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⎛ ⎞ 2
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V 2kd3

εoA
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d
--- 1 x

d
---–⎝ ⎠

⎛ ⎞ 2
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Figure 16.11.  (a) The suspended plate 
of a capacitor is supported by spring k. 
The initial voltage of the suspended plate 
is V = 0. (b) For equilibrium the 
electrostatic force F must be balanced by 
the spring force kx.
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[Eq. 16.42]

As the applied voltage is slowly
applied across the capacitor plates, the
displacement increases until x/d ~ 0.35
when V/V' ~ 0.385. Beyond this point,
the voltage actually required to
maintain the equilibrium displacement
decreases. However, since the applied
voltage is increasing, the attractive
force of the capacitor overcomes the
restoring force of the spring, and the
two plates snap together. This problem
is of practical significance in MEMS
devices since adjacent surfaces can
become stuck together by electrostatic
forces; the system will not perform as
designed.

Example 16.4  Snap-Through of Spring-Capacitor

Given: The suspended plate of a
capacitor is supported by four double-
cantilevers (Figure 16.13), each 150 μm
long. The thickness of the system is
10 μm.

Required: Determine the voltage Vmax
to cause snap-through, when the two
plates will snap together. In other words,
at what voltage does the electric force
overcome the spring force?

Solution: Step 1. When voltage V is
applied, the suspended plate moves
toward the fixed plate by distance x. The
upward force applied by the spring to
the suspended plate is:

 

where from Example 16.3:

V′ 2kd3( ) εoA( )⁄=

Fs kx=

k 24EI

L3
------------ 48.1 N/m= =

Figure 16.12.  Normalized voltage as a 
function of distance required to keep the 
suspended capacitor plate in equilibrium. If 
the applied voltage exceeds the maximum, 
snap-through occurs and the plates will 
stick together.

Figure 16.13.  (a) The mass suspended on 
four double cantilevers is the upper plate of 
the capacitor. (b) Spring model of system.
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The downward attractive force applied by the lower plate to the free plate is:

The voltage is then:

Step 2. The maximum voltage in Figure 16.12 is the voltage at snap-through:   

Using the same values for k, d and A as in Example 16.3:

Answer: 

Note that in this case, the voltage gradient at snap-through (V/d = 26.3×106 V/m) is
smaller than the gradient approximated for electrostatic breakdown (~40×106 V/m).

16.5  Comb Drive

Comb drive capacitors move parallel to their
plate areas (Figure 16.14a), so that plate distance d
remains constant. The width of the comb teeth into
the paper is h, and they overlap by a distance x
(Figure 16.14b). 

Consider one tooth of the moving comb
(Figure 16.14b). The applied voltage between the
moving and fixed combs is V, and the charge Q is:

[Eq. 16.43]

where, as earlier, C = εoA/d. The area is now A = 2hx.
The factor of 2 enters the equation since the moving
tooth acts as a lower plate to the upper fixed tooth,
and an upper plate to the lower fixed tooth. Thus:

[Eq. 16.44]
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Figure 16.14.  (a) Interlocking 
combs, one stationary with 
voltage V = 0, and the other 
moving with voltage V. 
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The electrical internal energy associated with a
single tooth is:

[Eq. 16.45]

The moving comb is now displaced towards the
fixed comb by δx, during which the voltage
difference remains constant (Figure 16.14c). The
electrical energy supplied by the voltage source is
V δQ. The mechanical work done by the force is F δx. 

From energy balance, the increment of applied
energy equals that stored:

[Eq. 16.46]

Solving for the force on a single moving tooth:

[Eq. 16.47]

The sign of the force is negative, which means that the force is in the opposite direction of
that drawn in Figure 16.14c. The electrical attraction attempts to close the combs, and a
force is required to keep them apart.

The total force between the combs is the force on a single tooth (Equation 16.47)
multiplied by the total number of teeth on a single comb.

Example 16.5  Multiple-Tooth Comb

Given: The tooth of a moveable comb has dimensions: h = 12 μm, d = 1.5 μm
(Figure 16.14). 

Required: Determine the force that can be applied by a 9000-tooth comb due to a voltage
difference of 50 V.

Solution: Step 1. For one tooth, the magnitude of the force is: 

Step 2. For 9000 teeth, the force is 9000 times that value, or:

Answer: 

Machines have been made to apply such small forces on micro-structures.
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Figure 16.14.  (b) A moving 
tooth acts both as a lower and 
an upper plate to stationary 
teeth. (c) Force F and change in 
charge δQ with movement δx.
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Example 16.6  Micro-test Frame

Given: Micro-test frames are used to
apply small loads such as those required
for testing biological systems. 

A set of two 60-tooth combs, 360 μm
long, are arranged as shown in
Figure 16.15. The upper comb is on a
cantilever beam, and the lower comb is
fixed. The teeth of the comb set have
width h = 12 μm (into the paper), and
the distance between teeth is d = 1.5 μm
(as in Example 16.5). When a voltage is
applied between the combs, the
electrostatic forces cause the cantilever
beam to deflect. The beam has bending
stiffness YI = 0.164×10–9 N·m2. The
applied voltage is 50 V. Assume there is
no contact (short-circuiting) between
the combs.

Required: Approximate (a) the
maximum shear force, (b) the maximum
bending moment, and (c) the maximum
deflection of the beam backbone.

Solution: Step 1. In the previous example, the force on each comb tooth was calculated to be:

The total force on the 60-tooth comb is then:

This is the maximum shear force supported by the beam, and it occurs at the fixed end, so:

Answer: 

Step 2. The total load is assumed to be uniformly distributed along the beam:

Step 3. The maximum moment in a cantilever beam under a uniformly distributed load
occurs at the fixed end:

F
εohV2

d
--------------- 177

9–×10  N= =

Ftotal 60 177
9–×10  N( ) 10.6

6–×10  N= =

Fmax 10.6
6–×10  N=

w
Ftotal

L
-------------- 10.6

6–×10  N

360
6–×10  m

------------------------------- 29.4
3–×10  N/m= = =

Figure 16.15.  (a) Two combs, one on a 
cantilever backbone, the other fixed. 
(b) When voltage V is applied to the 
cantilever, the beam deflects.
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Answer: 

Step 4. The tip deflection of a cantilever beam under distributed load is:

Answer: 

or

Here, the deflection-to-span ratio is small, and satisfies the beam deflection requirements
of most traditional engineering systems (~1/240).

16.6  Piezoelectric Behavior

Piezoelectric materials change dimension when subjected to a voltage. Mechanical
output due to electrical input is called the converse (or reverse) piezoelectric effect. This
phenomenon is used to accurately control displacements of valves in automobile engines
and nozzles in inkjet printers. Such piezoelectric systems are called actuators or motors. 

When a piezoelectric material is subjected to stress, a voltage is created. Electrical
output due to mechanical input is the direct piezoelectric effect. This response is used to
provide the voltage output of a force sensor, the spark in a gas ignitor, and the energy to
the flickering lights in childrens’ shoes. Such piezoelectric systems are called sensors or
generators.

Piezoelectric materials occur in nature (e.g., a quartz single crystal), but those
commonly used in engineering systems are different forms of lead zirconium titanate
(PZT) and other polarized engineering ceramics that have a perovskite crystalline
structure. The materials properties depend on the processes used in manufacture. Material
properties may be found in manufacturers’ catalogs.

Elastic Law
The mechanical strain Sm in a linear elastic material with Young’s modulus Y

subjected to stress σ is:

[Eq. 16.48]

Mmax
wL2

2
---------- 29.4

3–×10  N/m( ) 360
6–×10  m( )2

2
--------------------------------------------------------------------------------- 1.91

9–×10  N·m= = =

Mmax 1.91
9–×10  N·m=

δ wL4

8YI
---------- 29.4

3–×10  N/m( ) 360
6–×10  m( )4

8 0.164
9–×10  m4( )

-------------------------------------------------------------------------------- 376
9–×10  m= = =

δ 376 nm=

δ
L
--- 376

9–×10  m

360
6–×10  m

------------------------------ 0.00104 1
975
---------= = =

Sm
σ
Y
---=
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Note that in this chapter, Young’s modulus is
Y, while the electric field is E; strain is S,
while the dielectric constant is ε.

Electrostatic Law
Consider a ceramic material with

electrodes on its upper and lower surfaces
(Figure 16.16 ). The material permittivity, or
dielectric constant, is ε; the electrode plates
have area A and are separated by distance t.
The capacitor is subjected to voltage source
Vs , represented by the circle with “+” and
“–” indicating its polarity. The electric field
E goes from the positive charge +Q on the
upper plate to the negative charge –Q on the
lower plate, which is also the direction of the
voltage drop V.

The electric flux density, or electric displacement, is the charge per unit plate area:

[Eq. 16.49]

Recalling the capacitor charge–voltage relationship (Equation 16.1), and the definition of
capacitance C (Equation 16.11), the electric displacement can be rewritten:

[Eq. 16.50]

Recall that the material permittivity is (Equation 16.9): 

[Eq. 16.51]

where εo is the permittivity of air (assumed to be equal to that of a vacuum:
), and εr is the dimensionless relative permittivity of the material. 

The magnitude of electric field E is the gradient of the voltage drop V:

[Eq. 16.52]

Thus, the electric displacement is:

[Eq. 16.53]

The direction of the electric field and the direction of the voltage drop across the
capacitor are the same. In Figure 16.16, if the voltage source Vs is positive (i.e., the
voltage above the source is higher than below it), then the applied electric field E in the
capacitor is downward. 

D
Q
A
----=

D CV
A

-------- εA
t

------ V
A
--- ⎝ ⎠

⎛ ⎞ εV
t
---= = =

ε εrεo=

εo 8.85
12–×10  F/m=

E V
t
---=

D εE=

Figure 16.16.  Voltage Vs applied across 
the electrodes of a capacitor. The 
capacitor’s electric field E is in the 
direction of the voltage drop V. Applying 
a positive voltage source Vs results in 
a downward (positive) electric field 
E in – and a positive voltage drop V 
across – the capacitor.
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In this treatment, the positive sense of an electric field E in a piezoelectric material
(from +Q to –Q) is in the same direction as the poling direction (or poling electric field),
defined below. A positive voltage drop V is also in the poling direction.

Poling
Piezoelectric materials have a crystal structure that exhibits an electrical polarity or

dipole moment below its Curie temperature (named for Jacques and Pierre Curie who
discovered the piezoelectric effect in the late 1800s). In a single crystal, the entire material
has a dipole moment (Figure 16.17a). In practice, a piezoelectric material is composed of
many domains, or regions, each with a dipole moment. The domains are randomly
oriented so that overall the material has no net polarity (Figure 16.17b).

Before being used in an engineering
system, a piezoelectric material is subjected
to a high voltage Vp that tends to align the
domain dipoles (and slightly lengthens the
material) in the direction of the applied
electric field Ep . This process is called
poling (Figure 16.17c). Upon removal of
the poling voltage Vp , the material retains
an overall dipole moment. The direction of
the poling electric field sets the poling
direction, which here is represented by a
dotted arrow (Figure 16.17d). 

It is important to identify the poling
direction because piezoelectric properties
differ in different directions. In this
treatment, the poled direction is aligned
with the local 3-direction.

The response of the internal dipole to
applied stresses and electric fields is what
gives piezoelectric materials their special
properties. The direction of the applied
stress or electric field with respect to the
poling direction governs the material
response.

Piezoelectric materials are limited by
applied stress (they are ceramics), by voltage
(a large voltage can reverse or reduce the
poling, causing a non-linear response), and
by temperature (above the Curie
temperature, the material’s structure does

Figure 16.17.  (a) Direction of a dipole 
moment; the arrow points from negative 
to positive charge. (b) Piezoelectric 
material with randomly oriented 
domains. (c) Material subjected to poling 
voltage Vp (poling electric field Ep). 
(d) Upon removal of Vp , the piezoelectric 
material has a permanent dipole 
moment (domain boundaries not 
shown).
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not have a dipole moment). It is assumed here that the system remains within the linear
operating range, and below the Curie temperature.

Piezoelectric Law
The mechanical and electrical responses of a piezoelectric material are coupled.

Piezoelectric materials strain when subjected to either a stress or an electric field. The total
strain S due to the stress σ (causing mechanical strain Sm = σ/Y) and to the total electric
field E (causing electrical strain Se = d×E) is:

[Eq. 16.54]

where d is the piezoelectric charge constant, discussed below. Stress σ is positive in
tension, and electric field E is positive in the poling direction.

When subjected to both stress and an electric field, the electrostatic response is given
by the electric displacement D:

[Eq. 16.55]

In matrix form, the piezoelectric law equations are then:

[Eq. 16.56]

It should be noted that the electric field E has two components:

(1) the applied electric field Ea , and 

(2) an induced electric field Ei , caused by the applied stress (discussed below).

Equation 16.56 describes the mechanical and the electrical response of the poled
material. The coupled electromechanical material properties (i.e., d) are determined from
the results of two tests, described below. In the first test, a voltage-only load is applied to
the system; in the second test, a stress-only load is applied.

Equation 16.56 is a reduced form of a larger matrix equation. In 3D, the stress vector
σ has six stress components (three normal and three shear), and the electric field E vector
has three components. Likewise, the strain vector S has six components, and the electric
displacement vector D has three. Symbol 1/Y represents the material compliance or
flexibility matrix (6×6), d is the dielectric constant matrix and its transpose (6×3 and 3×6),
and ε is the permittivity matrix (3×3). For simplicity, only electric fields in the poling
direction, and the three normal stresses, are considered in this treatment.

Application of Voltage Only
Consider a piezoelectric material (e.g., PZT) of length, width and thickness L, W,

and t, between two electrodes (Figure 16.18a). A 3D coordinate system is defined,
with directions 1-2-3. The poled direction is the negative 3-direction (downward),

S Sm Se+ σ
Y
--- dE+= =

D dσ εE+=

S

D
1 Y⁄ d

d ε

σ
E

=
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and the electrode plates are on the positive
and negative 3-surfaces of the material. 

With no applied stress, a positive
(downward) electric field E3a (E is positive
in the poling direction) is applied across the
electrodes by voltage V3a , as shown in
Figure 16.18a. No current flows through the
ceramic PZT material so the circuit is open.

The applied electric field causes changes
in lengths ΔL, ΔW, Δt, in the 1-, 2- and 3-
directions, respectively. The strain Si in each
direction due to the electric field is:

[Eq. 16.57]

The strain Sj,e in the j-direction is the product
of the piezoelectric charge constant d3j and
the electric field E3a = V3a/t. In the notation
d3j , the first subscript (3) is the direction of
the electric field and the second subscript (1, 2, or 3) is the direction of the strain caused by
the applied field. In PZT materials, constants d31 and d32 are equal and negative, while d33
is unique and positive. 

In Figure 16.18a, the electric field E3a and the voltage drop across the capacitor,
V = V3a , are both in the poling direction and are thus both positive. In Figure 16.18b, E3a
is opposite the poling direction and is thus negative. General observations can be made
about the direction of the electric field and the resulting strain.

When the applied electric field is in the poled direction (here the negative 3-direction,
or downward), thickness t increases; i.e., E3a > 0 so S3,e > 0 (Figure 16.18a,
Equation 16.57, d33 > 0). The voltage source V3a gives the upper electrode a positive
charge and the lower electrode a negative charge. The negative end of the dipole moment –
the tail of the dotted arrow – is attracted to the upper electrode, and the positive end is
attracted to the lower electrode. At the same time, both length and width decrease
(analogous to the Poisson effect). An electric field in the poling direction has the same
direction as the original poling electric field Ep .

When the applied electric field E3a is opposite the poled direction, the thickness
decreases; i.e., E3a < 0 (upwards) so S3,e < 0 (Figure 16.18b, Equation 16.57). In

S1 e,
ΔL
L

------- d31E3a d31

V3a

t
---------= = =

S2 e,
ΔW
W

--------- d32E3a d32

V3a

t
---------= = =

S3 e,
Δt
t

----- d33E3a d33

V3a

t
---------= = =

Figure 16.18.  (a) A piezoelectric 
material subjected to a positive electric 
field E3a (in the poling direction). Here, 
E3a > 0, voltage drop V > 0 (in the poling 
direction), and V3a > 0. The changes in 
dimensions are: Δt > 0, ΔL < 0, ΔW < 0. 
(b) A piezoelectric material subjected to 
a negative electric field E3a (opposite the 
poling direction). E3a < 0 and voltage 
drop V < 0. Thus, Δt < 0, ΔL > 0, 
ΔW > 0.
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Figure 16.18b, the upper electrode is negatively charged, and the lower electrode is
positively charged. The ends of the dipole moment are repulsed by the electrodes,
decreasing the material thickness t. At the same time, the length and width increase. An
electric field opposite the poling direction is opposite the original poling electric field Ep .

Piezoelectric Constants, d, g and ε
The piezoelectric constants, dij and gij , relate the mechanical stresses and strains to

the electrical fields and displacements. They are material properties, and for a typical
PZT4 material are given in Table 16.1.

Constants dij are the piezoelectric charge constants. From Equation 16.57, they are
the strain in the j-direction per unit electric field in the i-direction. From the general
piezoelectric law (Equation 16.56 ), it can be deduced that dij is also the induced electric
displacement in the i-direction per unit stress in the j-direction.

Constants gij are the piezoelectric voltage constants, introduced in the next
subsection. They are the electric field (voltage gradient) induced in the i-direction per unit
stress in the j-direction. Constants gij are also the strain in the j-direction per unit electric
displacement in the i-direction.

The dielectric constant – the permittivity – is related to the piezoelectric constants:

[Eq. 16.58]

Example 16.7  Strain due to Applied Voltage

Given: A piezoelectric actuator is made of a
PZT4 material, t = 50 μm thick, between
two electrodes. The applied voltage is
V3a = 100 V with polarity as shown in
Figure 16.19. The poling direction is in the
negative 3-direction. The piezoelectric
properties of the dielectric material are
given in Table 16.1.

ε
dij

gij
------=

Table 16.1.  Typical Piezoelectric Constants for piezoelectric material PZT4.

Piezoelectric Charge Constants, d3i Piezoelectric Voltage Constants, g3i

d33 285
12–×10  m/V= g33 24.9

3–×10  V m/N=

d31 d32 122
12–×10  m/V–= = g31 g32 10.3

3–×10  V m/N–= =

Figure 16.19.  Piezoelectric material 
subjected to applied voltage V3a.
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Required: Determine (a) the strain in the poling direction S3 and (b) the strain in the
transverse direction S1 (c) Repeat Part (a) for V3a = –60 V.

Solution: Step 1. The strain is due to the applied voltage. Due to the polarity of the source,
the electric field in the material is in the negative-3 direction, which is the poling direction.
Thus, E3a is positive. The voltage drop V is also in the poling direction, so it is also
positive: V = V3a = 100 V. 

From Equation 16.57 and Table 16.1:

Answer: 

The positive charge at the upper electrode and the negative charge at the lower electrode
cause the material thickness to increase.

Step 2. The transverse strain in the 1-direction is:

Answer: 

The transverse strain S1 is negative, analogous to the Poisson effect in mechanical loading.

Step 3. For V3a < 0, E3a and V are both negative, i.e., opposite the poling direction. Thus,
V = V3a = –60 V, and strain in the 3-direction is negative:

Answer: 

The thickness decreases.

Application of Stress Only (Isolated Electrodes)
Consider the piezoelectric material sandwiched between two electrodes, with the

poling direction in the negative 3-direction (Figure 16.20a). Normal stresses are applied in
each direction σ1, σ2, and σ3 . The electrodes at top and bottom are electrically isolated
from each other so that no charge (and thus no current) may flow to or from them (i.e.,
D = 0). 

The application of the stress elongates or shortens the dipole moment, and thus
induces a voltage in the 3-direction (the direct piezoelectric effect). The induced voltage
due to each stress acting individually is measured. The relationships between the induced
voltage and the applied stresses are:

S3 d33
V
t
--- 285

12–×10  m/V( ) 100 V

50
6–×10  m

---------------------------= =

S3 570
6–×10=

S1 d31
V
t
--- 122–

12–×10  m/V( ) 100 V

50
6–×10  m( )

--------------------------------= =

S1 244–
6–×10=

S3 342–
6–×10=
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[Eq. 16.59]

Notation V31i is the induced (i) voltage in
the 3-direction caused by a stress in the
1-direction. Constants gij are the
piezoelectric voltage constants that depend
on the material, and for PZT4 are given in
Table 16.1. Values g31 = g32 are negative,
and g33 is positive.

Physically, the induced voltage has a
polarity that tries to return the thickness to
its original poled dimension; it reduces the
effect of the applied stress. As illustration,
consider σ3 only.

A positive (tensile) stress σ3 increases
the thickness, while the induced voltage
V33i reduces the thickness. From
Equation 16.59, for σ3 > 0, since g33 > 0,
then V33i < 0. A negative induced voltage
V33i gives the upper electrode a negative
charge and the lower electrode a positive charge. The induced voltage tends to shorten the
dipole. The induced electrical field E3i in the material is negative since it is opposite the
poled direction. The induced voltage V3i is also negative for a negative (compressive)
transverse stress (σ1 or σ2), as given by Equation 16.59, since g31 = g32 < 0.

A negative (compressive) stress σ3 shortens the thickness, while the induced (positive)
voltage V33i increases the thickness. From Equation 16.59, for σ3 < 0, since g33 > 0,
V33i > 0. The induced voltage causes a positive charge on the upper electrode, and a
negative charge on the lower electrode. The induced voltage lengthens the dipole. The
induced electrical field E3i in the material is positive since it is in the poling direction. A
similar voltage response occurs for a positive (tensile) transverse stress (σ1 or σ2).

Since the induced voltage opposes the change in dimension, the PZT material has a
higher effective modulus than the material without the piezoelectric effect. For the same
applied stress σ, the resulting strain S and strain energy density (UD = σS/2) are smaller.
Part of the work done by the applied stress is now stored as electrical energy.

The total induced electric field E3i (negative voltage gradient) caused by the three
stresses is:

V31i

t
---------- g– 31σ1=

V32i

t
---------- g– 32σ2=

V33i

t
---------- g– 33σ3=

Figure 16.20.  (a) Piezoelectric material 
subjected to stresses in three directions. 
Induced voltage V3i is measured across 
the electrodes. (b) Simple model of 
electrical response. The diamond is a 
standard symbol in circuits for a 
dependent-voltage source; V3i depends 
on the applied stress.
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[Eq. 16.60]

A simple model for the induced voltage is given in Figure 16.20b; the diamond is a
common symbol in circuits for a dependent (controlled) source. Here, V3i is dependent on
the applied stress.

The induced electric field V3i/t causes electrical strains of the form of Equation 16.57:

[Eq. 16.61]

The normal stresses cause mechanical strains:

[Eq. 16.62]

Superimposing the mechanical strains and the electrical strains caused by the induced
voltage gives:

[Eq. 16.63]

If the two electrodes are short-circuited so that they must have the same voltage (e.g.,
Figure 16.21a), then V3i is zero, and the strains are due only to the mechanical loads.
Equation 16.63 then reduces to the standard form of Hooke’s Law (Equation 16.62).

Application of Uniaxial Stress Only
To further understand the physical interaction between the mechanical and the

electrical properties without evaluating a large number of terms, consider a piezoelectric
material subjected to stress σ3 in the poling direction only (Figure 16.21). 
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Short-Circuited Electrodes

If the electrodes are short-circuited so that
they must have the same voltage
(Figure 16.21a), then no induced voltage can
exist (E3 = V3i = 0). The strain is simply:

[Eq. 16.64]

Isolated Electrodes

When the plates are electrically isolated so
that no charge can flow (D = 0, Figure 16.21b),
the induced voltage across the plates due to
stress σ3 is:

[Eq. 16.65]

The total strain is then:

[Eq. 16.66]

Rearranging, the effective Young’s Modulus of
the material in the 3-direction when the plates
are each isolated is:

[Eq. 16.67]

For PZT4 materials, the pertinent properties are: Y = 66 GPa, d33 = 285×10–12 m/V, and
g33 = 24.9×10–3 V m/N. Substituting these values into the effective modulus equation
gives:

[Eq. 16.68]

The induced voltage causes the PZT material to have a higher effective modulus than the
material without the piezoelectric effect. In this case, the modulus is nearly doubled.

S3

σ3

Y
------=

V3i

t
-------- g– 33σ3=

S3

σ3

Y
------ d33

V3i

t
--------+

σ3

Y
------ d33 g33σ3( )–= =

1
Y
--- d33g33–⎝ ⎠

⎛ ⎞ σ3=

Y∗
σ3

S3
------ Y

1 d33g33Y–
-----------------------------= =

Y∗ 124 GPa=

Figure 16.21.  (a) PZT under stress 
with plates short-circuited; no 
voltage is induced across the plates. 
(b) PZT with plates electrically 
isolated. Voltage V3i is induced 
across the electrodes.
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Simultaneous Application of Voltage and Axial Stress
We will now derive the general piezoelectric

law, first stated in Equation 16.56.

Consider the case when both voltage V3a and
stress σ3 are applied to the open-circuit system at
the same time (Figure 16.22). The stress induces
voltage V3i . The total voltage is the sum of the
applied voltage and the induced voltage:

[Eq. 16.69]

The electric field in the piezoelectric material is in
the poling direction (downward):

[Eq. 16.70]

The electric displacement due to the applied voltage source V3a only, or applied
electric field E3a (Equation 16.53) is:

[Eq. 16.71]

The strain caused by the applied voltage V3a (Equation 16.57) is:

[Eq. 16.72]

The stress acting alone causes no electric displacement D. The strain due to the
applied stress σ3 (Equations 16.66 and 16.67) is:

[Eq. 16.73]

where Y* is the effective Young’s modulus caused by the induced voltage. 

The total strain is thus:

[Eq. 16.74]

while the total electric displacement is given in Equation 16.71.

The piezoelectric law can be written in matrix form in terms of the applied stress σ3
and the applied electric field E3a :

V3 V=
3a

V3i+

E3

V3

t
------

V3a V3i+

t
-----------------------= =

D3 ε
V3a

t
--------- εE3a= =

S3 e, d33

V3a

t
--------- d33E3a= =

S3 m,

σ3

Y∗
------ 1

Y
--- d33g33–⎝ ⎠

⎛ ⎞ σ3= =

S3

σ3

Y∗
------ d33E3a+=

Figure 16.22.  Simultaneous 
application of V3a and σ3, produces 
total voltage: V = V3a + V3i .
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[Eq. 16.75]

Equation 16.75 can be reformulated to give the standard piezoelectric matrix equation
(Equation 16.56). The total strain, in terms of stress σ3 and applied voltage V3a is:

[Eq. 16.76]

From Equation 16.65:

[Eq. 16.77]

Substituting Equation 16.77 into Equation 16.76 gives the strain in terms of the stress and
the total electric field E3 = E3a + E3i :

[Eq. 16.78]

From Equation 16.75, the electric displacement is:

[Eq. 16.79]

Again, applying Equation 16.65:

[Eq. 16.80]

The dielectric constant is the ratio of the piezoelectric constants ε = d33/g33
(Equation 16.58), so Equation 16.80 can be rewritten:

[Eq. 16.81]

Finally, the relationship between the displacements (the strain S3 and the electric
displacement D3) and the total loads (the applied stress σ3 and the total electric field E3)
can be summarized by the piezoelectric law:

[Eq. 16.82]

which was introduced in Equation 16.56.
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Example 16.8   Piezoelectric Stack: Valve Lifters

Given: The electrodes in a stack
actuator are in the form of a pair
of interlocking capacitor combs
(Figure 16.23a). The material
between the combs is poled by
applying poling voltage Vp
across the combs. As a
consequence, the poling
direction in the material
alternates, pointing towards the
negative electrodes
(Figures 16.23b, c). 

After poling, compressive load
W is applied to the stack causing
compressive stress σ3 . The
stress causes the stack to shorten, and induces a voltage Vi between the combs
(Figure 16.23d). The loads on stacks can be significant because the material is in
compression, not in tension where it is weak. The compressive strength of piezoelectric
materials is approximately 250 MPa, but to ensure reliability during operation, maximum
working stresses of 150 MPa are normal. 

In this design, the applied stress due to load W is σ3 = –80 MPa. The effective modulus for
PZT4 is Y* = 124 GPa, and the piezoelectric constants are given in Table 16.1. There are
n = 240 teeth in each comb and the thickness of each PZT layer is t = 125 μm.

Required: For the given load, determine (a) the deflection of the stack Δ, (b) the induced
voltage Vi , (c) the additional voltage Va that needs to be applied to return the stack to its
original height, and (d) the total voltage across the combs due to both the induced and the
applied voltages.

Solution: Step 1. Apply stress σ3 = –80 MPa. The strain due to the mechanical load ε3,m
for the configuration where the electrodes are isolated is:

The deflection of the stack due to the stress is (Figure 16.23d):

Answer: 

Step 2. The induced voltage is (with g33 from Table 16.1):

S3 m,

σ3

Y∗
------ 80

6×10  Pa–

124
9×10  Pa

----------------------------- 645
6–×10–= = =

Δ S3 m, L S3 m, nt( ) 645
6–×10–( ) 240 125

6–×10  m( )[ ]= = =

Δ 19.4 μm–=

Figure 16.23.  (a) Piezoelectric stack subjected to 
poling voltage Vp (not to scale). (b) Close-up of two 
comb teeth and piezoelectric material sandwiched 
between them.
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Answer: 

The induced voltage gradient
(electric field) is:

Step 3. To return the actuator to its
original height, an applied voltage
Va must be added to the induced
voltage. The strain due to the applied
voltage Va is:

This strain must be equal and
opposite the strain caused by the
mechanical load S3,m , so:

Answer: 

The applied voltage could also have been solved by directly applying Equation 16.75:

Step 4. The total voltage V3 across the electrodes for there to be no net change in stack
height with σ = –80 MPa is (Figure 16.23e):

Answer: 

Vi g33σ3–( )t 24.9
3–×10  V m/N( ) 80

6×10  Pa–( ) 125
6–×10  m( )–= =

Vi 249 V=

Vi

t
----- g– 33σ3=

1.99
6×10  V/m=

S3 e, d33

Va

t
------=

Va
t

d33
-------- S3 e,( ) t

d33
-------- S– 3 m,( ) 125

6–×10  m

285
12–×10  m/V

-------------------------------------- 645
6–×10( )= = =

Va 283 V=

S3

σ3

Y∗
------ d33

V3a

t
---------+ 0= =

V3a

σ3

Y∗
------

t
d33
--------

⎝ ⎠
⎜ ⎟
⎛ ⎞

– 80
6×10  Pa–

124
9×10  Pa

----------------------------- 
⎝ ⎠
⎜ ⎟
⎛ ⎞ 125

6–×10  m

285
12–×10  m/V

-------------------------------------- 
⎝ ⎠
⎜ ⎟
⎛ ⎞

–= =

Va 283 V=⇒

V3 V=
i

Va+ 249 283 V+=

V3 532 V=

Figure 16.23.  (c) Unloaded stack. (d) Applied 
load causes stack to deflect by Δ and induces 
voltage Vi. (e) Additional voltage Va is added to 
raise stack back to its original height.
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The total voltage could also have been solved using Equation 16.82, with Y = 66 GPa, the
short-circuited Young’s modulus of the PZT4 material:

so:

Example 16.9  Actuator to Lift Atomic Force Microscope

Given: A thin-walled piezoelectric tube of average diameter D = 10 mm, thickness
t = 125 μm, and length L = 50 mm is used to control displacement in the 1-direction
(Figure 16.24a). Electrodes are attached to the inner and outer surfaces of the tube, and the
poling direction is radially outward, in the positive 3-direction (Figure 16.24b). The
material is PZT4, so that d31 = –122×10–12 m/V. Such a device might be used to control
the vertical position of an atomic force microscope (Figure 16.24c).

Required: Determine (a) the change in length of the cylinder if the applied voltage is
250 V, with the polarity of the voltage source applied as shown in Figure 16.24d and (b)
the applied voltage V required to lengthen the tube by 10 μm.

Solution: Step 1. The polarity of the applied voltage shown in Figure 16.24d causes an
electric field in the same direction as the poling direction. Thus, E3a > 0, and V3a = 250 V.
The cylinder thickness increases, which implies that its length decreases.

The strain in the axial direction is:

S3

σ3

Y
------ d33

V3

t
------+ 0= =

V3

σ3

Y
------

t
d33
--------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–
80

6×10  Pa–

66
9×10  Pa

-----------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 125

6–×10  m

285
12–×10  m/V

--------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

–= =

V3 532 V=⇒

Figure 16.24.  (a) Thin-walled piezoelectric tube with electrodes on the inner and 
outer surfaces. (b) The tube is poled in the positive 3-direction, from the inner to 
outer electrode. (c) Tube used as an actuator to adjust height of AFM beam.
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Thus:

Answer: 

The cylinder shortens due to a positive voltage V3a being applied to the inner electrode
with voltage V = 0 at the outer electrode.

Step 2. The voltage necessary to lengthen the tube by 10 μm is:

Answer: 

The negative sign indicates that the applied electric field (voltage drop) must be opposite
the poled direction; here the applied electric field must act towards the center of the
cylinder. The applied voltage must be applied in the opposite direction of Part (a), i.e.,
opposite the source polarity drawn in Figure 16.24e, meaning V is negative.

Example 16.10  Force Sensor

Given: The piezoelectric thin-walled tube of Example 16.9 is used to measure small
forces. By measuring voltage, the applied stress and thus force, can be determined
(Figure 16.25). 

S1
LΔ

L
------- d31

V3a

t
---------= =

LΔ d31

V3a

t
---------

⎝ ⎠
⎜ ⎟
⎛ ⎞

L 122
12–×10–  m/V( ) 250 V

125
6–×10  m

------------------------------ 
⎝ ⎠
⎜ ⎟
⎛ ⎞

50
3–×10  m( )= =

LΔ 12.2–  μm=

V
LΔ

L
-------

⎝ ⎠
⎜ ⎟
⎛ ⎞ t

d13
--------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 10

6–×10  m

50
3–×10  m

--------------------------- 
⎝ ⎠
⎜ ⎟
⎛ ⎞ 125

6–×10  m

122
12–×10–  m/V

----------------------------------------- 
⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

V 205–  V=

Figure 16.24.  (d) With a positive applied voltage V = +250 V (the inner electrode 
subjected to positive voltage, outer electrode at ground), the cylinder decreases in 
length by 12.2 μm. (e) General case for positive applied voltage. The voltage 
source causes an electric field radially outward.
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Required: Determine the applied load in the
1-direction (the axial direction) if the measured
induced voltage is (a) V3i = 50 mV and
(b) V3i = –200 mV.

Solution: Step 1. The induced electric field
in the 3-direction due to applied stress in the
1-direction is:

The force that causes the induced voltage V3i is
therefore: 

Step 2. For V3i = 0.050 V, σ1 = 38.8 MPa, so the
applied load is:

Answer: 

Since the poling direction is radially outward, if Vi > 0 (Ei > 0), then the induced voltage
thickens the tube. Since the induced voltage acts to counter the strain due to the stress,
Vi > 0 implies that the mechanical load reduces the tube thickness. Relating this to the
Poisson effect, the applied load must be tensile (P > 0).

Step 3. For V3i = –0.200 V,  σ1 = –155 MPa so:

Answer: 

16.7  Piezoelectric Bending

Piezoelectric effects can be used to induce bending in beams. Such a beam is called a
bimorph. A bimorph consists of two layers of piezoelectric material, with electrodes on
the top and bottom surfaces and one at the interface of the two layers (Figure 16.26). In
this example, the piezoelectric layers have been poled in the same direction. Other
configurations are possible, provided that the application of voltage causes one layer to
expand, and the other to contract.

When voltage is applied to the bimorph as shown in Figure 16.26b, the top layer
thickness increases and its length decreases (the applied electric field E is in the poling
direction). The bottom layer thickness decreases and its length increases (E is opposite the
poling direction). The bimorph bends upward and acts as an actuator. 

V3i

t
-------- g31σ1–=

P σ1A
V3i

g31t
---------- 2πRt( )–

V3i

g31
-------- 2πR( )–= = =

P 0.050 V( )

10.3
3–×10  V m/N–( )

--------------------------------------------------- 2π 5
3–×10  m( )[ ]–=

P 0.153 N=

P 0.610–  N=

Figure 16.25.   Piezo tube used as a 
sensor to measure axial loads.
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If a mechanical load is used to
deflect the beam, a voltage is induced
across the electrodes. The bimorph
acts as a sensor. 

The design loads on bimorphs
are typically small due to the limiting
stress of ceramics in tension,
however, they are capable of much
larger displacements than
piezoelectric stacks.

For bending, the appropriate
stresses and strains are in the x1-
direction, and the electric field is in
the x3-direction. The appropriate
laws for strain in the x1-direction
(1-direction), and electric displacement
in the x3-direction (3-direction) are, at
any point, from Equation 16.56:

[Eq. 16.83]

where σ1 is the bending stress and E3 is the total electric field due to both the stress-
induced electric field E3i and the applied electric field E3a.

The strain and electric displacement can also be written in terms the applied electric
field E3a analogous to Equation 16.75:

[Eq. 16.84]

where Y1* is the effective modulus in the x1-direction:

[Eq. 16.85]

The piezoelectric constants, g31 and d31, are related by the dielectric constant
(Equation 16.60):

[Eq. 16.86]

S1

D3

1 Y⁄ d31

d31 ε

σ1

E3
=

S1

D3

1 Y1∗⁄ d31

0 ε

σ1

E3a

=

Y1
∗ Y

1 d31g31Y–
-----------------------------=

ε
d31

g31
--------=

Figure 16.26.  (a) Bimorph beam system. The 
layers are poled in the same direction, but 
(b) the applied voltages (electric fields) are in 
opposite directions.
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Response to Moment and Applied Voltage
The loads on a bimorph beam

are the applied moment M, and the
total voltage, which is the sum of
the applied and induced voltages:
V = Va + Vi . Voltage V is measured
at the outer electrodes, with the
internal electrode maintained at
V = 0 (Figure 16.27). When voltage
Va is applied to the system, the
electric fields in the layers are equal
but opposite. Each layer is t thick,
and has constant width (breadth) of
B into the paper.

Considering the applied
moment M only, the top layer
contracts and the bottom layer
expands in the x1-direction. The
bending stresses induce an electric
field E3i = V3i/t in the PZT material.

Considering the applied voltage V3a only (due to applied electric field E3a), the top
layer contracts and the bottom layer expands in the x1-direction, so that the beam develops
a radius of curvature. Compatibility of the two layers at their interface requires that there
be stresses in the x1-direction at the center of the beam cross-section.

The strain in the top layer (x3 > 0) due to applied bending stress σ1 and applied
electric field E3a is, from Equation 16.84:

[Eq. 16.87]

In the top layer, E3a is in the poling direction, so it is positive. Since the electric

displacement is , the strain becomes:

[Eq. 16.88]

Solving for the Moment M

Applying the same displacement condition as in traditional beam theory, that plane-
sections remain plane, then the strain in the top layer is linear with x3 : 

[Eq. 16.89]

S1 t,

σ1

Y1
∗

--------- d31E3a+=

D3 εE3a=

S1 t,

σ1

Y1
∗

---------
d31

ε
--------D3+=

S1 t,

x3–

R
--------=

Figure 16.27.   Bimorph subjected to moment M 
and total voltage V. Moment M induces voltage Vi 
across the electrodes. Va is the applied voltage.
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where R is the radius of curvature of the bimorph beam. At x3 = 0 (the centroid of the
beam) the strain is zero. Setting the previous two equations equal to each other:

[Eq. 16.90]

Solving for the stress in the top layer, σ1,t :

[Eq. 16.91]

The stress has two components, one which varies linearly with x3, and the other is a
constant depending upon the applied electric field.

Multiplying the stress by x3 dA = x3B dx3, where B is the breath of the beam and then
integrating from x3 = 0 to t, gives the moment supported in the top layer:

[Eq. 16.92]

Performing the integration, the moment supported by the top layer is:

[Eq. 16.93]

The stress in the lower or bottom layer (x3 < 0) is given by:

[Eq. 16.94]

This stress is the same as the stress in the top layer (Equation 16.91) except the term due to
the applied electric field is opposite in sign (E3a is negative since it is opposite the poling
direction in the bottom layer; thus D3 is also negative). 

Performing similar calculations, the moment supported by the bottom layer is:

[Eq. 16.95]

which is the same moment supported by the top layer.

The total moment is the sum of the moments supported by both layers:

[Eq. 16.96]

This equation gives the moment in terms of radius of curvature R and electric
displacement D3.

As a check, when the applied electric field is zero (i.e., D3 = 0), then: 
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[Eq. 16.97]

This is the moment–radius of curvature relationship for a rectangular beam of modulus
Y1*, depth 2t, and breadth B.

Solving for the Total Voltage V

From Equation 16.83, the total electric field E3 in the top layer is:

[Eq. 16.98]

Substituting the expression for the stress from Equation 16.91 results in:

[Eq. 16.99]

or

[Eq. 16.100]

The total electric field, like the stress, has two components, one that varies linearly with x3,
and the other is constant and depends upon the charge (electric displacement D3).

The electric field is the voltage gradient:

[Eq. 16.101]

E3 is positive in the direction of decreasing voltage, in the direction of the voltage drop. 

Combining Equations 16.100 and 16.101, and multiplying both sides by (–dx3):

[Eq. 16.102]

At x3 = 0, V = 0. Integrating Equation 16.102 from x3 = 0 to t gives the change in voltage
from the center electrode to the top electrode, which is simply the total voltage V. Thus:

[Eq. 16.103]

Performing the integral and dividing by t, gives the average voltage gradient:

[Eq. 16.104]
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This equation gives the total voltage in terms of radius of curvature R and charge density
D. By algebraically manipulating the expression for  (Equation 16.85), it can be
shown that the quantity in parenthesis is:

[Eq. 16.105]

Combined Moment and Voltage Solution

Equations 16.96 and 16.104 can be written in matrix form for the applied moment M
and total voltage V3:

[Eq. 16.106]

Example 16.11  Voltage to Cause Displacement (Actuator)

Given: An unloaded bimorph is used
to cause an upward displacement δ by
applying voltage V3a = V across its
electrodes (Figure 16.28). The
dimensions are length L = 25 mm,
layer thickness t = 0.25 mm, and layer
breadth B = 1.0 mm. The bimorph is
made of a PZT4 material. The short-
circuit elastic modulus is Y = 66 GPa,
and the piezoelectric charge constant
is:

d31 = –122 ×10–12 m/V

Required: Determine the voltage
needed to displace the tip of the
cantilever by δ = 10 μm.

Solution: Step 1. Since there is no
applied moment, M = 0, the curvature-
load relationship of Equation 16.106
is:

so:

Y1
∗

1
Y1

∗d31
2
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-----------------+⎝ ⎠

⎛ ⎞ Y1
∗
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---------=

M
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-------
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Y1∗
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d31

ε
-------- t2

2
----

d31

ε
-------- t2

2
---- 1

Yε
------

1
R
---

D3

=

0 Y1
∗ t3

3R
-------

d31

ε
-------- t2

2
----D3 +⎝ ⎠

⎛ ⎞=

Figure 16.28.  (a) A bimorph beam. (b) The 
beam deflects when subjected to applied 
voltage V.
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Step 2. From beam theory, curvature is the second derivative of the beam displacement:

Integrating once to find the slope:

The slope at x1 = 0 is dv/dx1 = 0, so C1 = 0. Integrating to find the beam deflection:

The deflection at x1 = 0 is v = 0, so C2 = 0. The expression for the displaced shape of the
bimorph is:

Step 3. Rearranging, to solve for the applied voltage:

To cause a tip displacement of δ = v(x1 = L) = 10 μm, the applied voltage is:

Answer: 

The average voltage gradient is:

Example 16.12  Application of Moment to Induce Voltage (Sensor)

Given: A bimorph beam is subjected to moment M only (Figure 16.29). The electrodes
are isolated so that no charge may flow to or away from them. The thickness of each layer
is t and the width is B.

Required: Determine the voltage induced by the applied load.

Solution: From Equation 16.106:
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With no applied voltage, the charge
density is D3 = 0. Thus, the moment is:

The induced voltage as a function of
radius of curvature is:

Eliminating R from the previous two equations gives Vi in terms of moment M:

Recalling that , then:

Answer: 

Example 16.13  Force Sensor

Given: A cantilever beam is used to
measure force P at its tip. The
cantilever is made of a PZT4 bimorph
(Figure 16.30). The dimensions are:
L = 25 mm, t = 0.25 mm, B = 1.0 mm.

The appropriate dielectric constant is:

Required: Determine the voltage
output due to applied force P = 0.10 N.

Solution:

The maximum bending moment is: 
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Figure 16.29.  Bimorph beam subjected to 
constant moment M induces voltage Vi .

Figure 16.30.  Force P induces a voltage 
across the electrodes which is maximum at 
the base of the cantilever.
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The induced voltage is:

Answer: 

16.8  Shape Memory Alloys

The stress–strain response of shape memory alloys (SMA) depends on the applied
stress and temperature. The strength of these materials can be significant and thus it has
been suggested that they be used as actuators to lift relatively large loads.

The most common SMA is composed of nearly equal amounts of nickel and titanium
(NiTi). The response of NiTi was discovered and studied at the Naval Ordnance
Laboratory (NOL), so the alloy is generally called nitinol (NiTi–NOL). Slight
modifications to the atomic proportions, and additions of small amounts of other alloys,
cause variations in the stress–strain–temperature response of the material.

The key to nitinol’s stress–strain response is that it can take on three different
crystalline (solid) phases depending upon stress and temperature – twinned martensite,
austenite, and stress-induced martensite.

Under no load, the phase is twinned martensite at low temperatures and austenite at
high temperatures. When low-temperature martensite is heated, austenite begins to form at
temperature As (austenite start), and the nitinol is completely transformed at T = Af
(austenite finish) (Figure 16.31). Upon cooling, martensite begins to form at T = Ms and
the transformation is complete at T = Mf . Transformation temperatures can range from
approximately –50 to 100°C depending on the specific SMA. The hysteresis H is the
difference between the heating and the cooling transformation temperatures; typically
H ~ 30°C. The overall dimensions of a nitinol sample are unchanged during this phase
transformation.

When nitinol is subjected to stress, the
temperatures required for transformation
increase.

Shape Memory
Idealized stress–strain curves for nitinol

are shown in Figure 16.32. At low
temperatures (T < As, Figure 16.32a), the
response of the twinned martensite is linear
until it reaches a critical stress, when the
material transforms into deformed or stress-
induced martensite. This new crystalline

Vi
3
4
---g31

M
Bt
----- 3

4
--- 10.6

3–×10–  V·m/N( ) 0.0025 N·m( )

0.001 m( ) 0.25
3–×10  m( )

-------------------------------------------------------------= =

Vi 79.5–  V=

Figure 16.31.  Phase-temperature 
curves for the martensite–austenite 
transformation.



www.manaraa.com

562 Ch. 16 Smart Systems

phase is larger in volume than the twinned
martensite, resulting in a transformation
strain εT of approximately 5%. After the
transformation is complete, the stress–strain
response is again linear (the right side of the
stress–strain curve). When the stress is
removed, the transformed strain remains.

If the deformed nitinol is then heated to
T > Af , austenite forms and the original
geometry is recovered (the dotted line in
Figure 16.32a). This response to heating is
the shape memory effect. The austenite can
then be cooled into the twinned martensitic
phase without further change in overall
geometry. The cycle just described is
illustrated in Figure 16.33a.

Superelasticity
At temperatures T > Af (Figure 16.32b)

the unloaded NiTi is austenite. As the stiffer
austenite is loaded, at a critical stress level,
stress-induced martensite begins to form.
Again, a transformation strain εT of
approximately 5% occurs with stress
remaining essentially constant. After the
transformation, the stress–strain response is
again linear.

Upon removal of the stress, the stress-
strain curve plateaus at a lower stress level
as the stress-induced martensite transforms
back into austenite (the lower branch of
Figure 16.32b). The overall system
response is elastic since the material returns
to ε = 0 when the load it completely
removed. This non-linear elastic response
due to phase changes is known as
superelasticity or pseudoelasticity.

Nitinol that has been transformed from
austenite into stress-induced martensite at
T > Af can exhibit the shape memory effect
while under load. This is done by heating the
material to a sufficient temperature. Under

Figure 16.32.  Idealized stress–strain 
curves for NiTi at three temperature 
levels.

Figure 16.33.  (a) Temperature-load 
steps showing shape memory effect. 
(b) Shape memory effect under loaded 
condition.
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stress, the temperature for the austenite-to-stress-induced martensite transformation
increases, so further heating the stress-induced martensite can recover the austenitic phase
(Figures 16.33, 16.34).

High Temperature Response
At temperatures above a critical value, T = Md , austenite does not transform into

stress-induced martensite. The stress–strain curve is linear until the austenite yields; the
material fails similar to other ductile metals (Figure 16.32c).

Applications
Shape memory alloys are generally used in the stress-induced martensitic phase. Upon

heating to sufficient temperature, the alloy returns to its austenitic phase, decreasing in
length at a constant stress (as at 37°C in Figure 16.34). Nitinol can, therefore, be used in
actuators, applying motion at a constant force (stress) during its transformation. Or, a
nitinol wire can be used as a protective sensor in an electrical circuit. If sufficient current
flows through the wire, the heated nitinol will contract, opening (breaking) the circuit. 

Nitinol is biocompatible and can be
fabricated on the small scale, so it has
extensive uses in current and future medical
applications. Nitinol is often engineered
such that Af < 37°C (98.6°F), the
temperature of the human body. Orthodontic
nitinol arch wires are deformed at low
temperatures into stress-induced martensite.
In the mouth, the heated wires contract into
the austenite phase, applying a force on the
tooth. Because of the large transformation
strain recovered at constant stress, the force
on the tooth remains constant over relatively
large movements (Figure 16.34). Nitinol
braces do not need to be adjusted
(retightened) as often as those made of
traditional linear–elastic metals.

A more significant and complex
biomedical application of nitinol is for
stents used to open arteries. Nitinol stents,
initially smaller in diameter than arteries,
are designed to expand (unfold) when
inserted into the human body.

Figure 16.34.  Representative stress–
strain response for biomedical nitinol, 
Af ~ 35°C. Low-temperature twinned 
martensite is deformed into stress-
induced martensite. The system, e.g., 
an arch wire for braces, is inserted and 
subjected to stress A. Due to body 
temperature T ~ 37°C, the wire begins 
to transform into austenite at constant 
stress. The contracting nitinol gives the 
tooth its required motion.
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A common superelastic application is in eyeglass frames, which can be accidentally
subjected to large deformations. Where typical metals would permanently yield, nitinol
experiences a non-linear but elastic response (Figure 16.32b).

The transformation strain of nitinol can be large (~5%), and can occur at relatively
large stresses (e.g., σ > 400 MPa). It has, therefore, been suggested that this material can
be used to lift relatively large loads over large displacements. Consider the following
example.

Example 16.14  Morphing Truss System with Shape Memory Member

Given: The pinned-jointed truss system
shown in Figure 16.35a is subjected to a
tip load W. The angles of the webs are
all 60° from the horizontal. Each
member has cross-sectional area
A = 5.0 mm2 and length L = 25 mm.
The load is W = 750 N.

Member AB is 12.5 mm long and is
made of the shape memory alloy NiTi.
Before load W is applied, it is assumed
that AB is horizontal, and that it has
already transformed from austenite to
stress-induced martensite, and so has
already expanded by ε T = 5% 

After application of load W, member
AB is heated to a sufficient temperature
so that it experiences the shape
memory phase transformation (back to
austenite). The accompanying strain is
–ε T = –5%.

Required: Approximate the distance δT
that load W is lifted due to the
transformation of member AB. 

Solution: Since member AB is
horizontal, the reaction at joint A equals
the force in AB, PAB (Figure 16.35b):

Taking moments about the joint C gives:

Ax PAB=

PAB 2 3W=

Figure 16.35.  (a) Truss supporting weight 
W. Member AB is a shape memory alloy. 
After the load is applied, AB is heated so that 
it undergoes a phase transformation, making 
it shorter. (b) FBD of truss. (c) When AB 
shortens, load W is lifted by δT (here, AB is 
shortened by about 13% to magnify the 
response).
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The temperature is now increased to cause AB to transform back into austenite. The
temperature T must be greater than Af for the particular stress:

Due to the strain transformation, the change in length of AB is:

The tensile force in PAB does negative work as the bar shortens. Since the nitinol
transforms at constant stress, and thus at constant force, the work done during shortening
the bars is:

The work done by downward load W moving upward by δT is:

Equating the work terms, the displacement of the tip due to the transformation is
(Figure 16.35c):

For L = 25 mm, and εT = 0.05, the upward movement of load W is:

Answer: 

The deflection index is the ratio of the deflection to the overall length of the system:

Typical deflection indices in traditional beam systems are f~1/240–0.4%. Thus, shape
memory alloys actuators may prove useful in lifting loads significant distances.

σAB

PAB

A
---------- 2 3W

A
--------------- 2 3 750 N( )

5
6×10  m2

------------------------------ 520 MPa= = = =

ΔT ε– TLAB ε– T
L
2
--- ⎝ ⎠

⎛ ⎞= =

U PAB ΔT 2 3W( )– εT
L
2
--- ⎝ ⎠

⎛ ⎞ 3W– εT L= = =

Work W– δT=

δT 3εT L =

δT 3 0.05( ) 25 mm( )=

δT 2.2 mm=

 f δ
3L
------ 2.2 mm

3 25 mm( )
------------------------- 1

34
------ 0.029 2.9%= = = = =
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Problems: Chapter 1 – Chapter 16

Problems: Chapter 1 Opening Remarks

1.1 Rank the loads in order of magnitude,
from highest to lowest: proof load, ultimate
load, working load.

1.2 A drum-winch slowly lifts a large bucket
full of ore from a mine. The ore has a density
of 1600 kg/m3. The bucket volume is 8.00 m3.
Neglect the mass of the bucket.

Determine (a) the mass of the ore
supported by the cable, (b) the force in the
cable in newtons, and (c) the force in pounds.
(d) if the cable can support 500 kN, determine
the factor of safety for this load.

1.3 A residential structure (house) is built in
New England. The size of the house is 2000
square feet, half of which is located on the
second floor. The effective area of the roof is
1300 square feet. Since it is a residence, each
floor must be designed to support a load of
40 psf. Due to snow, a load of 30 psf must be
supported on the roof.

Considering the second-floor load and the
snow load, determine the total load that the first
floor walls must be designed to support.

1.4 The concrete counterweight of a large
crane weighs WC = 350,000 lb. Concrete has a
weight density of γ = 150 lb/ft3. 

If the counterweight is approximately a
cube, determine the length of each side (a) in
feet and (b) in meters.

1.5 At the end of Stearns Wharf in Santa
Barbara, California, large wooden logs at the
edge of the wharf are used as seats and as
physical barriers between pedestrians and the
ocean, 20 ft below. A typical log has a diameter
of 2R = 2.5 ft and a length of 24 ft. The density
of the wood is estimated to be 40 lb/ft3.

Determine the minimum rating of the
crane required to move the cylinders. Assume a
factor of safety of 2.0, and that cranes come in
2000-lb increments (i.e., 2000, 4000, 6000 lb,
etc.)
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1.6 A pressure vessel is designed to contain a
working pressure of 45 MPa.

Per the ASME Pressure Vessel Code,
determine the minimum pressure required for a
proof test.

1.7 The nominal strength of a production run
of steel bars is 50 kN. 

(a) If the working load is 20 kN, determine
the factor of safety. (b) Your boss asks you to
perform proof tests on a number of the bars at
60% above the working load. What fraction of
the nominal strength is the proof load?

1.8 A crane slowly lifts a 30 ft length of 12 in.
diameter standard pipe. Lift points D and E are
8.0 ft apart. A 12 in. standard steel pipe has an
inside diameter of 12.0 in., a wall thickness of
0.375 in., and weighs 49.56 lb/ft (see
Appendix D).

(a) If the main strap AB that supports
the pipe can support 10,000 lb, determine the
factor of safety for this case. (b) Determine the
weight density (lb/ft3) of the pipe material.

1.9 The plan (top) view of the second story of
an office building is shown. Each support
column (lettered) is represented by a shaded
square and the columns are arrayed in a
rectangular grid pattern at varying distances.
The lines between columns represent primary
floor beams.

The load on each column can be
approximated using a basic load–distribution

model. The tributary area of each column – the
area contributing to its load – is the area the
column supports. Each column supports one-
fourth of the rectangular area bound by it and
the three other columns that form the rectangle.
The total load on a single column is the product
of the area load (psf) and the column’s total
tributary area (ft2). 

Floor loads for some building-types are
given in Table 1.1 of the text. 

Determine (a) the load (force) on columns
C, G, and I, respectively, (b) the column(s)
with the least load, and the value of the load,
and  (c) the column(s) with the greatest load,
and the value of the load. (d) If this is a plan
view of the second story of a library stack
room, determine the load on column G.

1.10 Traditional wind-load analysis. A steel
frame building is constructed with four parallel
arches or frames, A–D, separated by purlins
(Figure (a)). The frames support the building
envelope (the walls and roof ). The span is
L = 80 ft, the wall height is H = 12 ft, the arch
spacing is B = 15 ft, and the half-roof length is
R = 50 ft. The building is subjected to wind
normal to the ridge line, with a velocity of
V = 70 mph. 

The equivalent pressure on any surface
(wall or roof) due to the wind is given by:

pi = Cq(0.00256V2)

where pi is in pounds per square foot (psf ) and
V is in mph. The variable Cq depends on the
building surface, and is defined for a particular
case by Figure (b). A positive Cq means the
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pressure acts against the surface and a negative
value means the pressure acts away from the
surface (suction).

Determine (a) the total force on the entire
left (windward) wall of the structure and
(b) the total load on the right-half (leeward)
roof. (c) Determine the distributed line load w
(lb/ft) that acts on each segment of arch C – the
windward wall, the windward roof, the leeward
roof and the leeward wall. Draw the distributed
load pattern with values and units on a 2D
sketch of arch C (e.g., Figure (c)). Draw the
distributed loads proportional to their values.

Hint: The load on each arch segment (wall or
roof) can be estimated using a basic load–
distribution model. The tributary area on each
arch segment – the area contributing to its load
– is half the wall or roof area that the arch
segment shares with the neighboring arch(es).

The product of the appropriate pressure and the
segment’s tributary area is the total load (force)
on each segment (e.g., the load on the
windward roof of arch C). This load acts
uniformly over the length of the segment.

1.11 A 16.0 kN truck (including its load) is
stopped on a bridge. The bridge is L = 14.0 m
long and the truck’s wheelbase is s = 4.0 m.
Assume that the weight of the truck is evenly
distributed between the front and the rear axles.
The rear of the truck is a = 4.0 m from the left
end of the bridge.

Model the bridge: Create a free body
diagram including the reactions at the supports
Do not solve for the reactions.
.

1.12 A 2000 lb weight hangs from a 14 ft long
beam. The beam is supported by a roller at the
left end, and is built-in to the wall at the right
end.

Model the beam: Create a free body
diagram including the reactions at the supports
Do not to solve for the reactions. 

Note: This is an indeterminate system; it cannot
be solved using statics alone.
.
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Problems: Chapter 2 Statics

2.1 Axial Members

2.1 A cantilever truss supports a point load at
joint D.

Calculate the forces in members CD, BC,
BE, and FE. Assume all member forces are in
tension so that a positive value indicates
tension (T) and a negative value indicates
compression (C).

2.2 All of the members of simply supported
truss AE are L = 3.0 m long. Forces
H = 10.0 kN and V = 20.0 kN are applied as
shown.

Calculate the force in members AB, BC,
IC, and IG . Assume all member forces are in
tension so that a positive value indicates
tension (T) and a negative value indicates
compression (C).

2.2 Torsion Members

2.3 A set of gears transfers torque from one
shaft to another. 

If the radius of the large gear is twice the
radius of the small gear, determine the ratio of
the torques, T2 to T1.

2.4 A shaft has four gears, A, B, C, and D
(shown without gear teeth). Gears A through C
are subjected to torques TA, TB, and TC , acting
as shown.

(a) If the system is in equilibrium,
determine the torque on gear D, TD . Write the
answer as positive or negative with respect to
the curved arrow shown. (b) Determine the
torque supported inside the shaft between gears
A and B, TAB, between B and C, TBC, and
between C and D, TCD .

2.3 Beams

2.5 The face of a highway sign, 10 ft wide by
6.0 ft tall, is acted on by a uniform wind
pressure of 10 psf (perpendicular to the sign).
The center of the sign is H = 8.0 ft above the
ground. Two symmetrically placed posts
support the sign. The posts are positioned in
such a way that the wind load does not cause
them to twist.
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Calculate the magnitude of the shear force
and moment reactions on each post at the
ground (due to symmetry of the geometry and
of the load, the reaction of the ground on both
posts is the same).

2.6 A 16.0 kN truck (including its load) slowly
crosses a bridge that is modeled as a simply
supported beam. The bridge is L = 14.0 m long
and the truck’s wheelbase is s = 4.0 m. Assume
that the weight of the truck is evenly distributed
between the front and the rear axles.

Draw the shear and moment diagrams for
the beam, and determine the maximum
moment (a) when the rear axle just reaches the
bridge (left support) and (b) when the rear axle
is a = 5.0 m from the left support (i.e., the truck
is at the center). 

2.7 Consider the truck and bridge of Prob. 2.6.

Determine (a) the value of a that gives the
largest moment as the truck crosses the bridge
and (b) magnitude of that moment. 

Hint: It is not when the truck is at the center of
the beam.

2.8 A crane slowly lifts a 30 ft length of 12 in.
diameter standard pipe that weighs 49.56 lb/ft.
Lift points D and E are 8.0 ft apart.

(a) Draw the shear and moment diagram of
the pipe. (b) Determine the maximum bending
moment in the pipe.

2.9 You are designing a deck for a house
outside of Chicago, Illinois. The deck is
c = 12 ft wide by a = 6.0 ft deep, and is
supported by three beams as shown. The
ground snow load around Chicago is 30 psf. 

Determine (a) the total snow load (force)
on the deck assuming the deck load is the same
as the ground load, (b) the uniformly
distributed load, w, on each beam, Beams 1, 2,
and 3 (hint: what fraction of the deck does each
beam support, assuming the deck remains
level?), and (c) the magnitude of the maximum
bending moment in the center beam (Beam 2).
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2.4 Combined Loading

2.10 A tight-rope walker weighs W = 160 lb.
He walks on a rope H = 20.0 ft above the
ground. The rope spans two poles that are
L = 30.0 ft apart. When he reaches the center,
the rope is taut and has deflected δ = 1.0 ft.

Determine the horizontal and vertical
reaction forces and the reaction moment at the
base of the left pole.

2.11 The piston, connecting rod (AB) and
crank (BC) of an engine system are pinned
together as shown. As the piston moves left-
and-right, the crank rotates and provides torque
T about an axis (out of the paper) at shaft C
(the resisting torque is shown). Rod AB is a
two-force member. Assume there is no friction
between the piston and its cylinder. At the
instant shown, the force acting on the piston
from the gas pressure is F = 3.0 kips.

Determine (a) the force in rod AB, and   (b)
the magnitude of the torque about the C-axis.
(c) Determine the normal force on the cylinder.
Is it upward or downward?

2.12 A boom is subjected to downward force
F. The load and geometry are: F = 400 N,
a = 8.0 m, b = 2.0 m, D = 100 mm.

Determine the reactions at cross-section
ABC.
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Problems: Chapter 3 Strain and Stress

3.1 Axial Properties

3.1 A steel bar is 8.00 ft long. When a 4000 lb
tensile load is applied to the bar, it elongates
0.100 in. Steel has a Young’s modulus of
E = 30,000 ksi (kilopounds per square inch).

Determine (a) the axial strain in the bar,
(b) the axial stress in the bar, and (c) the cross-
sectional area of the bar. (d) If the yield
strength is Sy = 60.0 ksi, determine the factor
of safety.

3.2 Truss ABC is subjected to a downward
force of 20.0 kN at joint B. The truss is made of
25.0 mm diameter solid aluminum rods, AB
and BC. BC is 1.00 m long. For aluminum,
Young’s modulus is 70 GPa.

Determine (a) the stress in each bar σAB
and σ BC  and (b) the elongation of each bar
ΔAB and ΔBC.
 

3.3 The piston, connecting rod (AB), and crank
(BC) of an engine system are pinned together

as shown. As the piston moves left-and-right,
the crank rotates and provides torque T about
an axis at C (the resisting torque is shown).
Rod AB is a two-force member and has a cross-
sectional area of A = 0.8 in.2. Assume there is
no friction between the piston and its cylinder.
At the instant shown, the force acting on the
piston from the gas pressure is: F = 3.0 kips.

For the instant shown, determine the axial
stress in rod AB.

3.4 The stress–strain curve for a metal bar
subjected to a tension test is shown below: the
entire curve, and a detailed curve for
0 < ε < 0.010.

Determine (a) Young’s modulus E, (b) the
yield strength Sy using the 0.2%-offset
approximation, (c) the ultimate strength of the
material Su and the strain at which it occurs,
and (d) the failure strain, ε f . (e) Calculate the
resilience (the maximum elastic strain energy
density). (f ) Estimate the total area under the
curve, which is the toughness of the material
(the total area is the energy density required to
break the material into two).
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3.5 A steel bar is tested in tension, resulting in
the stress–strain data given in the table.

(a) Using Excel (or another graphing
program), or using engineering/graph paper
(draw to scale), plot the stress–strain curve. Fit
a smooth curve through the points. Two plots
are necessary: one to focus on the initial part of
the curve (e.g., 0 < ε < 0.01) and one for the
entire range of strains (see Prob. 3.4).

From the curves, determine (b) the
proportional limit, (c) the modulus of elasticity,
(d) the yield strength using the 0.2% offset
approach, and (e) the ultimate tensile strength.

Note: Many steels exhibit a “shelf” in the
stress–strain curve due to a mechanism beyond
the scope of this course.

Excel Hint: use a “X–Y (Scatter) Plot”. Do not
use a “Line Plot.” Line Plots evenly distribute
the data along the x-axis as if the data were
categories (e.g., months of the year). The given
stress–strain data are not evenly spaced.

3.6 From a tension test on a metal, it is
reported that the modulus is E = 15×103 ksi,
the proportional limit is Sp = 45 ksi, the yield
strength is Sy = 55 ksi, the tensile strength is
Su = 70 ksi, and the failure strain is εf = 34%.
However, no stress–strain curve was included
in the technical memorandum of the
experiment.

(a) On engineering/graph paper, sketch, to
scale, a possible stress–strain curve. Label
pertinent points/values (E, Sy , Su , etc.).
(b) Estimate the resilience of the material.

3.7 An aluminum bar is subjected to an axial
force of P = 10.0 kN. The bar has a solid
circular cross-section with diameter
D = 10 mm and length L = 0.80 m. The
modulus is E = 70 GPa, the yield strength is
Sy = 240 MPa and Poisson’s ratio is ν = 0.33.

Determine (a) the stress in the bar, (b) the
factor of safety against yielding, (c) the change
in length of the bar, and (d) the new diameter of
the bar.

Stress 
(MPa)

Strain
Stress 
(MPa)

Strain

    0 0.0 250 0.009
 30 0.0001 300 0.025
 70 0.0003 340 0.05
 90 0.0004 380 0.09
125 0.0006 435 0.15
165 0.0008 450 0.25
200 0.0010 440 0.30
245 0.0014 400 0.36
255 0.0025 325 0.40
250 0.0050 0 0.40
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3.8 The aluminum bar of Prob. 3.7 is
subjected to an axial force of P = –14.0 kN.
The compressive yield strength is Sy =
–240 MPa.

Determine (a) the stress in the bar, (b) the
factor of safety against yielding, (c) the change
in length of the bar, and (d) the new diameter of
the bar. 

3.9 An aluminum bar of length L = 36.0 in.
and diameter D = 1.400 in. is subjected to a
tensile force of P = 24.0 kips. Aluminum has a
modulus of E = 10,000 ksi and a Poisson’s
ratio of ν = 0.33.

Determine (a) the change in diameter of
the bar and (b) the change in volume of the bar
(answer to two significant digits).

3.10 The modulus of resilience UR of a
material is the strain energy density that it can
store without undergoing plastic deformation
(i.e., the maximum elastic strain energy). 

(a) Determine the resilience of the steel,
aluminum, nickel, and titanium alloys listed
below. (b) For the same size structure, which
material can absorb the most energy without
plastically deforming?

3.11 Structural steel has yield strength
Sy = 250 MPa and modulus E = 200 GPa. A
steel bar with a volume of 0.002 m3 is loaded
slowly in tension.

Determine (a) the modulus of resilience of
the steel and (b) the total energy (N·m)
required to yield the component.

3.12 When an aluminum bar of constant
cross-sectional area is subjected to tensile force
P = 20.0 kN, it elongates Δ = 3.0 mm. The
volume of the bar is 0.00032 m3. The material
properties are E = 70 GPa and Sy = 240 MPa.

(a) Assuming the bar responds linearly,
use energy concepts to determine the stress in
the bar. (b) What is the maximum tensile force
Pmax such that the system remains elastic.

3.13 A steel bar of diameter of D = 20 mm is
loaded in fatigue, with maximum and minimum
loads Pmax = 60 kN and Pmin = –60 kN; the
load is sinusoidal with zero mean stress. The
steel’s S–N curve is shown below and its yield
strength is 480 MPa.

(a) Estimate the fatigue life, Nf , of the bar
for the given loading. (b) What fraction of the
yield strength is the cyclic stress amplitude?
(c) Estimate the maximum amplitude of the
cyclic force so that the specimen has infinite
fatigue life (i.e., so that it does not fail by
fatigue).

Alloy E (GPa) Sy (MPa)

Steel 200 250
Aluminum 70 240

Nickel 210 600
Titanium 115 800



www.manaraa.com

576 Problems: Chapter 3 Strain and Stress

3.14 Use the internet to connect to: http://

fatiguecalculator.com/cgi-bin/StressShowMatProp.pl

(a) Using data for steel 1040, determine
the fatigue strength for Nf = 106 cycles with
zero mean stress. (b) If the mean stress is
σm = 100 MPa, determine the amplitude of the
new cyclic stress that gives the same fatigue
life.

3.15 For aluminum 7075-T651, Su = 580 MPa,
Sf' = 1131 MPa, and b = –0.122.

(a) Determine the fatigue strength for
Nf = 107 cycles with zero mean stress. (b) If the
mean stress is σm = 100 MPa, determine the
amplitude of the new cyclic stress that gives the
same fatigue life.

3.2 Shear Properties

3.16 A thin-walled steel shaft of average
diameter D = 50 mm and thickness t = 3.0 mm
is subjected to torque T = 350 N·m. From a
tension test, the axial yield strength is
Sy = 320 MPa.

(a) Determine the average shear stress in
the shaft τ. (b) If the shear modulus is
G = 75 GPa, determine the shear strain.
(c) Determine the maximum torque so that the
system remains linear–elastic.

3.17 A rubber pad is sandwiched between two
steel plates subjected to shear force
V = 100,000 lb. The dimensions of the plate are
a = 9.0 in. and b = 12.0 in. The thickness of the
rubber is c = 4.50 in. After the force is applied,
the top plate is found to have displaced
laterally by δ = 0.055 in.

Determine the shear modulus G of the
rubber.

3.18 A thin-walled steel shaft is 20 in. long,
has an average radius of R = 1.20 in. and a
thickness of 0.05 in. The shear modulus is
G = 12,000 ksi and the shear yield strength is
τy = 30 ksi.

(a) Determine the torque that will cause
the thin-walled shaft to yield. (b) If the shaft is
limited to an angle of twist of 1.0°, determine
the maximum value of the torque. (c) Which
condition limits the design? Explain.

3.19 A thin-walled tube is to be used for two
different applications: (1) tension-only and
(2) torsion-only. The yield strengths of the
material are Sy = 250 MPa and τy = 160 MPa.
The average radius of the tube is R = 30 mm
and the thickness is t = 4.0 mm.

(a) When loaded by an axial force-only,
determine the tensile force required to yield the
tube, Py . (b) For the axial load-only case, if the
factor of safety against yielding is FS = 2.0,
determine the maximum allowable force that
may be applied to the tube, Pallow . (c) When
the tube is loaded by a torque-only, determine
the torque required to yield the tube, Ty .
(d) For the torsion load-only case, if the factor
of safety is FS = 2.0, determine the maximum
allowable torque that may be applied to the
tube, Tallow .
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3.3 General Stress and Strain

3.20 A 2D state of stress, σx , σy, and τxy ,
exists at a point in an aluminum plate. The state
of stress is plane stress – the out-of-plane
stresses are zero. For aluminum, E = 70 GPa,
G = 28 GPa, and ν = 0.33.

Determine the normal strains in the x-, y-,
and z-directions, εx , εy and εz , and the shear
strain γxy for the following stress states (σx ,
σy , τxy):

(a) (200 MPa, 0 MPa, 75 MPa)

(b) (200 MPa, 100 MPa, 0 MPa)

(c) (200 MPa, 100 MPa, 75 MPa) 

(d) (200 MPa, 200 MPa, 75 MPa)

(e) (100 MPa, –150 MPa, 100 MPa) 

(f) (–100 MPa, 200 MPa, –85 MPa)

(g) (–200 MPa, –100 MPa, 100 MPa)

3.21 A tri-axial state of stress, σx , σy, and σz ,
exists in a steel machine part. For steel,
E = 30,000 ksi and ν = 0.3.

Determine the normal strains in the x-, y-,
and z-directions, εx , εy , and εz for the
following stress states:

(a) σx = 15.0 ksi, σy = 5.00 ksi, σz = 10.0 ksi

(b) σx = –15.0 ksi, σy = 10.0 ksi, σz = 5.00 ksi

(c) σx = 15.0 ksi, σy = 15.0 ksi, σz = 15.0 ksi

3.22 A rubber has modulus E = 200 MPa and
Poisson’s ratio ν = 0.5. A uniaxial state of
stress, σx = 4.0 MPa, exists in a part made of
this rubber. 

(a) Determine the normal strains in the x-,
y-, and z-directions, εx , εy , and εz . (b) The new
volume of a cube of material with strains εx , εy,
and εz can be expressed as:

where V is the original volume. Using the
strains calculated in Part (a), what can you
conclude about the change in volume of rubber
(or any material with ν = 0.5) when subjected
to uniaxial stress? Is your statement also true
for a biaxial state of stress? for a triaxial state
of stress? Explain.

Vnew V 1 εx+( ) 1 εy+( ) 1 εz+( )=
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Problems: Chapter 4 Axial Members and Pressure Vessels

4.1 Axial Members – Force Method

4.1 An aluminum bar is subjected to a
compressive force of 10.0 kN. Its rectangular
cross-section is 10.0 mm by 25.0 mm, and it is
1.20 m long. Aluminum has a modulus of
E = 70 GPa.

Determine (a) the stress in the bar, (b) the
axial strain, and (c) the elongation of the bar.

4.2 A steel bar is 8.00 ft long. When a 4000 lb
tensile load is applied to the bar, it stretches
0.100 in. Steel has a modulus of
E = 30,000 ksi.

Determine (a) the axial strain in the bar
and (b) the cross-sectional area of the bar. (c) If
the yield strength of the steel is Sy = 60.0 ksi,
what is the factor of safety for this load?

4.3 Truss ABC is subjected to a downward
force of 20.0 kN. The truss is made of 25.0 mm
diameter solid aluminum bars, AB and BC. Rod
BC is 1.00 m long. Aluminum has a modulus
of E = 70 GPa.

Determine (a) the stress in each bar σAB
and σ BC and (b) the elongation of each bar ΔAB
and ΔBC.

 

4.4 Truss ABC is subjected to a horizontal
force of 20.0 kN. The truss is made of 25.0 mm
diameter solid aluminum rods, AB and BC. Rod
BC is 1.00 m long. Aluminum has a modulus
of E = 70 GPa.

Determine (a) the stress in each bar σAB
and σBC and (b) the elongation of each bar ΔAB
and ΔBC.
 

4.5 A set of steel rods, each of cross-sectional
area A, is used to support two levels of a
hanging walkway. A schematic of one of these
rods, ABC, and its loading, is shown. The total
load supported at the lower level is 2F
(point C) and at the upper level is 4F (point B).

For E = 30,000 ksi, L = 10.0 ft, A = 0.800 in.2,
and F = 1.20 kips, determine (a) the stress in
each segment of the rod, σAB and σBC , (b) the
elongations of each segment, ΔAB and ΔBC, and
(c) the displacements (movements) of points B
and C, δB and δC .
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4.6 Solid stepped concrete column, ABC,
supports downward load F1 = 2.0 MN at its
top. A second downward load F2 acts
uniformly on the step. The cross-sectional
areas of the upper and lower portions are
AAB = 0.08 m2 and ABC = 0.12 m2. The lengths
are LAB = 1.5 m and LBC = 2.0 m. The modulus
of concrete is E = 20 GPa. Assume there are no
limitations due to strength.

Determine (a) the normal stress in the
upper segment of the column, σAB , (b) the
force F2 so that the stresses are the same in
each segment, i.e. σAB = σBC , and (c) the force
F2 if the strain in the lower segment is to be
εBC = –0.10% (i.e., BC is in compression).
.

4.7 An observation tower has three rigid
elevated floors. Each floor is 6.00 ft by 6.00 ft
and the distance between floors is 8.00 ft. The
floors are supported by four steel pipes
(E = 30,000 ksi), each with outer diameter
3.00 in. and inner diameter 2.75 in. Each floor
(including the topmost) is designed to carry a
uniformly distributed load of 40.0 psf. Assume
the pipes share the load of each floor equally,
and that the tower does not bend or twist.

Determine (a) the stress in the lowest pipes
due to the design load and (b) the total
shortening of the tower due to the design load.

4.8 An aluminum bar with cross-sectional area
0.5 in.2 is subjected to loads F1 = 2.5 kips,
F2 = 5.5 kips, and F3 = 2.0 kips. The loads are
applied in the directions shown. The
dimensions of the bar are: LAB = 20 in.,
LBC = 10 in., and LCD = 15 in. The modulus is
E = 10,000 ksi.

Determine the total change in length of the
bar.

4.9 Stepped titanium bar ABC having two
different cross-sectional areas, AAB = 1.0 in.2

and ABC = 2.0 in.2, is held between two rigid
supports. The segments have lengths
LAB = 8.0 in. and LBC = 12.0 in. Load
F = 15 kips is applied at joint B. The modulus
of titanium is E = 15,000 ksi.

Determine (a) the reaction forces at
point A and point C and (b) the movement δ of
point B due to the applied force.
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4.10 A concrete column has a square cross-
sectional area 16 by 16 in. and is 10.0 ft tall.
Concrete has a weight density of γ = 150 lb/ft3

and a modulus of E = 4000 ksi. 

(a) Determine the change in length of the
column due to its own weight. (b) Repeat the
problem for a column that is 24 by 24 in. in
cross-section.

4.11 A wooden pile, driven into the ground,
supports a load F. The load is transferred to the
surrounding earth entirely by friction along the
side of the pile. The interfacial shear stress, τ,
between the pile and earth, is assumed to be
uniform (constant) over the surface of the pile.
The pile has length L, diameter D, cross-
sectional area A, and modulus E.

(a) Derive a formula for the change in
length of the pile, Δ, in terms of F, L, A, and E.
Do not include τ in the solution (it can be
substituted out). 

Hint: Measure x from the bottom, where the
internal force is P(x=0) = 0; review the nail
pull-out problem in the text. (b) Plot the
compressive stress, σc versus distance along
the length of the pile. (c) Repeat Part (a) for a
linear interfacial friction distribution: τ(x) = kx
(where k is constant and x is measured from the
bottom). Do not include τ or k in your final
solution.

4.12 A tapered steel (E = 30,000 ksi) bar
hangs from the ceiling and supports a
W = 1200 lb weight. The bar has constant
thickness t = 0.25 in. and tapers from
a = 4.00 in. at the ceiling to b = 2.00 in. The
bar is L = 3.00 ft long.

Determine (a) the stress in the bar as a
function of distance from the load point (take
the bottom of the bar to be x = 0) and (b) the
total change in length of the bar.

4.13 A concrete pile is poured into the shape
of a truncated cone and supports compressive
force of magnitude F = 500 kN. The diameter
at the top is 0.40 m and at the bottom is 1.00 m.
The pile is 0.60 m tall. Young’s modulus is
28 GPa.

Determine (a) the stress σ(x) in the pile as
a function of distance from the top of the pile
and (b) the total change in length of the pile Δ.
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4.14 Truss ABC is subjected to a downward
force of 20.0 kN at joint B. The truss is made of
25.0 mm diameter solid aluminum bars, AB
and BC. BC is 1.00 m long. Aluminum has a
modulus of E = 70 GPa.

Apply equilibrium and use compatibility
to determine the deflection of joint B – its
horizontal and vertical displacements, u and v.

Hint: Construct the extension of each bar
individually, then draw perpendiculars to the
end of each extension (this essentially rotates
the bars).

4.15 Truss ABC is subjected to a horizontal
force of 20.0 kN at joint B. The truss is made of
25.0 mm diameter solid aluminum rods, AB
and BC. BC is 1.00 m long. Aluminum has a
modulus of E = 70 GPa.

Apply equilibrium and use compatibility
to determine the deflection of joint B – its
horizontal and vertical displacements, u and v.

Hint: Construct the extension of each bar
individually, then draw perpendiculars to the
end of each extension (this essentially rotates
the bars).

4.16 Truss ABC is subjected to downward
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or compression).
The cross-sectional area of each bar is
A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB
and σBC, (b) the factor of safety against
yielding for bar AB, (c) the change in length of
each bar, and (d) the downward displacement
of joint B, v.

4.17 Truss ABC is subjected to horizontal
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB
and σ BC, (b) the factor of safety against
yielding for bar AB, (c) the change in length of
each bar, and (d) the horizontal and vertical
displacements, u and v, of joint B.
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4.18 Truss ABC is subjected to downward
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB
and σBC , (b) the Factor of Safety against
yielding for bar AB, (c) the change in length of
each bar, and (d) the downward displacement
of joint B, v.

4.19 Truss ABC is subjected to horizontal
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB
and σBC , (b) the factor of safety against

yielding for bar AB, (c) the change in length of
each bar, and (d) the horizontal and vertical
displacement of joint B, u and v.

4.2 Axial Members – Displacement 
Method

4.20 Truss ABCD is subjected to downward
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or compression).
The cross-sectional area of each bar is
A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB,
σBC and σBD, (b) the factor of safety against
yielding for bar AB, (c) the change in length of
each bar, and (d) the downward displacement
of joint B, v. 

Hint: Due to symmetry, the horizontal
movement u is zero.
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4.21 Truss ABCD is subjected to horizontal
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB,
σBC and σBD, (b) the change in length of each
bar, and (c) the horizontal and vertical
displacement of joint B, u and v. 

Hint: Apply displacement u only, and
determine the elongations of, and the force in,
each member as a function of u. Repeat for v.
Add (superimpose) the individual solutions;
note that the net force in the y-direction should
be zero.
 

4.22 Truss ABCD is subjected to downward
force F = 10.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the stress in each bar, σAB,
σBC and σBD, (b) the Factor of Safety against
yielding for bar AB, (c) the change in length of
each bar, and (d) the downward displacement
of joint B, v.

Hint: Due to symmetry, the horizontal
movement u is zero.

4.23 A steel reinforced concrete column is
subjected to a load of F = 48,000 lb which is
applied through a rigid plate at the top of the
column. The steel reinforcements are six steel
members that have a total area of As = 6.0 in.2.
The total cross-sectional area of the column is
A = 36 in.2. The material properties are:

Steel: Es = 30×106 psi

Concrete: Ec = 4×106 psi.

Neglecting the Poisson effect, determine
(a) the stress in the steel σs , (b) the stress in the
concrete σc , (c) the change in length of the
column, and (d) the effective Young’s modulus
of the system Eeff , i.e., the applied stress on the
column (F/A) divided by its strain.
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4.24 Composite materials are designed to take
advantage of the properties of two different
materials. A titanium matrix composite is
reinforced with unidirectional silicon carbide
(ceramic) fibers in the direction of the applied
load (Figure (a)). These fibers are on the order
of 100 μm in diameter. The total cross-
sectional area of a composite strut is A, while
the area of the fibers is Af . The fiber area
fraction is f = Af /A which is also the fiber
volume fraction since a unidirectional
composite is just an extrusion of the cross-
section. 

The modulus of titanium is 115 GPa and of
silicon carbide is 360 GPa. The volume
fraction of the fibers is f = 0.35. The applied
stress on the composite is σ = 400 MPa in the
direction of the fibers and the total cross-
sectional area of the composite is
5.00 mm by 100 mm.

Neglecting the Poisson effect, determine
(a) the stress in the titanium matrix, σm , (b) the
stress in the ceramic fiber, σf , (c) the strain in
the fiber and the matrix ε (they are the same),
and (d) the Effective Young’s modulus of the
system Eeff , i.e., the stress applied to the
composite divided by its strain.

4.25 A 20 ft long rigid beam hangs level from
two steel rods (E = 30,000 ksi). A P = 10 kip
load is applied at point C; a = 14.0 ft. The
cross-sectional area of rod B is AB = 0.5 in.2.

The unstretched length of each rod is
L = 12.0 ft.

(a) If the rigid beam is to remain perfectly
level as the load is applied, determine the
cross-sectional area of rod A. (b) What is the
elongation of each rod due to the load? 

4.3 Thermal Loading

4.26 A steel bar is 1.000 m long at room
temperature (25°C) and is then heated to
100°C.   The coefficient of thermal expansion
is α = 14×10–6/°C.

Determine the change in length of the bar
if it is free to expand (i.e., it is unconstrained).

4.27 An aluminum bar is L = 1.200 m long and
is placed tightly between two rigid supports
when the temperature is 10°C. The modulus is
E = 70 GPa, and the coefficient of thermal
expansion of aluminum is α = 23×10–6/°C.

If the temperature on a warm day is 35°C,
and the supports are not affected by the
temperature, determine the stress developed in
the aluminum bar.
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4.28 Two bars are attached to a rigid boss.
Both bars are L = 0.4 m long with cross-
sectional area A = 0.002 m2. Bar 1 is aluminum
and Bar 2 is steel; the bars have the following
properties:

Assume that the properties do not change with
temperature.

(a) If only Bar 2 is heated by 50°C,
determine the stress in each bar. (b) Determine
the thermal load ΔT (in °C) on Bar 2 required
to yield Bar 1. (c) If only Bar 1 is heated by
50°C, determine the stress in each bar.
 

4.29 Two aluminum bars are attached to a
rigid boss. Bar 1 is L1 = 36 in. long and has a
cross-sectional area of 0.5 in.2. Bar 2 is
L2 = 48 in. long and has area of 0.5 in.2. A
downward force of F = 10.0 kips is applied to
the rigid boss. Aluminum has a yield strength
of Sy = 35.0 ksi and a coefficient of thermal
expansion of α = 13×10–6/°F.

(a) Determine the stress in each bar due
only to the mechanical load. (b) If thermal load
ΔT is applied to only Bar 2, determine the
maximum thermal load (in °F) that can be
applied so that Bar 1 does not yield.

 

4.30 A steel pipe of outer diameter
D = 150 mm and thickness t = 10 mm, carries
steam at temperature ΔT above the outside
temperature. Steel has properties E = 200 GPa,
Sy = 400 MPa, and α = 14×10–6/°C.   Assume
for the moment that the internal pressure is
zero. 

Use a two bar-system to model the pipe as
follows: 

two parallel bars of length equal to the
average of the inner and outer
circumferences, both having a width of
half the pipe thickness. Both bars have the
same depth (into the paper); take the depth
as unity (1.0). Only the inner bar is loaded
by temperature ΔT. Since pressure is
neglected, there is no stress due to
mechanical load.

Approximate the temperature ΔTy to cause
yielding in the cool bar, corresponding to
yielding of the outside of the pipe.

4.31 A unidirectional SiC/Ti (silicon carbide
fiber/titanium matrix) composite is processed
at 900°C. The strain of both components at that
temperature is taken as zero. The composite is
cooled to room temperature (25°C). Because of
the difference in thermal expansion

Bar E (GPa) Sy (MPa) α (×10–6/°C)
1 70 240 23

2 200 320 14
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coefficients, residual stresses exist in the
composite. The material properties are:

SiC: Ef = 360 GPa αf = 4.8×10–6/°C

Ti: Em = 115 GPa αm = 11×10–6/°C

The volume fraction of the SiC fibers is f =
Af /A = 0.35, where Af is the cross-sectional
area of the fibers and A is the total cross-
sectional area of the composite. Here, the
cross-sectional area is 5.00 mm by 100 mm
and the fibers have diameter D = 100 μm.

Using a two-bar model, approximate the
residual axial stresses in the fiber and in the
matrix when the composite is cooled to room
temperature. 

Hint: Due to compatibility, the axial strain in
each component is always the same. Neglect
the Poisson effect.

4.4 Pressure Vessels

4.32 A steel cylindrical pressure vessel at an
industrial plant has a diameter of D = 1.60 m
and wall thickness of t = 20.0 mm. The
cylinder body has length L = 6.00 m. For steel,
E = 200 GPa, Sy = 480 MPa, and Poisson’s
ratio ν = 0.30.

(a) Using a factor of safety against
yielding of 3.0, determine the allowable
(maximum working) pressure of the contained

gas. (b) If the contained pressure is 600 kPa,
determine the change in length of the cylinder
from its unpressurized (unloaded) state. (c) If
the contained pressure is 600 kPa, determine
the change in radius of the cylinder from its
unpressurized (unloaded) state.

4.33 A spherical propane tank has radius
R = 400 mm and a thickness of t = 5 mm. The
material has yield strength Sy = 400 MPa,
modulus E = 200 GPa, and Poisson’s ratio
ν = 0.3.

(a) Determine the stresses in the walls of
the vessel if p = 1.0 MPa. Draw the stresses on
a plane–stress stress element. (b) If the factor
of safety against yielding is 2.0, determine the
allowable pressure that can be contained in the
vessel. (c) If p = 1.0 MPa, determine the strain
around the circumference of the vessel.

4.34 Grain silos are large thin-walled
cylinders. As with water, the pressure increases
linearly with depth below the surface of the
“fluid” (the grain). The mass density of the
grain is ρ.

Derive formulas for the hoop stress and
axial stress anywhere in the wall of the silo,
distance x below the surface of the grain. Note
that silos are not pressurized like gas cylinders.
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4.35 A factory uses a cylindrical pressure
vessel with an inner diameter of 700 mm. The
vessel operates at an internal pressure of
6.0 MPa. The steel used in the construction of
the vessel has an allowable tensile stress of
280 MPa (the factor of safety has already been
applied). The lid of the pressure vessel is
attached to the body using 36 equally spaced
bolts on a circle of diameter Dcircle = 800 mm
around the circumference of the pressure
vessel. The allowable stress in tension for the
bolts is 245 MPa.

(a) Calculate the minimum allowable wall
thickness to support the load. (b) Determine the
minimum bolt diameter at the root of the
threads of the bolts (hint: what force does each
bolt need to carry)? Assume the bolt-heads and
nuts are strong enough.

4.36 A pressure vessel has a cylindrical body
and hemispherical end caps. The body and end
caps are made of the same material and have
radius R. The thickness of the body is T and the
thickness of the end caps is t. Young’s modulus
is E and Poisson’s ratio is ν.

(a) Determine the ratio of the thicknesses
t/T if the hoop strain at the cylinder/end cap
joint is to be the same in each part (i.e., so the
hoop strain is the same as the spherical strain at
the joint). Matching these strains prevents
excessive stresses at the joint. (b) If the yield
strength is Sy , determine the pressure required
to cause yielding py in the vessel. Based on the
results of Part (a), does failure occur in the
cylindrical body or in the spherical end-cap?

4.37 A six-pack is shaken so that the pressure
in each can is p = 20 psi. A board is placed on
the six pack and a student(s) weighing W
stands on the board so his weight is evenly
distributed to the six cans. The aluminum
properties are E = 10,000 ksi, Sy = 35 ksi, and
ν = 0.33. Each can has an average radius of
R = 1.25 in., thickness t = 0.01 in., and length
L = 4.50 in. 

(a) Determine the critical weight of the
student, Wcr , so that a stress element on the
surface of the can is in a state of uniaxial stress.
Assume that no support is provided by the
contained liquid and the cans do not fail by
buckling (being crushed). (b) Determine the
strain in the longitudinal direction of the can
due to pressure p = 20 psi and force Wcr .
(c) Determine the strain in the hoop direction
of the can due to pressure p = 20 psi and force
Wcr .
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4.38 Pressurized air in inflatable structures
allows them to be roughly handled. Without air
pressure, a basketball can be crumpled into a
relatively small space. Another application of
inflatable structures are bounce-houses that
give children untold hours of joy. Air pressure
may also be used to deploy space structures
such as unfolding antennae. 

Air beams are large pressurized cylinders
made of industrial plastic fabric, and are used
as support frames in temporary structures.
After inflation, the unfolded structure becomes
a thin wall pressure vessel. Failure occurs
under two circumstances:

(1) when the stress in the fabric membrane
becomes compressive, causing the
membrane to wrinkle or kink;

(2) when the tensile stress in the fabric
reaches the fabric strength, Su .

A pressurized fabric tube is subjected to a
compressive axial force F. Determine the load
that causes compressive failure of the tube.
Assume the load does not cause bending.

4.39 A thin-walled cylindrical pressure vessel
is made by rolling a steel plate, and welding
along a longitudinal line. End caps are also
welded onto each end of the cylinder body.

Material Properties:

Steel: Sy,s = 550 MPa, E = 200 GPa

Weld: Sy,w = 450 MPa, E = 200 GPa

Geometry:

Diameter: 2R = 1.6 m 
Thickness: t = 12.0 mm.

(a) For a factor of safety is 2.0, determine
the allowable pressure, pallow . (b) A Pressure
release valve (safety valve) is attached to the
pressure vessel. The valve is a hollow cylinder,
encasing a piston (or plug) attached to a spring.
Assume there is no leakage around the piston,
and friction between the piston and the cylinder
is negligible. With no pressure, the bottom of
the piston is aligned with the inner wall of the
vessel. The valve cylinder has inner length
L = 120 mm and inner diameter b = 20 mm.
The pressure release opening is Δ = 20 mm
above the inside wall of the vessel. If the valve
is to release the gas when the internal pressure
is prel = 4.0 MPa, determine the required
stiffness k of the spring.

4.40 A steel pipe, outer diameter D = 150 mm
and thickness t = 10 mm, carries steam at
temperature ΔT above the outside temperature.
The pressure in the pipe is 20 MPa. Steel has
properties E = 200 GPa, Sy = 400 MPa, and
α = 14×10–6/°C. Use a two bar-system to
model the pipe as follows: 

two parallel bars of length equal to the
average of the inner and outer
circumferences, both having a width of



www.manaraa.com

Problems: Chapter 4 Axial Members and Pressure Vessels PP589

half the pipe thickness. Both bars have the
same depth (into the paper); take the depth
as unity (1.0). Only the inner bar is loaded
by temperature ΔT. The mechanical stress
in each bar is approximated by the hoop
stress.

Approximate the temperature ΔTy to cause
yielding in the cool bar, corresponding to
yielding of the outside of the pipe.

4.4 Stress Concentration Factors

4.41 A steel plate supports force F. The plate
is W = 20 in. wide, L = 50 in. long, and
t = 0.50 in. thick, and has a hole D = 1.0 in. in
diameter drilled though it. The yield strength is
36 ksi.

Determine the force Fy to cause yielding.

4.42 An aluminum plate has an elliptical hole.
The plate is W = 300 mm wide, L = 500 mm
long, and t = 5.00 mm thick. The hole is
2a = 4.0 mm wide and 2b = 2.0 mm high. The
applied stress is σ = 40 MPa and aluminum has
a yield strength of Sy = 240 MPa.

(a) Determine the stress concentration
factor SCF at the tip of the elliptical hole.
(b) Keeping b constant, determine the
maximum length of the hole 2a, so that the
aluminum will not yield.

4.43 A hole of diameter 2a is drilled in an
infinite plate (the plate width and height are
much larger than the hole diameter). The plate
is loaded by stress σave.

(a) Determine the stress at the hole
surface, r = a, one radius from the center of the
hole. (b) How many radii n from the center of
the hole is the stress in the plate only 10%
higher than the average stress? i.e., when the
stress function equals σ (na) = 1.1 σave .
 

4.5 Energy Methods

4.44 A steel bar is 8.00 ft long and has a
cross-sectional area of 0.5 in.2. The bar
supports a 4000 lb tensile load. Young’s
modulus is E = 30,000 ksi and the yield
strength is Sy = 36 ksi.

Determine (a) total energy stored in the bar
and (b) the elastic strain energy density.
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4.45 Truss ABC is subjected to downward
force F = 20.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and Sy = 240 MPa
(in either tension or compression). The cross-
sectional area of each bar is A = 125×10–6 m2.
Length L = 1.00 m.

Determine (a) the energy stored in each
bar (N·m), (b) the downward displacement
(movement) v of joint B, and (c) the stiffness of
the assembly when subjected to a downward
force at joint B, .

4.46 Truss ABC is subjected to horizontal
force F = 20.0 kN at joint B. The truss is made
of aluminum with E = 70.0 GPa and
Sy = 240 MPa (in either tension or
compression). The cross-sectional area of each
bar is A = 125×10–6 m2. Length L = 1.00 m.

Determine (a) the energy stored in each
bar, (b) the horizontal displacement u of
Joint B, and (c) the stiffness of the assembly
when subjected to a horizontal force at joint B,

.

4.47 Truss ABC is subjected to horizontal
force F = 20.0 kN at joint B. The truss is made
of steel with E = 200 GPa and Sy = 250 MPa
(in either tension or compression). The cross-

sectional area of each bar is A = 125×10–6 m2.
Length L = 1.00 m.

Determine (a) the energy stored in each
bar, (b) the horizontal displacement u of joint
B, and (c) the stiffness of the assembly when
subjected to a horizontal force at joint B,

.

4.48 Steel truss ABC is subjected to a
horizontal force of F = 2000 lb at joint B. The
cross-sectional area of each bar, AB and AC, is
A = 0.60 in.2. Length L = 36 in., E = 30,000 ksi.

Determine (a) the energy in each bar, (b)
the horizontal displacement u of Joint B, and
(c) the stiffness of the assembly when
subjected to a horizontal force at joint B,

.

4.49 Truss ABC supports downward force F at
joint B. Bar AB is of length 2L and bar BC is of
length L. Each bar has cross-sectional area A,
modulus E, and mass density ρ. The weight of
the truss is much less than the applied load, so
the weight can be neglected in the stress
analysis.

Determine (a) the vertical displacement v
in terms of F, L, A, and E, (b) the stiffness

 of the frame, and (c) the mass M of
the bars in terms of E, ρ, L, and specified

k F v⁄=

k F u⁄=

k F u⁄=

k F u⁄=

k F v⁄=
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stiffness k. (d) Determine the function of
material property(ies) that you would use to
select a material to minimize the mass of the
system for a specified value of k.

4.50 Steel truss ABC is subjected to a vertical
force of F = 5000 lb at joint B. The cross-
sectional area of each bar, AB and AC, is
A = 0.60 in.2, L = 20 in., and the modulus of
steel is E = 30,000 ksi.

Determine (a) the algebraic expression for
the energy in each bar in terms of F, L, A and E.
(b) Determine the magnitude of the downward
displacement v of joint B, and (c) the value of
the assembly stiffness  when
subjected to a vertical force at joint B.

4.51 Steel truss ABCD is subjected to a
vertical force of F = 5000 lb at joint B vertical
displacement v. The cross-sectional area of

each bar is A = 0.60 in.2., L = 20 in., and the
modulus of steel is E = 30,000 ksi.

(a) Determine the algebraic expression for
the energy in each bar in terms of displacement
v, A, L, and E. (b) Determine the magnitude of
the displacement v, and (c) the value of the
assembly stiffness  when subjected to
a vertical force at joint B

4.52 A computer finite element analysis
(FEA) is performed on the truss shown. Each
member is steel (E = 30,000 ksi), with a cross-
section of 2.0 in.2. The downward
displacement of joint B when loaded by a
5.0 kip force is found to be vB = 0.0147 in. The
forces (in kips) in each member are calculated
to be (a negative sign indicates a compressive
force):

Using the energy method, verify that the
energy stored in the members is equal to the
work done by the 5.0 kip force (a spreadsheet
may simplify your work).

k F v⁄=

AB: +2.500 kips

BC: +1.667 kips

CD: +0.833 kips

DE: +0.833 kips

HG: –2.500 kips

GF: –1.667 kips

AH: –4.507 kips

HB: +3.750 kips

BG: +1.502 kips

CG: +1.250 kips

CF: +1.502 kips

FD: 0 kips

EF: –1.502 kips

k F v⁄=
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4.53 All the members of the steel truss are
L = 3.0 m long, with rectangular cross-section
100 by 50 mm. Vertical force V = 40 kN is
applied as shown. E = 200 GPa.

Using the energy method, (a) determine
the total energy stored in the bars, and (b) the
vertical displacement of joint B.

4.54 All the members of the truss are
L = 3.0 m long, with rectangular cross-section
100 by 50 mm. Horizontal force H = 40 kN is
applied as shown. E = 200 GPa.

Using the energy method, (a) determine
the total energy stored in the bars, and (b) the
horizontal displacement of joint E.

4.55 A steel truss is loaded at joint D by a
downward force of 2.0 kips.   The area of each
member is 2.0 in.2, and E = 30,000 ksi.

Using the energy method, (a) determine
the total energy stored in the bars, and (b) the
downward displacement of joint D.

4.56 An aluminum truss is shown in the
figure. Joint B is forced to move downward by
v = 2.0 mm; there is no horizontal
displacement, u = 0. Length L = 1.00 m and the
cross-sectional area of each bar is
A = 0.0008 m2. The modulus is 70 GPa.

Determine (a) the force in each member
(b) the components, Fx and Fy , of the applied
force that causes the displacement, and (c) the
magnitude of the applied force. 

Hint: Determine the change in length of each
bar as a function of u and v. The energy method
is not necessarily required.

4.57 Consider the aluminum truss of
Prob. 4.56. Joint B is forced to move to the
right by u = 3.0 mm and downward by
v = 2.0 mm. Length L = 1.00 m and the cross-
sectional area of each bar is A = 0.0008 m2.
The modulus is 70 GPa.

Determine (a) the force in each member,
(b) the components Fx and Fy  of the applied
force that causes the displacements, and (c) the
magnitude of the applied force in the direction
of the displacement of joint B.

Hint: Determine the change in length of each
bar as a function of u and v. The energy method
is not necessarily required.
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5.1 Shafts of Circular Cross-Section

5.1 An L = 5.0 ft long solid steel shaft has a
diameter of D = 4.0 in. and is subjected to a
torque of T = 50 kip-in. The modulus is
G = 11,000 ksi and the shear yield strength is
τy = 20 ksi.

Determine (a) the polar moment of inertia
J, (b) the maximum shear stress in the shaft
τmax , (c) the Factor of Safety against yielding,
and (d) the angle of twist between the ends of
the shaft θ.

5.2 A thick-walled steel shaft is subjected to a
torque of T = 2.0 kN·m. The inner radius is
Ri = 30 mm and the outer radius is R = 40 mm.
The shear yield strength is τy = 200 MPa.

Due to the applied torque, determine
(a) the stress at the inner surface of the shaft
and (b) the stress at the outer surface of the
shaft. (c) Determine the torque required to
cause yielding.

5.3 A thick-walled shaft has inner radius
Ri = 40 mm and outer radius R = 50 mm.

Calculate the polar moment of inertia J
using (a) the thick-walled shaft formula and (b)
the thin-walled formula (use the average radius
for Part (b)). (c) For this case (t/Rave = 22%),
determine the percent error in the thin-walled
formula with respect to the exact value (the
thick-walled formula).

5.4 A solid shaft of radius R is to be replaced
by a thick-walled shaft of outer radius R and
inner radius R/2. Both shafts are made of the
same material, have the same allowable shear
stress  τallow  and modulus G.

When replacing the solid shaft with the
hollowly shaft, determine (a) the percent
change in weight, (b) the percent change in
torque carrying capacity (for τmax = τallow), and
(c) the percent change in torsional stiffness,
KT = T/θ.

5.5 A steel shaft is 1.5 m long and is to
support a 15 kN·m torque without exceeding a
shear stress of 100 MPa.

Design, i.e., select dimensions for: (a) a
solid shaft of radius Rs , (b) a thick-walled shaft
of inner and outer radii, Ri and Ro , where
Ro = 4Ri , and (c) a thin-walled shaft of average
radius Rt and thickness t; let t = 0.1Rt .
(d) Determine the weight savings (in percent)
when replacing the solid shaft with the thick-
walled shaft. (e) Determine the weight savings
(in percent) when replacing the solid shaft with
the thin-walled shaft.



www.manaraa.com

594 Problems: Chapter 5 Torsion Members

5.2 Torsion Members – Force 
Method

5.6 A 1.0 m by 2.0 m sign is subjected to a
wind pressure of 1.2 kPa, perpendicular to its
face. The sign is supported on one side by a
hollow circular steel pipe of outer diameter
160 mm and inner diameter 140 mm. The shear
modulus is G = 77 GPa. For simplicity, assume
the load is transferred from the sign to the pipe
at a single point, 4.0 m above the ground. 

Determine (a) the torque carried in the
pipe due to the wind and (b) the shear stress
due to torsion only. (c) If the allowable angle of
twist from the ground to the middle of the sign
is 1.0°, determine the allowable torque that can
be applied. Does the current pipe need to be
replaced?

5.7 Stepped shaft ABC consists of two solid
circular segments, and is fixed at section A.
The shaft is subjected to torques TB and TC,
acting in opposite directions. Segment AB has
diameter DAB = 2.0 in. and length LAB = 20 in.;
segment BC has diameter DBC = 1.0 in. and
length LBC = 12 in. The material is an
aluminum alloy with shear modulus
G = 4.0×106 psi. The magnitudes of the
applied torques are: 

TB = 5000 lb-in. and TC = 2000 lb-in.

Determine (a) the maximum shear stress
τmax in the shaft and the segment in which it

occurs (AB or BC) and (b) the angle of rotation
of cross-section C, θCA (in degrees) with
respect to the fixed section A.

5.8 A solid shaft with four gears, A, B, C and
D (shown without gear teeth), turns at a
constant velocity. Gears A through C are
subjected to applied torques TA, TB and TC .

If the allowable shear stress is 60 MPa,
determine the required diameter of the shaft.

5.9 A sign is a = 6.0 ft wide by b = 3.0 ft tall,
and is supported by a stepped steel shaft ABC.
The sign is subjected to a wind load of 15 psf
perpendicular to its face. Segment AB is
LAB = 6.0 ft long and made of Standard 3½-in.
pipe (outer diameter DAB = 4.000 in. inner
diameter 3.548 in.). Segment BC is
LBC = 8.0 ft long and made of Standard 4 in.
pipe (outer diameter DBC = 4.500 in., inner
diameter 4.026 in.). Segment AB and BC are
welded together. For simplicity, assume the
load is transferred from the sign to AB at a
single point, point A, and that joint B is rigid, of
sufficient strength, and of negligible dimension
compared to the lengths.

Consider the torque supported by the shaft.
Determine (a) the maximum shear stress in
each segment AB and BC, and (b) the total
angle of twist from the ground to point A if
G = 11,000 ksi.
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5.10 The cylindrical length of a screwdriver
blade is L = 120 mm long, with a diameter of
D = 7.00 mm. The screwdriver is made of
steel: G = 75 GPa, τy = 250 MPa. As a person
tightens the screw, he applies a torque of
T = 10.0 N·m to the screwdriver.

Determine (a) the maximum shear stress in
the cylindrical length L of the screwdriver and
(b) the angle of twist of the cylindrical length.

5.11 There is clearance in an industrial
machine for a torsional shaft up to 3.0 in. in
diameter. The current shaft is solid with a
diameter of 2.0 in. The maximum allowable
shear stress is 10.0 ksi. To save weight, you are
asked to design a hollow shaft that will provide

the greatest weight savings while still
supporting the same torque at the same
allowable shear stress.

(a) Determine the allowable torque that
can be carried by the current shaft.
(b) Determine the inner and outer diameters of
the proposed shaft, and (c) the percent weight
savings.

5.3 Torsion Members – 
Displacement Method

5.12 The aluminum (G = 4000 ksi) stepped
shaft ABC is fixed at both ends. Segment AB is
LAB = 18 in. long with a diameter of
DAB = 1.2 in. Segment BC is LBC = 12 in. long
with a radius of DBC = 1.4 in. Torque
T = 500 lb-in. is applied at joint B.

Determine (a) the reactions at A and C, and
(b) the angle of twist of section B.

5.13 The stepped solid shaft has diameters
DAB = 50 mm and DBC = 30 mm. The length
of each segment is LAB = 600 mm and
LBC = 400 mm. For the present case, TB = 0.
Torque TC causes section C to rotate by a total
of 0.8°. The material is steel, with G = 75 GPa.

Determine (a) torque TC  and (b) the angle
that section B rotates θB (i.e., the angle of
twist of AB).
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5.4 Closed Thin-Walled Members in 
Torsion

5.14 Box beams that support airplane wings in
bending also support torsion loads. Thus, the
beam is also called a torsion box. The torsion
box in an aircraft has outer dimensions
b = 1.0 m wide and d = 0.6 m deep, and has
constant thickness of t = 10 mm. The box is
made of aluminum with an allowable shear
stress of τallow = 100 MPa and modulus
G = 26 GPa. The length of the beam is
L = 15 m.

When the torsion box is operating at its
allowable stress, determine (a) the allowable
torque that the box can support, (b) the shear
flow anywhere in the torsion box, and (c) the
angle of twist of the beam.

5.15 A thin-walled tube of elliptical cross-
section is made by extruding aluminum
(τy = 20 ksi) through a hardened steel die. The
outer major and minor diameters of the ellipse
at the centerline of the wall are 2a = 3.0 in. and
2b = 2.0 in., respectively, and the wall
thickness is t = 0.10 in. thick. The length of the
tube is L = 72 in.

The area of an ellipse is:

and the perimeter is:

or, approximately:

The latter equation is within 5% of the actual
value for 0.36 < b/a < 2.95

If the applied torque is 1200 lb-in.,
estimate (a) the shear stress anywhere on the
cross-section and (b) the angle of twist.

5.16 A hollow steel box-beam is 6.0 in. wide
and 8.0 in. deep (centerline-to-centerline of
wall). The thickness of the sides is 0.3 in. and
of the top and bottom is 0.5 in. The beam is
subjected to an applied torque of 200 kip-in.
G = 11,000 GPa.

Determine (a) the stress along each side of
the cross-section and (b) the angle of twist per
unit length along the beam.

5.5 Power Transmission

5.17 The maximum torque in a vehicle’s solid
steel drive shaft occurs when it transmits
240 hp at 3000 rpm.

Determine the minimum required diameter
for the solid shaft if the allowable shear stress
is τallow = 8.0 ksi.
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5.18 Solid steel shaft ABC is driven by a
240 kW motor at 1800 rpm (revolutions per
minute). The gears at B and C power machines
that require 80 and 160 kW, respectively. The
lengths of the two segments are LAB = 1.0 m
and LBC = 0.50 m. The modulus is G = 75 GPa.
The diameter of the shaft D is constant. The
bearing is frictionless.

Determine the required diameter D if both
of the following conditions must be satisfied:

1. the allowable maximum shear stress is
60 MPa and 

2. the allowable angle of twist between
sections A and C is 3.0°.

 

5.19 A propeller-driven boat moves forward
at constant velocity. A solid drive shaft
transmits 2400 kW to the propeller at
1600 rpm. The diameter of the shaft is
100 mm and the length from the engine to
the propeller is 3.0 m. The shear modulus of
the steel is 75 GPa.

Determine (a) the torque carried in the
shaft, (b) the maximum shear stress in the
shaft, and (c) the angle of twist of the shaft

from the engine to the propeller. (d) If the
allowable shear stress is limited to 35 MPa, the
shaft must be replaced with a larger shaft, also
of solid cross-section. Determine the required
diameter of the new shaft.

5.20 A solid circular shaft is to be designed to
transmit 135 hp at 300 rpm. The shaft is 6.0 ft
long. It is made of steel with a shear modulus
of 12,000 ksi. The allowable angle of twist
between the ends of the shaft is 1.2°.

Determine (a) the torque transmitted,
(b) the required shaft radius to satisfy the
design requirement (assume the material is
strong enough), and (c) the maximum shear
stress due to the torque.

5.21 A solid circular shaft is to be designed to
transmit 40 kW at 2.0 rev/s. The shaft is 2.0 m
long. It is to be made of steel with a shear
modulus of 75 GPa. The design requirements
are: 

1. the maximum shear stress is to be no
more than 60 MPa;

2. the twist of the shaft is to be no more
than 1.0°.

Determine (a) the torque transmitted,
(b) the shaft radius required to satisfy
Requirement 1, (c) the shaft radius required to
satisfy Requirement 2 and (d) the shaft radius
that satisfies both criteria.
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6.1 A simply supported beam supports a force
of F = 10.0 kN. 

(a) Determine equations for the shear force
and bending moment over the entire length of
the beam. Measure x from the left support. (b)
Draw the shear force and bending moment
diagrams. (c) Determine the magnitudes of the
maximum shear force and maximum moment.
Where are they located?

6.2 A 16.0 kN truck (including its load)
crosses a bridge. The bridge is L = 14.0 m long
and the truck’s wheelbase is s = 4.0 m. Assume
that the weight of the truck is evenly distributed
between the front and the rear axles.

Determine the location of the rear axle a
such that the moment is maximum. What is the
moment?
 

6.1 Bending Strain and Stress

6.3 A plastic pipe is bent into a 90° turn. The
length of the curve is L = 3.0 ft and the outside
diameter of the pipe is D = 1.0 in.

Determine (a) the radius of curvature of
the pipe and (b) the magnitude of the maximum
compressive strain.

6.4 A flexible cantilever beam is L = 0.500 m
long and is turned back upon itself to form a
semi-circle.

If the magnitude of the maximum strain is
ε = 0.008, determine the thickness t of the
beam.

6.5 Structural steel has a yield strength of
Sy = 36 ksi. Four I-beams are available for use
in a particular project:

(a) Which I-beam(s) can support a
bending moment of 1260 kip-in. without
yielding? (be strict). (b) Cost drives choice of
structural components. The cost of steel I-
beams are generally proportional to their
weight. Which beam (that can support the load)

Beam A (in.2) I (in.4) ymax (in.)

S12×31 9.3 218 6.00
W10×30 8.8 170 5.75
W10×33 9.7 170 4.87
W14×26 7.7 245 6.95
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is the best to select from an economic
standpoint?

6.6 The beam from Prob. 6.1 is made of a
rectangular cross-section, b = 100 mm wide by
d = 200 mm deep. Take E = 200 GPa (steel).

Determine (a) the maximum bending
stress in the beam and (b) the radius of
curvature of the beam at the location of the
maximum moment.

6.7 A cantilever beam supports a uniformly
distributed load w = 120 lb/ft = 10 lb/in. The
beam is 10 ft long and has a rectangular cross-
section of width b = 2.0 in. and depth
d = 6.0 in.

Determine (a) the maximum moment
Mmax and (b) the maximum bending stress
σmax . (c) If the allowable stress is
σallow = 2.0 ksi and the width of the beam b is
to remain 2.0 in., determine the minimum
required depth of the beam dnew so that the
allowable stress is not exceeded.

6.8 Three proposed cross-section
configurations for joining three boards are
shown. Each board is b×3b (b = 50 mm,
3b = 150 mm).

(a) Determine the moment of inertia I
about the z-axis for each configuration. Use the

Parallel-Axis Theorem as necessary. (b) If the
bending moment about the z-axis is 5000 N·m,
what is the maximum bending stress in each
cross-section? (c) Which cross-section is the
most effective use of the material in bending?

6.9 A new material is tested in four-point
bending. The geometry is L = 200 mm,
a = 40 mm, b = 10 mm, and d = 5.0 mm.

(a) If P = 500 N, determine the maximum
bending stress in the beam. (b) What is the
advantage of the four-point bend test?

6.10 You are designing a deck for a house
outside Chicago, Illinois. The deck is c = 12 ft
wide by a = 6.0 ft deep, and is supported by
three beams as shown. Each beam has a cross-
section b = 4.0 in. wide by d = 8.0 in. deep.
The ground snow load around Chicago is
30 psf (pounds per square foot). Assume the
deck supports the same snow load.

Determine the maximum bending stress in
the center beam, Beam 2.
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6.11 A 40,000 lb truck crosses a 28 ft long
single lane bridge. The truck’s wheelbase is
L = 14 ft, and at the instant shown, the truck is
in the middle of the bridge. One-fourth of the
total weight is distributed to the front axle. The
bridge is supported by four steel I-beams,
S20×75 (see Appendix C); assume each beam
shares equally in supporting the load.

Determine the maximum bending stress
for the condition shown. Where is the
maximum bending stress located?

6.12 The front face of a highway sign, 10 ft
wide by 6.0 ft tall, is acted on by a uniform
wind pressure of 10 psf, perpendicular to the
sign. The center of the sign is H = 8.0 ft above
the ground. Two posts (symmetrically placed)
support the sign. The posts are positioned in
such a way that the wind load does not cause
them to twist.

If each post has a cross-section of
b = 4.0 in. and d = 6.0 in., determine the
maximum bending stress in either post.

6.13 A crane slowly lifts a 30 ft length of 12
in. diameter standard pipe. Lift points D and E
are 8.0 ft apart. A 12 in. standard steel pipe
weighs 49.56 lb/ft, has outer diameter
D = 12.75 in. and moment of inertia
I = 289 in.4 (see Appendix D).

Determine the maximum bending stress in
the pipe.
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6.14 Inflatable tubes made of industrial plastic
fabric are used as beams in temporary
structures. Such a tube of radius R, thickness t,
and length L and is inflated to internal pressure
p. The airbeam supports a uniformly
distributed load w (force per length). Failure
occurs when the maximum stress reaches the
fabric’s tensile strength Su , or when any point
is subjected to compression, when the tube will
kink or buckle.

Determine the maximum load wmax that
can be supported if failure is by compression.
Give the load in terms of p, R, t, and L.

6.15 A simply supported aluminum beam,
L = 4.0 m long, is subjected to a uniformly
distributed load over half of its length,
w = 5.0 kN/m. The beam is of rectangular
cross-section b = 50 mm wide by d = 80 mm
deep.   The material properties are E = 70 GPa
and Sy = 240 MPa. 

Determine (a) magnitude of the maximum
bending stress and (b) the factor of safety
against yielding.
 

6.16 A simply supported beam, L = 12.0 feet
long, is subjected to a linearly increasing
distributed load, from w(0) = 0 to
w(L) = wo = 3000 lb/ft. The beam is an S10×35
I-beam (see Appendix C), made of steel with
E = 30,000 ksi and Sy = 50.0 ksi. 

Determine (a) the moment as a function of
x, M(x) and (b) the maximum bending stress.

6.17 A simply supported beam, L = 12.0 ft
long, is subjected to a linearly decreasing load
from w(0) = wo = 3000 lb/ft to w(L) = 0. The
beam is an S10×35 I-beam, made of steel with
E = 30,000 ksi and Sy = 50.0 ksi. 

Determine (a) the moment as a function of
x, M(x), and (b) the maximum bending stress.

6.18 The beam supported and loaded as
shown in Figure (a) has the moment diagram
shown in Figure (b). The cross-section of the
beam is the T-section of Figure (c). The
centroid of the cross-section is 55 mm above
the base and the moment of inertia is
I = 29.3×106 mm. The beam has an allowable
tensile stress of 400 MPa and an allowable
compressive stress of 250 MPa.

Determine the allowable load P. Check all
possibilities.
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6.19 A “T”-beam supports a bending moment
that places its cap (cross-bar) in tension and its
foot in compression. 

If the allowable stresses are 42 MPa in
tension and 84 MPa in compression, determine
the width of the web w so that both allowable
stresses occur simultaneously. In other words,
so that the maximum tensile stress equals the
allowable tensile stress and the maximum
compressive stress equals the allowable
compressive stress.

6.20 A ceramic beam used in a hydrogen
converter is to made from a brittle ceramic for
which the compressive strength Sc = 1.2 GPa is
10 times that of the tensile strength Su . The

beam is subjected to a positive moment
(compression at the top).

(a) If the beam has a square cross-section
of side 20 mm (Figure (a)), determine the
bending moment at failure. (b) If the beam has
an inverted T-beam cross-section (Figure (b)),
having the same area as that of Figure (a),
determine the bending moment at failure.
(c) Determine the percent change in strength
when replacing cross-section (a) with (b).

6.2 Beam Deflection

6.21 A steel (E = 200 MPa) water pipe is
supported across a length L = 8.0 m. The pipe
has an outside diameter of 200 mm and a
thickness of 10.0 mm. The density of steel is
ρs = 7900 kg/m3 and that of water is
ρw = 1000 kg/m3. The water does not support
any of the load. Assume that the pipe is free to
rotate at its supports (i.e., it is simply
supported).

Determine (a) the maximum bending
stress in the pipe due to the weight of the water
and the self-weight of the pipe and (b) the
difference between the maximum deflection of
the pipe when it is full and when it is empty.
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6.22 Cantilever beam AB is L long and is
subjected to uniformly distributed load w. The
beam has constant bending stiffness EI.

Derive (develop) the equations for (a) the
moment M(x) and (b) for the deflection v(x).

6.23 An aluminum (E = 10,000 ksi) cantilever
beam has moment of inertia I = 120 in.4 and
length L = 96 in. The beam is tip-loaded by a
force of P = 4.0 kips. A structural component
(represented by the triangle) is placed under the
center of the beam at point B, distance h below
the bottom surface of the beam. 

 (a) Derive the algebraic expression for the
displacement of the beam v(x) in terms of P, L,
E, and I. Assume for now that the beam does
not contact the structural component. (b) Using
the given values, if h = 0.200 in., will the
cantilever beam hit the structural component?
Justify your answer with appropriate
calculations.

6.24 Beam AB is L long and is subjected to a
linearly increasing distributed load w(x). The
beam has constant bending stiffness EI.

Determine (a) the expression for the
moment M(x), (b) the location and value of
the maximum moment, (c) the expression for
the deflection v(x), and (d) the location of the
maximum deflection.

6.25 Point load P is applied at distance a from
the left support of simply supported beam AB
of total length L = a + b. The beam has
constant bending stiffness EI.

(a) Derive (develop) equations for the
deflection and slope, v(x) and v'(x), over the
entire length of the beam. (b) Determine the the
maximum displacement δmax.

6.26 Point load P is applied at tip point B on
an overhanging beam of total length L = a + b.
The beam has constant bending stiffness EI.

(a) Derive (develop) equations for the
deflection and slope, v(x) and v'(x), over
each segment of the beam, AC and CB.
(b) Determine the maximum value of the
deflection between points A and C, and (c) the
deflection at point B.

6.27 A concentrated load P is placed at
distance L from the built-in end of a cantilever
beam of total length 3L/2. The constant
bending stiffness is EI.

Derive (develop) equations for the
deflection and slope, v(x) and v'(x), over each
length of the beam, AC and CB. 
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6.28 A uniformly distributed load w is applied
over the built-in half of a cantilever beam of
length L and constant bending stiffness EI.

(a) Derive (develop) equations for the
deflection and slope, v(x) and v'(x), over
each segment of the beam, AC and CB.
(b) Determine the deflection and slope at C, vC
and θB, and (c) the deflection at B, vB .

6.29 A truck (including its load) weighs 2W.
The simply supported bridge is L long, and
truck’s wheelbase is s. Assume that the weight
of the truck is evenly distributed between the
front and rear axles. The bridge has bending
stiffness EI.

When the truck is at the center of the
bridge, , determine expressions
for the displacement of the bridge from x = 0 to
x = L/2. 

Hint: the deflection is symmetric.

6.30 A steel I-beam AB of length L1 = 20 ft
supports a uniform load w = 2.0 kips/ft. The

beam has a moment of inertia I = 300 in.4. At
point B, the beam is supported by a steel rod of
cross-sectional area ABC = 1.0 in.2 and length
L2 = 5.0 ft. The modulus is E = 30,000 ksi.

(a) Determine the elongation of the rod.
(b) Determine algebraic expressions for the
deflection v(x) and the slope v'(x) of the beam.
(Hint: the geometric boundary conditions are
the displacements of each end of the beam.)
(c) Determine the maximum deflection of the
beam (an Excel table/plot or other computer
tool might be useful). 

6.3 Statically Indeterminate 
(Redundant) Beams

6.31 Beam AB of length L is simply supported
at the left end (x = 0) and fixed at the right end
(x = L), and supports uniformly distributed
load w. The constant bending stiffness is EI.

Determine (a) the reaction force at support
A, (b) the reaction force and moment at the
wall, (c) the equation of the beam’s deflection
v(x), and (d) the deflection at the center of the
beam.

Hint: The system is redundant. Take the
reaction force at point A as the redundant force
R. Solve for the moment M(x) in terms of R, w,
and L and integrate. Apply the three geometric
boundary conditions (one slope and two
displacement conditions) to solve for R and the
two constants of integration.

a L s–( ) 2⁄=
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6.32 Repeat Prob. 6.31 using the Method of
Superposition.

Break the beam into two simpler (and
statically determinate) problems: (1) a
cantilever beam free at x = 0 under UDL w and
(2) a cantilever beam free at x = 0 subjected to
upward tip load R at point A (the redundant
force). Compatibility requires that the sum of
the tip displacements from the two sub-
problems equal the actual displacement at
point A, which is zero. This solves for R.

6.33 A beam of length L is fixed at both ends
and subjected to a uniformly distributed load w.
The constant bending stiffness is EI.

Determine (a) the reactions at point A and
B, and (b) the maximum beam deflection.

6.34 A beam of length L is simply supported
at both ends, with a roller support at the center.
The beam is subjected to a uniformly
distributed load w. The constant bending
stiffness is EI.

Determine (a) the reactions at each support
and (b) the maximum deflection. 

Hint: Do not assume that roller C supports half
of the load.

6.4 Shear Stress

6.35 A simply supported cantilever beam
L = 4.0 m long supports UDL w = 2000 N/m.
The beam has rectangular cross-section
b = 0.200 m wide and d = 0.100 m deep.

Determine (a) the bending stress having
the greatest magnitude and where it exists (give
the x- and y-coordinates), (b) the maximum
shear stress and where it exists (x, y). Note:
there may be more than one location for each
type of stress.

6.36 A cantilever beam supports UDL
w = 120 lb/ft = 10 lb/in. The beam is 10 ft long
and has a rectangular cross-section b = 2.0 in.
wide and d = 6.0 in. deep.

Determine the maximum shear stress and
its location.

6.37 Three L = 3.0 m long wood metric
“2 by 4” beams – actual dimensions
a×b = 38×89 mm – are glued together to form
a solid beam. The beam is simply supported.
Assume the glue limits the design. 
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(a) If the glue joints have an allowable
shear stress of τg = 1.0 MPa, determine the
allowable load Pallow that may be applied at
the midpoint of the span. (b) Determine the
maximum bending stress for the load found in
Part (a).

6.38 Two 8.0 ft long wood “4 by 4”s – actual
dimensions b×b = 3.5 by 3.5 in. – are glued
together to form a solid beam. The weight
density of wood is γ = 0.02 lb/in.3. The beam is
simply supported. 

If the glued joint has an allowable shear
stress of τg = 200 psi, determine the allowable
load Pallow that may be applied to the midpoint
of the span (take into account the weight of the
beams).

6.39 Three proposed cross-section
configurations for joining three boards are
shown. Each board is b×3b (b = 50 mm,
3b = 150 mm). Each cross-section is to support
a shear force of 5.0 kN. 

Determine the maximum shear stress for
each cross-section.

6.40 The built-up I beam supports a maximum
shear force of V = 200 kN. The cross-section
has breadth b = 120 mm, web height
d = 100 mm, flange and web thicknesses
f = w = 20.0 mm, 

Determine the shear stress (a) at cut A–A,
the centroid of the beam, (b) at cut B–B, just
below the flange, and (c) at cut C–C, through
the flange at z = 30.0 mm.

6.41 A hex wrench is subjected to downward
force F = 40 N. The wrench is not being
twisted. The side of each hexagon is a = 3.00 mm
and the wrench has lengths b = 40 mm and
L = 100 mm. 

Determine (a) the maximum bending
stress and (b) the maximum shear stress in the
wrench. Bending occurs about the z-axis.

6.42 A hex wrench is subjected to downward
force F = 40 N. The wrench is not being
twisted. The side of each hexagon is
a = 3.00 mm and the wrench has lengths
b = 40 mm and L = 100 mm. 

Determine (a) the maximum bending
stress and (b) the maximum shear stress in the
wrench. Bending occurs about the z-axis.
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6.43 A box beam is constructed of four
wooden boards. Each board has a cross-section
of b×d = 1×6 in. (actual dimensions) as shown
in the figure. The boards are joined together by
nails. The allowable shear force in each nail is
700 lb. 

Determine the maximum allowable
spacing s of the nails if the maximum vertical
shear force V on the cross-section is 2000 lb.

6.5 Shape: Section Modulus and 
Shape Factor

6.44 Structural steel has a yield strength of
36 ksi. A beam is to support a bending moment
of 1260 kip-in. without yielding.

(a) Determine the section modulus of each
I-beam cross-section listed below. (b) Which of
beam(s) can support the applied moment
without yielding?

6.45 Determine the section modulus about the
z- and y-axes for (a) a rectangle of width
b = 4.0 in. and depth d = 8.0 in. and (b) a solid
circle with diameter D = 4.0 in.

6.46 Determine the section modulus about the
z-axis for (a) the built-up I-beam:
w = f = 0.5 in., b = 6.0 in. and d = 7.0 in. and
(b) the built-up T-beam: w = f = 0.5 in.,
b = 6.0 in., and d = 8.0 in.

6.47 Determine the section modulus about the
z-axis for a truss, with half of its area assumed
to be concentrated at each chord.

6.48 Determine the numerical elastic shape
factor about the z-axis for (a) the rectangle and
(b) the circle in Prob. 6.45.

6.49 Determine the numerical elastic shape
factor about the z-axis for the built-up I-beam
in Prob. 6.46.

Beam A (in.2) I (in.4) ymax (in.)

S12×31 9.3 218 6.00
W10×30 8.8 170 5.75
W10×33 9.7 170 4.87
W14×26 7.7 245 6.95
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6.50 (a) Derive the algebraic elastic shape
factor about the z-axis for the truss in
Prob. 6.47. If A/2 = 4.0 in.2 and D = 24 in.,
determine the numerical shape factor for the
truss.

6.7 Design of Beams

6.51 A steel cantilever beam is subjected to a
downward tip load P = 10.0 kN. The beam is
4.0 m long. The allowable bending stress is
100 MPa and the allowable deflection is 1/250
of the span. The modulus of steel is 200 GPa.

(a) If the beam is to be three times as deep
as it is wide (d = 3b), determine the size of the
beam. (b) Select the smallest S-shape I-beam
from Appendix C (in terms of cross-sectional
area) that will also satisfy the design
requirements. What is the weight savings (as a
percent) compared to the rectangular beam?

6.52 A steel (E = 30,000 ksi) cantilever beam
of length L = 8.0 ft is subjected to a uniformly
distributed load w = 1000 lb/ft.

(a) Select the smallest W-shape I-beam
from Appendix C (in terms of cross-sectional
area) so that both of the following conditions
are satisfied:

1. the allowable bending stress is 16 ksi
and 

2. the allowable deflection is 0.50 in.

(b) Reanalyze the beam to include the weight
of your beam in the distributed load. Do you
need to change the beam cross-section? If so,
to what W-shape? (Assume space
considerations require using the same nominal
depth.)

6.53 A student rides a skateboard at constant
velocity across the campus. The student’s
effective weight (due to static and dynamic
loading) is assumed to be applied to the board
as shown. The skateboard is constructed of a
wooden laminate (i.e., plywood). Neglect the
weight of the board, and assume the skateboard
is simply supported at the wheels.

In order to avoid failure, the board must:

1. not touch the ground, 
2. not break in bending, and 
3. not delaminate (fail in shear).

 Determine the maximum effective weight
Wmax so that the board does not fail by any of
the three failure criteria listed above.

Skateboard dimensions 
Length: L = 42.0 in.
Width: b = 10.0 in.

 Thickness: t = 0.50 in.
Height above ground: c = 3.0 in.

Plywood properties:
Elastic modulus: E = 1400 ksi
Bending strength: Sf = 6.4 ksi
Shear strength: τf = 1.0 ksi

6.54 An aluminum (E = 10,000 ksi) cantilever
is L = 12 ft long, and is subjected to tip load
P = 4000 lb. The beam has a rectangular cross-
section, b wide by d deep.

The allowable normal stress is
σallow = 10.0 ksi and the allowable shear
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stress is τallow = 6.0 ksi. If the depth of the
beam is to be twice the width (d = 2b),
determine the minimum required depth, dmin ,
to satisfy both requirements.

6.55 Select a material for a tip-loaded
cantilever beam that will minimize the weight
(mass) for a specified stiffness k = P/δ. Assume
that the cross-sectional shape of each beam is
the same. Length L is fixed. 

6.56 Consider a tip-loaded cantilever beam of
length L. For a given stiffness, k = P/δ, to
minimize the mass, the following combination
of material properties and elastic shape factor
must be maximized:

(a) From the below table, which
combination will result in a beam of least
mass? (b) If the cantilever beam is 4.0 m long,
and is to be made of the wooden section
(φ = 6), determine the cross-sectional
dimensions if the stiffness is to be 2×106 N/m

(e.g., the beam deflects 1.0 mm for a load of
2000 N).

6.57 A simply supported beam is subjected to
a uniformly distributed load w. The beam has
length L, cross-sectional area A, and moment of
inertia I. The material properties are E and ρ.

(a) The downward deflection at the center
of the beam is δ = 5wL4/(384EI). For a given
stiffness k = wL/δ, determine the equation for
the mass of the beam in terms of w, L, ρ, E, and
elastic shape factor φ. (b) Three different
materials are proposed (see table) for a beam
having specified length L and stiffness wL/δ. If
the shape factor for the titanium cross-section
is φ = 24, determine the shape factors for the
aluminum and steel cross-sections so that the
mass of each beam is the same.

Material ρ (kg/m3) E (GPa)

Steel 7800 200
Aluminum 2700 70

Silicon carbide 2700 450
Wood 600 12

E
ρ2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

φ( )

Material
ρ

(kg/m3)
E

(GPa)
φ

(shape)

Wood 600 12
6 (e.g, 

rectangle)

Aluminum 2700 70
24 (e.g., box 

beam)

Steel 7800 200
30 (e.g, I-

beam)

Materials ρ (kg/m3) E (GPa)

Steel 7800 200
Aluminum 2700 70
Titanium 3600 115
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7.1 The cylindrical length of a screwdriver
blade is L = 120 mm long, with a diameter of
D = 7.00 mm. The screwdriver is made of
steel:

E = 200 GPa, G = 75 GPa,
Sy = 400 MPa, τy = 250 MPa.

As a person drives the screw, she applies a
torque of T = 6.0 N·m, and an axial
compressive force of F = 100 N.

(a) Determine the maximum shear stress in
the cylindrical length of the screwdriver due
only to torsion. (b) Determine the normal stress
in the screwdriver due to force F. (c) Draw a
stress element that exists on the front surface of
the shaft (in the x–y plane). Draw and label
(with values and units) the stresses that exist on
the element.

7.2 An L-bracket is made of a hollow
rectangular cross-section of width b = 40 mm,
depth d = 80 mm, and thickness t = 5.0 mm.
Lengths L1 = 400 mm and L2 = 300 mm.

If P = 2000 N, determine the state of stress
(the nature and values and senses of the
stresses) at points A and B. Point B is opposite
point A. Draw the stress elements at points A

and B as viewed from the outside of the bracket
(e.g., material point A is shown below in its
coordinate system). Force P is in the z-
direction and passes through the centroid of the
cross-section.
 

7.3 A sign weighing 40 lb is L = 6.0 ft long
and is held up by two cables that are pulled
nearly horizontal in front of the entrance of a
parking lot. 

Determine the stress states at the top and
bottom of the sign (points A and B) due only to
the horizontal load in the cables. Neglect any
vertical loading.

7.4 Force F is applied at the end of a cantilever
beam as shown. 

For any angle α, determine the stress states
at the top, middle, and bottom of the beam,
points S, O, and Q, respectively. Draw and
label the stress elements at points S, O, and Q,
in terms of F, b, d, L, and α .
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7.5 A tight-rope walker weighs W = 160 lb.
He walks on a rope H = 20.0 ft above the
ground. The rope spans two poles that are
L = 30.0 ft apart. When he reaches the center,
the rope is taut and has deflected δ = 1.0 ft. The
diameter of each solid pole is 2R = 8.0 in.

Determine the stress states at the base of
the left pole – on its left side (A), right side (B)
and front (C). Draw the three stress elements as
viewed from outside of the pole (the z-axis
points out of the paper).

7.6 Axial compressive load P = 200 kN is
applied on the y-axis of a column’s cross-
section at y = +d/2. The dimensions of the
cross-section are b = 300 mm and d = 500 mm.

Determine the stresses at points A and C,
at any cross-section within the column.

7.7 Axial compressive load P = 200 kN is
applied on the corner of a column’s rectangular
cross-section at y = +d/2 and z = –b/2. The
dimensions of the cross-section are b = 300 mm
and d = 500 mm.

Determine the stresses at points A, B, C,
and D, at a cross-section within the column

Note: Bending occurs about two axes.

7.8 A highway sign is subjected to wind
pressure p = 1.2 kPa. The sign is supported by
a pipe 4.0 m long, having outside diameter
D = 150 mm and thickness t = 10 mm. 

Determine (a) the torque, shear force and
moment acting at the base due to the wind load.
Neglect the weight of the sign and pipe.
(b) Determine the stresses at points A, B, C,
and D – the front, left, right, and rear of the
pipe at the base. (c) Draw the stress elements as
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viewed from the outside of the pipe. Include
the numerical values and appropriate units.

7.9 A propeller-driven ship moves forward at
constant velocity against a drag force of
300 kN. The solid drive shaft transmits
2500 kW to the propeller at 1000 rpm. The
radius of the shaft is 200 mm.

Determine (a) the normal stress along the
axis of the shaft and (b) the shear stress due to
torsion only. (c) Draw a stress-element aligned
with the axial and hoop (circumferential)
directions of the shaft.

7.10 A steel column has a W12×96 cross-
section. The column has length L = 12.0 ft and
supports a compressive force P = 100 kips.
Load P is applied eccentrically on the y-axis at
distance e from the centroid. Structural steel
has modulus E = 30,000 ksi and yield strength
Sy = 36 ksi (in either tension or compression). 

Determine the maximum value of e such
that there are no tensile stresses in the column.

7.11 Show that the kern of a solid circular
column is a circle of radius r = R/4, where R is
the radius of the column. In other words, show
that a compressive load P must have an
eccentricity e less than R/4 so that no tension is
developed on the cross-section.
.

7.12 At Disneyland, guests were once able to
get back and forth from Tomorrowland to
Fantasyland by riding the Skyway, a gondola
reminiscent of those in the Alps. There was
even a dedication plaque from the American
Society of Mechanical Engineers (ASME).

A similar set-up is shown. The gondola is
supported by two bent arms (one being shown
in the figure). The arms are round with a
diameter D. The main vertical section of each
arm is offset by L = 7.0 in. from the line of
action of the gondola’s weight force. The force
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on each arm is W. The allowable normal stress
in the arm material is ±15.0 ksi and the
allowable shear stress is 8.0 ksi.

If the gondola is required to support a total
weight of 2W = 1300 lb, determine the
diameter D of the arms.

7.13 In design, it is often assumed that the
tensile strength of a brittle material is zero.
Components made of brittle materials can be
strengthened by pre-stressing so that the brittle
material is in compression before application
of the load.

A rectangular concrete beam of length L,
depth d, and breadth b is pre-stressed by a steel
rod that is pulled in tension through the center
of the beam with load P, and clamped while in
tension to the ends of the beam. The rod under
tension force P places the concrete in
compression with force –P; stresses exist in the
beam before the externally applied load is
introduced. The beam is then loaded with a
uniformly distributed load w.

Estimate the load wmax (in terms of P)
when cracking first appears in the beam, i.e.,
when the stress anywhere in the beam becomes
tensile. Neglect the area of the steel
reinforcement, as well as its effect in
supporting the bending load (the rod is at the
centroid of the cross-section).

7.14 A six-pack is shaken so that the pressure
in each can is p = 20 psi. A board is placed on
the six pack and a student(s) weighing W
stands on the board so his weight is evenly
distributed to the six cans. The aluminum
properties are E = 10,000 ksi, Sy = 35 ksi, and
ν = 0.33. Each can has an average radius of
R = 1.25 in., thickness t = 0.01 in., and length
L = 4.50 in.

Determine the critical weight of the
student, Wcr , so that a stress element on the
surface of the can is in a state of uniaxial stress.
Assume that no support is provided by the
contained liquid, and that the cans do not fail
by buckling (being crushed).

7.15 A boom extending out of the Space
Shuttle is modeled below. The boom is
required to support force F applied vertically at
the tip. Assume the boom has a hollow circular
cross-section of inner and outer diameters Di
and D. F = 400 N, a = 12 m, b = 2.0 m,
Di = 80 mm, D = 100 mm.

(a) Determine the stress states at points A,
B, and C – at the left, top and right of the boom
at the built-in end. (b) Draw the stress elements
at each point as viewed from the outside of the
boom.
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7.16 In attempting to open a locked door, a
person applies a downward force F to the door
handle. The handle, with solid circular cross-
section of diameter D, does not perceptively
move (the door is locked). Thus, cross-section
ABC is fixed at the doorplate. The force and
geometry are F = 20 lb, e = 2.5 in., h = 4.0 in.,
and D = 0.75 in.   

(a) Determine the algebraic stress states at
surface points A, B, C – at the left, top, and
right of the handle at the built-in end. Give the
stresses in terms of F, e, h, D, A, I, and/or J.
Draw and label the stress element at each point
as viewed from the outside of the handle.
(b) Determine the numerical stresses at points
A, B, and C. Draw and label the stress element
at each point.
 

7.17 In attempting to open a locked door, a
person applies a downward force F and an
inward force P to the door handle. The handle,

with solid circular cross-section of diameter D,
does not perceptively move (the door is
locked). Thus, cross-section ABC is fixed at the
doorplate. The forces and geometry are
F = 20 lb, P = 30 lb, e = 2.5 in., h = 4.0 in., and
D = 0.75 in.   

(a) Determine the algebraic stress states at
surface points A, B, C – at the left, top, and
right of the handle at the built-in end. Give the
stresses in terms of F, P, e, h, D, A, I, and/or J.
Draw and label the stress element at each point
as viewed from the outside of the handle.
(b) Determine the numerical stresses at points
A, B, C. Draw and label the stress element at
each point.
 

7.18 Structure ABCD has a hollow circular
cross-section, outer diameter 2R = 6.0 in. and
inner diameter 2Ri = 5.5 in. The bracket
consists of vertical arm AB, and horizontal
arms BC (along the z-axis) and horizontal arm
CD (along the x-axis). The lengths of segments
AB, BC, and CD are: a = 8.0 ft, b = 4.0 ft, and
c = 2.0 ft, respectively. A downward force of
P = 2.0 kips acts at point D.

Consider only 3D stress elements where
the three faces are aligned with the x-, y-, and z-
axes. Determine the maximum tensile stress,
the maximum (least tensile) compressive
stress, and the maximum shear stress in
segment (a) CD, (b) BC, and (c) AB. 

Hint: Consider how each segment acts as an
axial, a torsional, and/or a bending member –
first CD, then BC, and finally AB.
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(d) Determine the maximum tensile and
compressive stresses in AB (the faces of the 3D
element are not necessarily aligned with the x-,
y-, and z-axes).

Note: The shear force acting in a beam of
hollow circular cross-section causes a
maximum shear stress of:

7.19 A steel I-beam of length L1 = 20 ft
supports UDL w = 2.0 kips/ft. The beam has a
moment of inertia I = 300 in.4. At point B, the
beam is supported by a steel rod of cross-
sectional area ABC = 1.0 in.2 and length
L2 = 5.0 ft. Young’s modulus is E = 30,000 ksi.

(a) Determine algebraic expressions for
the deflection v(x) and the slope v'(x) of the
beam. Do this using the method of
superposition:

– find v1(x) and v1'(x) of a simply supported
beam under distributed load w;

– find v2(x) and v2'(x) that a rigid beam AB
would experience due to stretching of
rod BC;

– sum the results to find the total, e.g.,
v(x) = v1(x) + v2(x).

(b) Determine the location and value of the
maximum deflection of the beam.

7.20 A beam with bending stiffness EI
supports UDL w. The beam is simply
supported at point A by a roller and built-in at
point B.

Derive expressions for the deflection v(x)
and the slope v'(x) of the beam by using the
method of superposition. Superimpose the
solutions of two cases: (1) a cantilever beam
fixed at point B under UDL w and (2) a
cantilever beam fixed at point B loaded by
redundant force R at point A. Enforce the
required deflection at roller A.

7.21 Repeat Prob. 7.20 by superimposing the
solutions of (1) a simply supported beam under
UDL w and (2) a simply supported beam under
redundant couple MB applied at point B.
Enforce the required slope at point B.
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Problems: Chapter 8 Transformation of Stress and Strain

8.1 Stress Transformation (Plane 
Stress)

8.2 Principal Stresses

8.3 Maximum (In-Plane) Shear 
Stress

8.1 The stress states (σx , σy , τxy ) at several
points in a material system are listed below.

Determine the transformed stresses (σx' ,
σy' , τx'y' ) on each element when it is rotated by
the given angle θ (positive counterclockwise).
Drawn and label the stress element in its new
orientation.

(a) (200 MPa, 100 MPa, 0 MPa), θ = 20°
(b) (–200 MPa, 0 MPa, 80 MPa), θ = 20°
(c) (200 MPa, 100 MPa, 80 MPa), θ = 30°
(d) (200 MPa, 100 MPa, 80 MPa), θ = –30°
(e) (200 MPa, –100 MPa, 80 MPa), θ = 35°
(f) (200 MPa, 100 MPa, –80 MPa), θ = 35°
(g) (200 MPa, 100 MPa, –80 MPa), θ = –35°
(h) (–200 MPa, 100 MPa, 80 MPa), θ = 75°
(i) (–200 MPa, –100 MPa, –80 MPa), θ = 65°

8.2 Consider a state of stress (σx , σy , τxy ). As
the stress element is rotated, (a) what is the
shear stress when the normal stresses equal the
principal stresses? (b) What are the normal
stresses when the in-plane shear stress is the
maximum shear stress?

8.3 The stress states (σx , σy , τxy ) at several
elements in a material system are listed below.

Determine the principal stresses and the
directions in which they act. Draw the stress
element in its new orientation. 

(a) (15 ksi, 0 ksi, –6 ksi)

(b) (15 ksi, 10 ksi, 6 ksi)

(c) (15 ksi, –10 ksi, 6 ksi)

(d) (–15 ksi, –10 ksi, 6 ksi)

(e) (15 ksi, 10 ksi, –6 ksi)

(f) (–10 ksi, –10 ksi, 6 ksi)

(g) (10 ksi, –10 ksi, –6 ksi)

8.4 The stress states (σx , σy , τxy ) at several
elements in a material system are listed below.

Determine the maximum in-plane shear
stresses and the associated normal stresses.
Draw the stress element in its new orientation.

(a) (15 ksi, 0 ksi, –6 ksi)

(b) (15 ksi, 10 ksi, 6 ksi)

(c) (15 ksi, –10 ksi, 6 ksi)

(d) (–15 ksi, –10 ksi, 6 ksi)

(e) (15 ksi, 10 ksi, –6 ksi)

(f) (–10 ksi, –10 ksi, 6 ksi)

(g) (10 ksi, –10 ksi, –6 ksi)

8.5 To determine if a weld is strong enough,
the stress perpendicular to the weld-line, σw ,
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and the shear stress parallel to the weld-line,
τw , must be determined.

A 400 by 240 mm test plate is formed by
welding two trapezoidal plates together. A
uniaxial load of 60 MPa is applied to the plate.

(a) Determine the normal stress σw acting
perpendicular to the weld, and the shear stress
τw acting parallel to the weld (note: σw is
positive if it acts in tension and τw is positive if
it acts on the new x-face in the new y-
direction). (b) Determine the maximum shear
stress in the main volume of the plate.

8.6 A 9.0 by 15 in. plate formed by welding
two triangular plates together. The loads
applied to the plate result in a tensile stress of
5.0 ksi in the x-direction and a compressive
stress of 1.0 ksi in the y-direction.

(a) Determine the normal stress σw acting
perpendicular to the weld and the shear stress
τw acting parallel to the weld (note: σw is
positive if it acts in tension and τw is positive if
it acts on the new x-face in the new y-
direction). (b) Determine the maximum In-
plane shear stress in the main volume of the
plate.

8.7 The cylindrical length of a screwdriver
blade is L = 120 mm long with a diameter of
D = 7.00 mm. The screwdriver is made of
steel:

E = 200 GPa, G = 75 GPa, 
Sy = 400 MPa, τy = 250 MPa.

As a person drives the screw, she applies a
torque of T = 6.0 N·m and an axial compressive
force of F = 100 N.

(a) Draw and label a stress element on the
front surface of the shaft (in the x–y plane).
(b) Determine the principal stresses for this
stress state, and (c) the maximum in-plane
shear stress.

8.8 A propeller-driven ship moves forward at
constant velocity against a drag force of
300 kN. The solid drive shaft transmits
2500 kW to the propeller at 1000 rpm. The
radius of the shaft is 200 mm.

Determine (a) the maximum principal
stress on the surface of the shaft and the angle
it makes with the shaft axis, (b) the minimum
principal stress on the surface of the shaft, and
(c) the maximum in-plane shear stress on the
surface of the shaft.
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8.9 An L-bracket is made of a hollow
rectangular cross-section of width b = 40 mm,
depth d = 80 mm, and thickness t = 5.0 mm.
Lengths L1 = 400 mm and L2 = 300 mm.

If P = 2000 N, determine (a) the principal
stresses at points A and B and (b) the maximum
in-plane shear stresses at points A and B.
Point B is opposite point A. Force P is in the z-
direction and passes through the centroid of the
cross-section.

8.10 A boom extending out of the Space
Shuttle is modeled below. The boom is
required to support force F applied vertically at
the tip. Assume the boom has a hollow circular
cross-section of inner and outer diameters Di
and D. F = 400 N, a = 12 m, b = 2.0 m ,
Di = 80 mm , D = 100 mm.

Determine (a) the numerical values of the
principal stresses at point A and (b) the
numerical value of the maximum shear stress at
point B.

8.11 In attempting to open a locked door, a
student applies a downward force F to the door
handle. The handle, with solid circular cross-
section of diameter D, does not perceptively
move (the door is locked). Cross-section ABC
is fixed at the doorplate. The force and
geometry are F = 20 lb, e = 2.5 in., h = 4.0 in.,
and D = 0.75 in.   

Considering only points A, B, and C,
determine (a) the numerical value of the
maximum principal stress at cross-section ABC
and (b) the numerical value of the maximum
shear stress at cross-section ABC.
 

8.12 Structure ABCD has a hollow circular
cross-section, outer diameter 2R = 6.0 in., and
inner diameter 2Ri = 5.5 in. The bracket
consists of vertical arm AB, and horizontal
arms BC (along the z-axis) and horizontal arm
CD (along the x-axis). The lengths of segments
AB, BC and CD are: a = 8.0 ft, b = 4.0 ft, and
c = 2.0 ft, respectively. A downward force of
P = 2.0 kips acts at point D.



www.manaraa.com

Problems: Chapter 8 Transformation of Stress and Strain PP619

Combined stresses. Consider only 3D stress
elements where the three faces are aligned with
the x-, y-, and z-axes. Determine the maximum
tensile stress, the maximum (least tensile)
compressive stress, and the maximum shear
stress in segment (a) CD, (b) BC, and (c) AB. 

Hint: Consider how each segment acts as an
axial, a torsional, and/or a bending member –
first CD, then BC, and finally AB.

(d) Determine the maximum tensile and
compressive stresses in AB (the faces of the 3D
element are not necessarily aligned with the x-,
y-, and z-axes).

Note: The shear force acting in a beam of
hollow circular cross-section causes a
maximum shear stress of:

where R is outer radius and Ri is inner radius.

(e) Stress transformation. Determine the
maximum in-plane shear stress from the stress
states found in Parts (a)–(d).

8.4 Mohr’s Circle

8.13 The stress states (σx , σy , τxy ) at several
points in a material system are listed below.

Use Mohr’s circle to determine the new
stress state (σx' , σy' , τx'y' ) for each element
when it is rotated by the given angle θ (positive
counterclockwise). Draw the stress element in
its new orientation.

(a) (15 ksi, 10 ksi, 0 ksi), θ = 20°

(b) (–15 ksi, 0 ksi, 6 ksi), θ = 20°

(c) (15 ksi, –10 ksi, 6 ksi), θ = –30°

(d) (10 ksi, 10 ksi, 0 ksi), θ = 30°

(e) (120 MPa, 80 MPa, 40 MPa), θ = 20°

(f) (–120 MPa, –80 MPa, 40 MPa), θ = 20°

(g) (120 MPa, –80 MPa, –40 MPa), θ = 20°

8.14 The stress states (σx , σy , τxy ) at several
points in a material system are listed below.

For each stress state, (i) determine the
principal stresses and the directions in which
they act. Draw the stress element in its new
orientation. (ii) Determine the maximum in-
plane shear stress and the associated normal
stresses and angles. Draw the stress element in
its new orientation.

(a) (15 ksi, 10 ksi, 0 ksi)

(b) (–15 ksi, 0 ksi, 6 ksi)

(c) (15 ksi, –10 ksi, 6 ksi)

(d) (10 ksi, 10 ksi, 0 ksi)

(e) (120 MPa, 80 MPa, 40 MPa)

(f) (–120 MPa, –80 MPa, 40 MPa)

(g) (120 MPa, –80 MPa, –40 MPa)

8.5 Strain Transformation

8.6 Strain Gages

8.15 The strain states (εx , εy , γxy ) at several
points in a material system are listed below. 

Determine the transformed strains (εx' ,
εy' , γx'y' ) for each element when it is rotated by
the given angle θ (positive counterclockwise). 

(a) (150×10–6, 100×10–6, 80×10–6), θ = 20°
(b) (200×10–6, –150×10–6, 60×10–6), θ = 30°
(c) (150×10–6, 100×10–6, –100×10–6), θ = 50°
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8.16 The strain states (εx , εy , γxy ) at several
points in a material system are listed below. 

(i) Determine the principal strains and the
directions in which they act. (ii) Determine the
magnitude of the maximum shear strain. (iii) If
G = 75 GPa, determine the maximum shear
stress.

(a) (150×10–6, 100×10–6, 80×10–6)

(b) (200×10–6, –150×10–6, 60×10–6)
(c) (150×10–6, 100×10–6, 100×10–6)

8.17 In a uniaxial test, two strain gages
measure the strain in the 0°-direction (the load-
direction) and the 90°-direction (transverse to
the load). When the applied stress is 80 MPa:

ε0 = +660×10–6, ε90 = –185×10–6

Determine the Young’s modulus and the
Poisson’s ratio of the material.

8.18 A 0–45–90° strain gage rosette records
the strains states (ε0 , ε45 , ε90 ) = (εA , εB , εC )
listed below.

Determine the principal strains and the
maximum in-plane shear strain for each
system.

(a) (+200×10–6, +120×10–6, +100×10–6)

(b) (+150×10–6, +50×10–6, –40×10–6)

(c) (–100×10–6, +20×10–6, –30×10–6)

8.19 Derive the expressions for the principal
strains for a 0–60–120° strain gage rosette,
with measured strains ε0 = εA , ε60 =  εB , and
ε120 = εC .
.

8.7 Three-Dimensional Stress

8.20 The 3D principal stresses (σI , σII , σIII )
at several points are listed below.

For each element, determine (i) the
maximum in-plane (I–II plane) shear stress,
and (ii) the two maximum out-of plane shear
stresses, and (iii) the maximum shear stresses
in the system. (iv) Determine the plane (I–II,
II–III or I–III) in which the maximum shear
stress in the system acts.

(a) (15 ksi, 5.0 ksi, 0 ksi)

(b) (15 ksi, –10 ksi, 0 ksi)

(c) (15 ksi, 10 ksi, 8.0 ksi)

(d) (10 ksi, –10 ksi, –8.0 ksi)
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Problems: Chapter 9 Failure Criteria

9.1 What failure theory would you use to
determine if a ductile material (metal) fails?
What failure theory would you use to
determine if a brittle material (ceramic) fails?

9.1 Failure Condition for Brittle 
Materials

9.2 A solid circular shaft of diameter
D = 10 mm is subjected to both axial force F
and torque T. The shaft is made of a ceramic
with an ultimate tensile strength of 100 MPa
and a compressive strength of 900 MPa.

(a) If the axial force is 500 N in tension,
what is the maximum torque that can be
applied without failure? (b) If the axial force in
500 N in compression, what is the maximum
torque that can be applied without failure?

9.3 A femur bone has an outer diameter of
1.2 in. and an inner diameter of 0.70 in. The
femur is subjected to a torque of 20 lb-ft and a
moment of 30 lb-ft. The tensile strength of the
bone is 16 ksi.

Determine if the bone fails.

9.2 Failure Condition for Onset of 
Yielding of Ductile Materials

9.4 The cylindrical length of a screwdriver
blade is L = 120 mm long with a diameter of
D = 7.00 mm. The screwdriver is made of
steel:

E = 200 GPa, G = 75 GPa, 
Sy = 400 MPa, τy = 250 MPa.

As a person drives the screw, she applies a torque
of T = 6.0 N·m, and an axial compressive force
of F = 100 N.

(a) Using the Tresca condition, determine
if the screwdriver yields. (b) Using the von
Mises condition, determine if the screwdriver
yields.



www.manaraa.com

622 Problems: Chapter 9 Failure Criteria

9.5 The strain energy density stored in a stress
element under a triaxial state of stress
(σI, σII, σIII) is:

When the element is subjected to a uniaxial
load, the stresses are σI and σII = σIII = 0. At
yield, σI = Sy and the strain energy density
equals the resilience:

Per the von Mises criterion, this is the value of
the strain energy density required to yield a
material no matter how the material is loaded.
In general, a 3D state of stress is converted into
the von Mises or equivalent stress, σo. Yielding
occurs when σo = Sy , or when:

(a) For triaxial loading (σI, σII, σIII),
determine the strain energy density in terms of
stresses σI , σII , and σIII , and elastic constants
E and ν. (b) When a metal yields, its Poisson’s
ratio becomes ν = 0.5. Simplify your
expression from Part (a) to include this value
of ν. (c) From Part (b) and the definition of
resilience, show that at yielding, the von Mises
stress is given by:

9.6 Determine the maximum power that can
be transmitted by the following shafts without
failure.

(a) A steel shaft of diameter 100 mm
rotating at 550 rev/s. The yield strength in axial
tension is Sy = 250 MPa. (b) A ceramic silicon
carbide (SiC) shaft of diameter 3.0 mm rotating
at a speed of 55,000 rev/s. The tensile strength
of SiC is taken to be Su =100 MPa.
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Problems: Chapter 10 Buckling

10.1 Buckling of a Column

10.2 Radius of Gyration and 
Slenderness Ratio

10.3 Boundary Conditions and 
Effective Length

10.4 Transition from Yielding to 
Buckling

10.1 A steel column has a W12×96 cross-
section. The column has length L and supports
a compressive force P through the centroid.
The column is unconstrained (free) at the top,
and built-in at the ground. Structural steel has
modulus E = 30,000 ksi and yield strength
Sy = 36 ksi.

Determine the length of the column, L (in
feet), so that Euler buckling and yielding will
occur simultaneously as load P is increased
from zero.

10.2 Truss ABC supports downward force F at
joint B. Each bar has a solid round cross-

section of diameter D = 15.0 mm and is made
of steel with E = 200 GPa. Length L = 1.0 m.

What is the minimum value of F to cause
BC to buckle.
 

10.3 All the members of a steel truss are
L = 3.0 m long, with rectangular cross-section
100 by 50 mm. Force V = 40 kN is applied at
joint B. E = 200 GPa.

Determine the applied load Vcr that will
cause any member to buckle. Indicate which
member(s) buckles. Assume the ends of each
member are pinned and buckling occurs about
the weak axis.

10.4 An aluminum frame (E = 70 GPa,
Sy = 240 MPa) consists of two members, AB
and CD, joined at point C as shown (not to
scale). Point D rests on the rough ground, and
is not constrained except for sliding
horizontally (assume it is pinned). At joint C,
CD is pinned for buckling in the plane of the
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paper, and fixed for buckling out of the plane of
the paper. The frame is loaded by force F at
point A. The frame dimensions are: a = 100 mm,
L = 200 mm, d = 40 mm, t = 30 mm, and
b = 10 mm (b is the thickness of the members
into the paper).

Calculate (a) the load FyA to yield beam
AB, (b) the load FyD to yield CD, and (c) the
load FB to buckle CD. (d) Indicate how the
system fails as F is increased from zero.

10.5 A steel pole is made of standard 3 in.
pipe (see Appendix D) and supports a load of
P = 20.0 kips at its top. 

Determine the length L that will cause the
column to buckle.

10.6 A steel column, built into a building
foundation, helps to support the second floor.
The column has a rectangular cross-section of
width b = 70 mm and depth d = 100 mm. The
material properties are: E = 200 GPa and
Sy = 250 MPa.

Determine (a) the load Py to yield the
column and (b) the load Pcr to buckle the
column. (c) Which criterion limits the design?

10.7 The columns of a building are built of the
steel W-shape W18×76, with E = 30,000 ksi
and Sy = 36 ksi. In a preliminary design, the
columns are to be an uninterrupted 30 ft long,
i.e., purlin CD is not in the original design.
Assume the columns at AB are pinned for
buckling in the plane of the paper (about the
weak axis), but free for buckling out of the
plane (about the strong axis).

(a) Determine the load (on each column)
to cause buckling in the original design
(without member CD). (b) Purlin CD is added
in the second design iteration. Determine the
new load to cause buckling.
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10.6 Effect of Imperfections

10.7 Effect of Lateral Forces

10.8 A vertical rigid strut is supported at its
base by a spring of torsional stiffness

.

If a vertical force P is applied at the top of
the strut, determine the buckling load, i.e., the
force at which the column will tip over when
there is even the slightest tilt θ of the strut.

10.9 (a) If vertical force P is applied to the
strut of Prob. 10.8 with an eccentricity e,
determine the relation between P and the angle
of tilt θ so that the strut remains in equilibrium

at θ. (b) If e/L = 0.05, plot the P/KT versusθ
relationship, and determine the maximum load
P for stability (so that the strut does not tip
over).

10.10 (a) If vertical force P and horizontal
force H are applied at the top of the rigid strut
of Prob. 10.8, determine P in term of θ and H
so that the system remains in equilibrium. (b)
If H/P = 0.1, plot the 
relationship, and determine the maximum load
P for stability (so that the strut does not tip
over).

10.11 A 1000 μm long column of silicon has
a rectangular cross-section 15 μm wide (into
the paper) and 1.0 μm deep. The modulus is
160 GPa. The column has an initial deformed
shape as shown, with unloaded central
displacement a. In an experiment, the column
is found to buckle due to an axial compressive
load of P = 7.6 μN, with an additional
transverse central displacement of Δ = 9.0 μm.

Estimate the initial center imperfection a
of the beam.

KT M θ⁄=

P KT⁄  versus θ
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.

10.12 An aluminum (E = 10,000 ksi) column
pinned at both ends has length L = 10 ft. The
minor moment of inertia is I = 2.73 in.4.
During construction, it is found that the center
of the column has been displaced a = 1.0 in.
from the design axis. The compressive force on
the column is P = 0.7Pcr . 

Determine (a) the buckling load of the
column and (b) the transverse load F that must
be applied at the center to bring the column
back towards true, i.e., to return the center to
the (dotted) line between A and B.

10.13 The direction of thrust of a jet engine is
adjusted by a series of actuators in

compression. The actuators are modeled as
thin-walled circular columns in compression.
The columns are of length L, radius R, and
thickness t, and are pinned at both ends. 

(a) Determine an expression for the mass
of the column in terms of the critical buckling
load Pcr , material properties ρ and E, and
column length L and radius R (see Section 6.6 –
Design of Beams). (b) Using the material
properties in Table 6.7, select the material that
will give the lightest design.

10.14 Continuous rails without expansion
joints are subjected to buckling in hot weather.
For steel, E = 200 GPa, Sy = 250 MPa, and
α = 14×10–6/°C. The cross-section of a light
rail is A = 6500 mm2, Iz = 19.7×106 mm4, and
Iy = 3.00 ×106 mm4, where Iz corresponds to
buckling out of the plane of the tracks
(vertically) and Iy corresponds to buckling in
the plane of the tracks (horizontally). The rails
are connected to the ties and the ties are pinned
to the ground every L = 4.0 m.

(a) Determine the stress in the rail when it
is heated by 35°C from normal temperatures.
(b) Will the thermal stress yield the rail?
(c) Will the thermal stress buckle the rail?
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Problems: Chapter 11 Energy Methods

11.1 Internal and Complementary 
Energy

11.2 Principle of Virtual Work

11.3 Minimum Energy Principles

11.1 Truss ABC is loaded at joint B by forces
Fx and Fy . Joint B displaces by u and v. The
modulus and cross-sectional area of both
members are E and A. Assume the system
remains elastic.

Determine (a) the internal energy stored in
each bar in terms of displacements u and v (b)
the internal complementary energy in each bar
in terms of forces Fx and Fy , and (c) the
relationship between applied loads Fx and Fy
and displacements u and v. Give the results in
matrix form.
 

11.2 Stepped bar ABC is subjected to loads F1
and F2 applied at points B and C. By
minimizing the total complementary energy,
determine the downward displacements of
point B and point C, uB and uC , respectively, in
terms of F1 and F2.

11.3 Joint B of truss ABCD is caused to
displace u and v due to forces Fx and Fy . The
modulus and cross-sectional area of all
members are E and A. The truss is redundant.

(a) Determine the internal energy in each
member in terms of u and v. (b) By minimizing
the total energy of the system, determine the
applied forces Fx and Fy in terms of the
displacements. (c) Determine the stiffness
matrix of the system. (d) For the case:
u = 2.0 mm (right), v = 3.0 mm (down),
A = 0.001 m2, L = 1.0 m, and E = 70 GPa,
determine Fx and Fy .

11.4 Truss ABCD is loaded at joint B by
forces Fx and Fy . Joint B deflects by u and v.
The modulus and cross-sectional area of each
member are E and A, respectively.

(a) Determine the force in each member in
terms of Fx and Fy and redundant force R;
assume the redundant force is in bar BD.
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(b) By minimizing the total complementary
Energy of the system, determine the
displacements u and v in terms of the applied
forces. (c) Determine the flexibility matrix of
the system.

11.5 Repeat Prob. 11.3 for the following truss.

11.6 Repeat Prob. 11.4 for the truss shown in
Prob. 11.5.

11.7 Steel truss ABCD is loaded at joint B by
force F with a magnitude of 10,000 lb. The
force F has a slope of 4/3 downward and to the
right. The modulus is E = 30,000 ksi. The
cross-sectional area of each bar is A = 0.5 in.2.

Minimize the total complementary energy
to determine the horizontal and vertical
displacements, u and v, of point B.

11.8 Truss ABCD is subjected to downward
force F at joint C. The truss is in the form of a
square, with sides of length L. Members AB,
BC and CD each have cross-sectional area A
and diagonals AC and BD each have cross-
sectional area . The diagonals are not
joined at their centers. The modulus of each
member is E.

Using the force in AB as the redundant
(PAB = R), determine (a) the total
complementary energy in the system.
(b) Minimize the total complementary energy
to determine the value of the redundancy R,
(c) the downward deflection v of the load F,
and (d) the stiffness of the system in the
vertical direction, , for loads at
point B.

11.9 Truss ABCD is subjected to downward
force F at joint C. The truss is in the form of a
square, with sides of length L. Members AB,
BC, and CD each have cross-sectional area A,
diagonals AC and BD each have cross-sectional
area αA (α is a constant). The diagonals are not
joined at their centers. The modulus of each
member is E.

2A

k F v⁄=
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Using the force in AB as the redundant
(PAB = R), determine (a) the Total
complementary energy in the system.
(b) Minimize the total complementary energy
to determine the value of the redundancy R,
(c) the downward deflection v of the load F,
and (d) the stiffness of the system in the
vertical direction . (e) Plot the
stiffness as function of α. Is there an optimal
value for α? Or is there a practical value for α
beyond which there is less significant gain in
system stiffness as α is increased.

11.10 Space structures are made of 3D
trusses. The 3D truss ABCD is made of three
elements, each of length L = 1.0 m and
modulus E = 70 GPa. All elements are
supported by ball-and-socket joints (3D pins).
joints B, C and D are supported at the ground,
and loaded at joint A.

Develop a matrix expression for the
displacements of Point A, u, v, and w, in terms
of applied loads Fx , Fy and Fz . 
Hint: use total complementary energy.

11.4 Bending Energy

11.11 A cantilever beam of length 2L is
subjected to point load P at its tip. The
modulus is E, and the moment of inertia is I.

Use total complementary energy to
determine the tip deflection (at x = 0). Does the
result agree with the deflection expression for a
tip-loaded cantilever beam of length 2L (see
Appendix F)? Note: x is measured from the tip
of the beam.
Hint: The complementary energy in a beam of
length l is:

11.12 A cantilever beam, length 2L, is
subjected to two point loads: P1 at its center
and P2 at its tip. The modulus is E and the
moment of inertia is I.

Use total complementary energy to
determine the tip deflection (at x = 0).
Hint: The complementary energy in a beam of
length l is:

11.13 A MEMS element is made of a
rectangular beam and a solid circular shaft.
Torque T is applied to the shaft at point C, and
rotates by angle θ. The beam is of length L1
and has moment of inertia I. The shaft is of

k F v⁄=

C M2

2EI
--------- xd

 0

 l

∫=

C M2

2EI
--------- xd

 0

 l

∫=
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length L2 and has polar moment of inertia J.
The elastic moduli are E and G.

Determine the total angle of twist due to
the twisting of the shaft and the bending of the
beam using total complementary energy. 

Hint: The complementary energies in a beam in
bending and in a shaft in torsion, both of length
l, are:

and

11.14 An arrangement often used to
strengthen and stiffen a beam system is to
reinforce the beam with a frame of rods. An
example of this technique is the roof beams at
the Louvre Museum in Paris. 

Force F is applied at the center of the beam,
point C. Tensile rods AD and BD are held away
from the beam by compressive strut CD. The
bending stiffness of the beam is EI and the
axial stiffness of the axial members is EA.

By applying the minimum complementary
energy principle, with the force in the strut as
the redundant PCD = R and the forces in the
rods PAD = PBD = T, determine (a) the
magnitude of R, (b) the maximum bending
moment in the beam, and (c) the downward
deflection of point C. Compare this deflection
to that of a simply supported beam (with
stiffness EI) without the truss-support.

11.15 The mechanical properties of biological
cells can be investigated by indenting a probe
into the cell surface. The displacement of the
probe can be readily measured with a standard
microscope, but the resistive forces of the cell
are very small and difficult to measure. A
special force sensor designed for this purpose
is schematically shown. Sensor ABC is
manufactured from the ceramic silicon carbide
(SiC). Element BC is much thicker than that of
AB, and so BC may be assumed to be rigid.
When the probe is indented against the cell, the
reaction force has components in both the x-
and y-directions. The material modulus is E,
and the moment of inertia of AB is I.

Considering only bending of AB,
determine the stiffness matrix relating the cell
forces Fx and Fy to the probe displacements u
and v (all are drawn in the directions of the
positive axes). Use the minimum complementary
energy method.

CM
M2

2EI
--------- xd

 0

 l

∫= CT
T2

2GJ
---------- xd

 0

 l

∫=
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11.5 Approximation Methods

11.16 High-frequency torsional oscillators are
made using small MEMS devices. 

Approximate the torsional stiffness of a
SiC shaft of square cross-section of side
D = 15 μm and of length L = 600 μm. The
material has a modulus of 360 GPa.
 

11.17 The tip of a cantilever beam is
supported by a pin. The beam is subjected to a
uniformly distributed load w. Assume the beam
deflection has the following form:

(a) Minimize the total energy T to
determine constants A, B, C, and D. The
Complementary Energy is a function of
curvature :

The potential of the load is:

(b) Plot your solution, and the actual solution
(Example 6.9) on the same graph to compare
the estimate.

11.18 Consider a cantilever beam on an
elastic foundation. Assume a displaced form,
and minimize the total energy in the system. 

Assume the elastic curve has the form:

This form satisfies the displacement boundary
conditions at each end, and the slope boundary
condition at x = 0: v(0) = v(L) = 0, and
v'(0) = 0. The elastic foundation has a stiffness
per unit length k (force/length2); the elastic
energy stored in length dx of the elastic
foundation is:

(a) Minimize the total energy to solve for
the force required to displace the tip by
distance δ. (b) Consider a micro-cantilever
beam used to measure the stiffness of
biological tissues. The beam is L = 1000 μm
long, t = 2 μm thick, and b = 10 μm wide. The
beam rests on an elastic foundation (biological
tissue). The force required to displace the
cantilever tip by δ = 1 μm is P = 10 μN.
Determine the stiffness per unit length of the
tissue.

v x( ) A Bx Cx2 Dx3+ + +=

κ v″=( )

U EI
2

------ v″( )2 xd
 0

 L

∫=

V w v x( ) xd
 0

 L

∫–=

v x( ) 1 πx
2L
------ ⎝ ⎠

⎛ ⎞cos– δ=

dUf
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2
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12.2 Elastic–Plastic Calculations: 
Limit Load

12.1 Steel truss ABCD is subjected to a
downward force F at joint B. The cross-
sectional area of each bar is A = 0.002 m2, and
L = 1.0 m. The modulus of steel is
E = 200 GPa and its yield strength is
Sy = 250 MPa.

Determine (a) the load to cause yielding Fy
and (b) the limit load FL .

12.2 A simply supported steel I-beam, 10 ft
long, has a cross-section 5 in. wide by 10 in.
deep (total depth), with flange thickness 0.5 in.
The yield strength of the material is
Sy = ±36 ksi. 

(a) Determine the limit moment assuming
that only the flanges support bending stress.
(b) After installation, is discovered that the
maximum uniformly distributed load that is to
be applied is w = 8.0 kips/ft, a greater value
than originally specified. Determine if the
beam can support the load. (c) A simple
modification to increase the bending strength
of a beam is to weld plates to its flanges. If
plates 5.0 in. wide and 0.5-in. thick are welded
to the flanges, determine the new limit
moment.

12.3 A simply supported beam is subjected to
point load P at its center. The beam is of
rectangular cross-section B wide by D deep,
and has yield strength Sy .

Determine the limit load PL.
 

12.4 An aluminum beam has rectangular
cross-section 1.0 in. wide by 4.0 in. deep.   The
beam supports maximum moment M. The
modulus is E = 10,000 ksi and the yield
strength is Sy = 35 ksi.

Determine (a) the magnitude of the
moment when yielding first occurs My , and
(b) the limit moment ML. (c) Determine the size
of the elastic core d, when Mmax = 10,000 lb-ft
and (d) the curvature κ at that location.
 

12.5 An aluminum beam with rectangular
cross-section 30 mm wide by 150 mm deep is
loaded by a pure moment, causing compression
at the top of the beam. The maximum
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magnitude of the moment is M = 35.0 kN·m,
which causes plastic deformation. The
modulus is E = 70 GPa.

(a) Determine the size of the elastic core.
(b) If the 35.0 kN·m moment is removed,
determine the residual stress at the top of the
cross-section.

12.6 A simply supported built-up steel I-beam
supports distributed load w. Steel has modulus
E = 200 GPa and yield strength Sy = 250 MPa. 

Determine the limit load wL (a) neglecting
the contribution of the web and (b) including
the web (i.e., the entire cross-section is
yielding).

12.7 A steel shaft, 100 mm in diameter and
1.0 m long, is loaded in torsion with torque T.
For steel, G = 77 MPa and τy = 150 MPa.

Determine the (a) torque at which plastic
deformation first occurs Ty and (b) the limit
torque TL. (c) If T = 30 kN·m, determine the
size of the elastic core, re and (d) the angle of
twist of the shaft.

12.8 Determine the limit torque of a hollow
shaft, outer diameter D = 75 mm and inner

diameter Di = 50 mm. The shear yield strength
is  τy = 150 MPa.

12.9 A solid copper shaft (Dc = 10 mm) is in a
protective steel sleeve (Ds = 18 mm). The
system is subjected to a torque T. The material
properties are:

Steel: Gs = 75 GPa, τys = 150 MPa

Copper: Gc = 45 GPa, τyc = 100 MPa

The steel–copper interface is well bonded.
Recall that in torsion, due to symmetry, radii
must remain straight; thus, strain γ is linear
with distance r from the shaft axis.

(a) Determine the total torque applied to
the shaft so that the steel at the interface just
reaches its yield strength. (b) If the shaft is now
unloaded from the condition given in Part (a),
determine the residual stress as a function of
radius r.

12.10 Truss ABCD is subjected to downward
force F at joint C. The truss is in the form of a
square, with sides of length L. Members AB,
BC, CD, and DA each have cross-sectional area
A, and diagonals AC and BD each have cross-
sectional area . The diagonals are not
joined at their centers. 

Determine the load–displacement diagram,
F–v, as the load is increased from zero to the
limit load FL.

2A
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12.3 Limit Loads in Beams: Plastic 
Hinges

12.11 The free end of a cantilever is
supported by a roller. The beam is subjected to
central point load P. The limit moment for the
cross-section is ML . 

Using plastic hinges, estimate (a) a lower
bound and (b) an upper bound to the limit load
PL .

12.12 Two cantilever beams, both of length
3.0 m, are joined at their free ends by a roller
bearing. Such a situation arises when building
a bridge of beams having insufficient length to
cross the entire span. Load P is applied 1 m to
the right of the connection.

If the limit bending moment of the section
is ML = 40 kN·m, estimate the limit load PL
using plastic hinges. Bracket PL between a
lower and an upper bound.
 

12.4 Limit Surface for Rectangular 
Beam – Combined Loading

12.13 Axial compressive load N is applied
with eccentricity e on the y-axis of a square
cross-section having sides D. The yield
strength is Sy .

If e = D/2, determine the values of the
force N/NL and moment M/ML at the limit
condition.

12.14 Using the ASME limit surface
conditions, determine if the following
rectangular aluminum beams:

(1) fall within the factor of safety line,

(2) fall within the limit surface, or

(3) fall outside of the limit surface.

Sy = 35 ksi. The bending moment acts about
the z-axis. Dimensions b and d are defined by
the figure below.

Breadth
b (in.)

Depth
d (in.)

N
(lb)

Mz
(lb-in.)

(a) 2 4 200 200
(b) 2 4 100 240
(c) 4 2 100 100
(d) 4 2 200 150
(e) 2 6 250 420
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12.5 Design Applications in Plasticity

12.6 Three-Dimensional Plasticity

12.15 Force F = 16.0 kN is applied at the end
of a cantilever beam, angle α below the
horizontal. The system geometry is b = 50 mm,
d =100 mm, and L = 2.0 m. The yield strength
is Sy = 250 MPa.

Determine the maximum angle α  such that
yielding does not occur.

12.16 A triangular soil (earth) element at
angle θ (from the horizontal) will begin to slide
off a squared-off embankment of height h when
the weight of the triangle overcomes the shear
strength τy of the soil. The soil has mass
density ρ. Assume the soil has a thickness of
unity (1.0) into the paper.

Determine the maximum height of a
squared-off embankment, hmax , in terms of τy ,
ρ and θ.

12.17 Pressure is applied at the edge of a
square-off set of soil. 

Determine the angle of repose θ of the soil
in terms of pressure p and shear strength τy .
Neglect the self-weight of the soil.
Hint: Equate the work done by the pressure to
the work required to cause slipping.

12.18 Consider the punch problem of
Example 12.14 and the half-cylinder element
bound by the dotted line shown below. Assume
that under pressure p, applied over punch width
d, that a half-cylinder rotates out. Let

.

Determine the upper bound for pressure p.
Compare this to the upper bound determined in
Example 12.14.

12.7 Thermal Cyclic Loading: 
Shakedown and Ratcheting 

12.19 A steel pipe, outer diameter
D = 150 mm and thickness t = 10 mm, carries
steam at temperature ΔT above the outside
temperature. The pressure in the pipe is
20 MPa. Steel has properties E = 200 GPa,
Sy = 400 MPa and α = 14×10–6/°C. Use a two
bar-system to model the pipe as follows: 

two parallel bars of length equal to the
average of the inner and outer
circumferences, both having a width of
half the pipe thickness. Both bars have the
same depth (into the paper); take the depth

τy Sy 3⁄=
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as unity (1.0). Only the inner bar is loaded
by temperature ΔT. The mechanical stress
in each bar is approximated by the hoop
stress. Assume that the mechanical stress
(due to pressure) is constant with time, and
that the thermal load cycles.

(a) Approximate the temperature ΔTy to
cause yielding in the cool bar, corresponding to
yielding of the outside of the pipe. (b) Estimate
the shakedown limit ΔTs of the system,
assuming the pressure remains constant and the
temperature cycles by ΔTs.

12.20 Bar 2 is twice as long as Bar 1; both
have the same cross-sectional area A. Both bars
are made of the same material with properties
E, Sy, and α. A downward force F is applied to
the rigid boss; the boss ensures both bars have
the same elongation. Bar 2 is subjected to
thermal cyclic loading that varies from 0 to ΔT.

Hint: Define normalized quantities:

s1 = σ1/Sy s2 = σ2/Sy

p = F/A t = Eα ΔT

(a) Develop expressions for the
mechanical stress in each bar σm1 and σm2 ,
due only to the applied force. (b) Develop an
expression for the temperature load such that
Bar 1 will just yield ΔTy . (c) Develop an
expression for the shakedown limit ΔTs .
(d) Plot the elastic, shakedown, and ratcheting
regions on a t–p diagram (map). (e) Consider
the case for L1 = 0.4 m, L2 = 0.8 m, with each
bar having area A = 0.0001 m2. Take the
material to be aluminum, E = 70 GPa,

Sy = 240 MPa, and α = 23.6×10–6/°C. If a
downward force of F = 20.0 kN is applied to
the rigid boss, determine the maximum
temperature load ΔT to avoid shakedown, and
the maximum temperature load to avoid
ratcheting.

12.8 Large Plastic Strains

12.21 A cylindrical pressure vessel is
subjected to increasing pressure p until plastic
instability takes place. The unpressurized
radius and thickness are R and T, respectively.
The pressurized radius and thickness are r and
t. The yield strength is Sy .

Considering 3D plasticity, determine the
strain in the hoop direction at plastic instability.
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13.1 An Introduction to Fracture 
Mechanics 

13.1 An adhesive tape w = 40 mm wide is
pulled off of a substrate by distance
a = 100 mm. The energy of adhesion of the
tape with the substrate is Gc = 1.2 kJ/m2.

Determine the load to peel off the tape for
the following two conditions: (a) constant force
Pa applied normal to the substrate and (b)
constant load Pb applied parallel to the
substrate.

13.2 A cylindrical metal bar of radius R is
coated by a thin protective ceramic layer of
thickness t. The system is subjected to average
axial stress σ applied over the entire cross-
section. The modulus of the bar is Eb , and of
the coating is Ec (Ec > Eb ). Neglect any
Poisson effect.

If the interphase (the intermetallic
compound formed at the boundary of the two
materials) has toughness Gc , determine the
applied stress σ at which debond occurs
between the coating and the metal bar. When
debonding occurs, take the stress in the coating
to be zero over debond length a, and that in the
bar to be .

Hint: Before debonding (crack growth),
compatibility requires the axial strain in each

component to be the same, εb = εc . The axial
stresses are different and must be in
equilibrium with the applied load:

.

13.3 A thin steel plate (E = 200 GPa,
Sy = 250 MPa) of width 2W has a center crack
of width 2a = 3.0 mm.

If the applied stress is σ = 200
MPa, determine the stress intensity factor
K for the following geometries (a) 2W >> 2a,
(b) 2W = 8(2a), and (c) 2W = 4(2a).

13.4 A thin plate with an edge crack
a = 2.0 mm long is subjected to an applied
stress σ = 170 MPa. 

 Determine the stress intensity factor if
(a) 2W >> 2a and (b) 2W = 4(2a).σ ′

Aσ Abσb Acσc+=
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13.5 A steel pipe, diameter 2R and thickness t,
transports gas at pressure p. A longitudinal
crack, length 2a, exists through the thickness of
the wall (gas is leaking, but there is hoop stress
in the wall). Young’s modulus is E.

Determine (a) the energy release rate G
and (b) the stress intensity factor K.

13.2 Design Considerations

13.6 Consider a thin-walled pipe made of
pressure vessel steel, with Sy = 500 MPa and

. A semi-circular (semi-
elliptical) surface crack may grow from the
outside (or inside) of the pipe, through the pipe
wall. The crack has length 2a and the crack
depth a is less than the wall thickness t.

Estimate the maximum value of 2a so that
the pipe does not fracture (i.e., it leaks before
breaks).

13.7 Consider a steel pressure vessel of
diameter D = 1.0 m and wall thickness

t = 15 mm. Inspection of the vessel finds a
semi-elliptical surface crack 10 mm long. The
yield strength is 1400 MPa, and the fracture
toughness is . 

 Determine if fracture will occur due to an
internal pressure of p = 20 MPa.

13.8 Before a rocket is launched, a pressure
test is performed on a (thin-wall) cylindrical
rocket casing. The yield strength is
Sy = 300 MPa, and the fracture toughness is

. To establish that no large
cracks exist, a proof test is performed at 7/8 of
the pressure at yielding (at failure). 

If the casing does not fail during the test,
determine the largest possible crack that can
exist in the system.

13.9 An aluminum plate is 2W = 500 mm
wide and t = 6.0 mm thick. The yield strength
is Sy = 300 MPa and the fracture toughness is

. A center crack of total
length 2a is found in the plate. The plate is
subjected to an applied stress σ, which is
increased from zero until failure.

(a) If the applied stress required to fracture
the plate is σa = 150 MPa, determine the crack
length 2a. (b) Determine the maximum value
of 2a such that the plate will fail by yielding
(plastic deformation) and not by fracture.

13.10 To make an electronic device, a thin
layer of copper, thickness t, is deposited on a
substrate of silicon, thickness D. The layer is

KIc 150 MPa m=

KIc 75 MPa m=

KIc 150 MPa m=

KIc 24 MPa m=



www.manaraa.com

Problems: Chapter 13 Effect of Flaws: Fracture PP639

very thin, t << D. The modulus of the substrate
is E and of the copper is Ec . The interphase (the
intermetallic compound between the copper and
the substrate) has a toughness of Gc . The
system is subjected to bending moment M. 

If the width of the system into the paper is
B, determine the moment required to initiate
debonding of the copper from the substrate.

13.3 Crack Stability

13.11 A steel cantilever beam has a central
longitudinal crack of length a = 13 mm. The
breath of the beam is b = 10 mm and its total
depth is d = 20 mm. Steel has a modulus of
E = 200 MPa and a critical energy release rate
of Gc = 0.2 MJ/m2. 

(a) Determine the load Pc to cause crack
initiation. (b) If the tearing modulus is
T = 200 MJ/m3, will the crack continue to grow
if P = Pc remains constant? (c) Repeat Parts
(a) and (b) for aluminum (E = 70 GPa,
Gc = 0.02 MJ/m2, and T = 2.7 MJ/m3).

13.4 Modes of Fracture

13.5 Thin Film on a Substrate: 
Spalling

13.6 Statistical Design with Brittle 
Materials

13.12 A plate to be tested in tension is made
of a ceramic with the following Weibull
parameters: So = 300 MPa, Vo = 0.11×10–6 m3,
and m = 5. The test specimen has dimensions
40 mm wide by 80 mm long, with a thickness
of 2 mm.

(a) Determine the survival probability for
an applied tensile stress of 100 MPa. (b) If the
volume is doubled, determine the new survival
probability at 100 MPa.

13.7 The Effect of Non-Uniform 
Stress in Statistical Design

13.13 A MEMS cantilever beam has length
L = 1000 μm, breadth b = 10 μm, and depth
d = 4 μm. The system is made of silicon
carbide, with Weibull parameters
So = 300 MPa, Vo = 0.11×10–6 m3, and m = 5. 

Determine the tip load P that can be
applied to assure a reliability of 0.999.
 

13.14 Consider a ceramic shaft of radius R
and length L which transmits a torque T. The
shear stress at any distance for the axis of the
shaft is τ(r) = (r/R)τmax. Failure occurs due to
tensile stress. At 45° from the torsion axis, the
tensile stress is σ (r) = τ (r); this is the
maximum principal stress at that stress point.
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Determine the load factor λ for the shaft in
torsion. The reference stress, reference volume,
and Weibull modulus are So , Vo , and m.

13.8 Determining Weibull Parameters

13.15 One-hundred three-point bend tests are
performed on a new ceramic material. The
maximum bending stress in the beam is σmax ,
and the corresponding number of surviving
samples n, are given in the table. The volume
tested is the standard beam: 80 mm long and
10×10 mm square. Take the reference volume
Vo to be the volume of the beam.

Estimate (a) the reference stress So and (b)
the Weibull modulus m.

13.9 Strength of Fiber Bundles: 
Global Load Sharing

13.16 A bundle of fibers has a total length of
3.0 m. For a reference length of Lo = 25.4 mm,
the reference stress is So = 1600 MPa and
m = 11. 

Determine the fiber bundle strength.

13.17 The strength of a bundle of fibers is to
be at least 900 MPa. For a reference length of
Lo = 25.4 mm, the mean stress is
σm = 1500 MPa and m = 9.

Determine the maximum total length of
the fibers in the bundle.

σmax
(MPa)

n
σmax

(MPa)
n

200 100 380 60
220 99 400 48
240 98 420 36
260 96 440 24
280 94 460 12
300 90 480 5
320 85 500 2
340 79 520 1
360 70 540 0
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14.1 Simple Fasteners

14.2 Failure in Bolt-type 
Connections: A Basic Analysis

14.1 Two axial members are joined by a
single bolt of diameter D = 0.375 in. The
members are W = 2.0 in. wide, and
a = 0.375 in. and b = 0.50 in. thick,
respectively. The members support a force of
P = 8000 lb.

Determine (a) the net section stress in the
left member, (b) the bearing stress between the
bolt and the left member, (c) the bearing stress
between the bolt and the right member, and (d)
the maximum average shear stress in the bolt.

14.2 Two aluminum members are joined by a
single steel bolt. The geometry of the
connection is: bolt diameter D = 0.375 in.,
plate width W = 2.0 in., plate thicknesses
a = 0.375 in. and b = 0.50 in., and edge
distance e = 0.5 in. The yield, shear yield, and
bearing yield strengths are:

Aluminum:

Sy = 35 ksi, τy = 20 ksi, SBy = 65 ksi

Steel bolt: 

τy = 35 ksi, SBy = 90 ksi

Determine the strength of the joint.

14.3 Aluminum truss ABC is subjected to a
downward force of 20.0 kN. Members AB and
BC are W = 36 mm wide and t = 8.0 mm thick.
BC is 1.00 m long. The modulus of aluminum
is 70 GPa. The diameter of each pin is
D = 10.0 mm.

Determine (a) the shear stress in the pin at
joint A (assume single shear) and (b) the
bearing stress between pin A and member AB.

14.4 A bridge is L = 20 ft long and is
supported at four points by large pins, 4.0 in. in
diameter (two pins and two rollers). Each pin
has an allowable average shear stress of 12 ksi,
and is in double shear.

Considering only shear in the pins,
determine the allowable distributed load on the
bridge.
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14.5 Two steel bolts join two aluminum
plates. The geometry is: a = 0.500 in.,
b = 0.750 in., D = 0.375 in., and W = 5.00 in.
The allowable stresses in the plates are: 

axial: 20 ksi, shear: 12 ksi, bearing: 36 ksi, 

and for the bolts: 

shear: 12 ksi, bearing: 36 ksi.

(a) Considering only the plates, determine
the allowable load PAp . (b) Considering only
the bolts, determine the allowable load PAb.
(c) It is desired to modify the joint geometry so
that the allowable load is at least P = 10,000 lb.
If necessary, determine the new required bolt
diameter and plate thicknesses. If stock bolts
are available in 1/16th increments, select the
appropriate bolt. If thicker plates are required,
and are available in 1/32th increments, select
the appropriate plate thickness. Plate width W
cannot be changed.

14.6 Two 100 mm wide plates are joined
using two bolts. The plate thicknesses are
a = 12 mm and b = 10 mm. The diameter of
each fastener is D = 8.0 mm. 

(a) Determine the shear and bearing
stresses on the bolts. (b) Replace the left
member by two plates, each 6.0 mm thick, and
redo the calculations. (c) Explain the
advantage(s) of the second configuration.

14.7 Three steel plates, each 0.90 in. thick, are
joined by three bolts, each of diameter 0.75 in.

(a) If P = 15 kips, what is the maximum
bearing stress acting on the bolts. (b) What
force, Pult , is required to fail the bolts in shear
if the ultimate shear strength of the bolt
material is 32 ksi.

14.8 Two axial members are joined together
by two rivets. At the joint, the members have
an increased area. The geometry is:
W1 = 1.0 in., W2 = 2.0 in., D = 0.25 in., and
t = 0.30 in.

Assume the rivets are strong enough. If the
joined members have yield strength 35 ksi and
bearing yield strength 65 ksi, determine the
strength of the joint.
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14.9 Vintage pressure vessels and boilers were
made by rolling metal sheets into a cylinder,
and riveting the seams together. Such a vessel
has a diameter of 2R = 3.0 ft, a thickness of
0.5 in., and contains steam at 200 psi. The
vessel and rivets are both steel, with allowable
normal stress Sy = 10 ksi, allowable shear
stress 6.0 ksi, and allowable bearing stress
18 ksi. The rivets have a diameter of
D = 0.75 in.

Determine (a) the stresses in the vessel
wall and (b) the maximum and minimum
allowable center-to-center distance between
rivet centers, emax and emin .

14.10 Two shafts are joined together by four
bolts at their mating circular flanges. The shaft
transfers 25.0 kW of power at 120 rad/s. The
bolt-circle (circle of bolts) has a radius of
R = 100 mm and the diameter of each bolt is
D = 15 mm. The thickness of each flange is
t = 10 mm.

Determine (a) the force on each bolt,
(b) the bearing stress on each bolt, and (c) the
shear stress in each bolt.

Hint: The force supported by each bolt is
proportional to its distance from the centroid of
the bolt distribution (here the center of the
shaft). Here, all bolts are equidistant from
centroid.

14.11 The knuckle joint is made of a steel
yoke (clevis) and rod: E = 30,000 ksi,
Sy = 36 ksi, τy = 20 ksi, and bearing yield
strength SBy = 65 ksi. The pin is made of steel:
E = 30,000 ksi, Sy = 50 ksi, τy = 27 ksi, and
bearing yield strength SBy = 90 ksi.

Design the joint (select all dimensions, d,
w, a, b, e, and D) so that the joint can support
an allowable force of 20.0 kips.   Use a factor
of safety of 2 against all strengths.

14.3 Failure of Bolt-Type 
Connections: An Advanced 
Analysis

14.12 A lap joint with five bolts in line with
the applied load joins two metal members. The
geometry is D = 10 mm, W = 80 mm, and
t = 10 mm. Distance e is large enough so one
hole does not affect the stress concentration at
its neighboring hole(s). The applied load is
P = 20.0 kN.

Determine (a) the average bearing stress
on each bolt and (b) the by-pass stress in the
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first bolt. (c) Determine the maximum tensile
stress at the hole surface at the first bolt due to
the bolt load and (d) due to the bypass stress.
(e) Determine the efficiency of the connection
considering only the tensile stress at the hole
surface if Sy = 250 MPa.

14.4 Stress Distribution in Adhesive 
Lap Joints in Shear

14.13 An adhesive (G = 2.0 GPa) is used to
join two aluminum plates (E = 70 GPa). Each
plate is t1 = t2 = 5.0 mm thick and
W = 300 mm wide. The plates overlap by
L = 50 mm. The thickness of the adhesive is
t = 0.100 mm. The applied load is P = 15.0 kN.

Determine (a) the maximum stress in the
adhesive and (b) the shear stress concentration
factor.

14.14 Repeat Prob. 14.13 for t1 = 7.5 mm and
t2 = 5.0 mm. Determine the stress and stress
concentration factor at each end of the joint.

14.5 Design Problem

14.15 Two cylinders that make up part of the
fuselage of a small airplane are joined together.
The cylinders are made of sheet aluminum

(E = 10,000 ksi), and are 5.0 ft in diameter and
0.20 in. thick. A lap joint is to be used to join
the cylinders as detailed in Figure (b). The
cylinders are t1 = t2 = 0.10 in. thick at the joint.
The shear modulus and allowable shear stress
of the adhesive are G = 250 ksi and
τallow = 1.0 ksi, respectively. The joint must
support an allowable tensile force of 5000 lb.

Determine the minimum length of the
overlap L.

14.16 Two cylinders that make up part of the
fuselage of a small airplane are joined together.
The cylinders are made of a carbon/epoxy
composite, with modulus in the fuselage
direction of E = 6200 ksi. The cylinders are
5.0 ft in diameter and 0.40 in. thick. The
cylinders are t1 = t2 = 0.20 in. thick at the lap
joint. The shear modulus and allowable shear
stress of the adhesive are G = 250 ksi and
τallow = 1.0 ksi, respectively. The joint must
support an allowable tensile force of 5000 lb.

Determine the minimum length of the
overlap L.
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14.17 Two cylinders that make up part of the
fuselage of a small airplane are joined together.
The cylinders are made of sheet aluminum
(E = 10,000 ksi) and are 5.0 ft in diameter and
0.20 in. thick. A lap joint is to be used to join
the cylinders as detailed in Figure (b). The
cylinders are riveted together with rivets having
an allowable shear stress of τallow = 10 ksi. The
diameter of each rivet is D = 0.20 in. The joint
must support an allowable tensile force of
5000 lb.

Determine the maximum center-to-center
spacing of the rivets.
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Problems: Chapter 15 Composites

15.1 Composite Materials

15.2 Properties of a Lamina (Ply)

15.3 Approximating the Elastic 
Properties of a Lamina

15.1 A steel reinforced concrete column is
subjected to a compressive load of
F = 48.0 kips, applied through a rigid plate at
the top of the column. The steel reinforcements
are six steel members that have a total area of
As = 6.0 in.2. The total cross-sectional area of
the column is A = 36 in.2. The material
properties are:

Steel:         Es = 30×106 psi

Concrete:  Ec = 4×106 psi.

Neglecting the Poisson effect, determine
(a) the stress in the steel σs , (b) the stress in the
concrete σc , (c) the change in length of the
column, and (d) the effective Young’s modulus
of the system Eeff , i.e., the average applied
stress (F/A) divided by the axial strain.

15.2 Composite materials are designed to take
advantage of the properties of two different
materials. A titanium matrix composite is
reinforced with unidirectional silicon carbide
(ceramic) fibers in the direction of the applied
load (Figure (a)). These fibers are on the order

of 100 μm in diameter. The total cross-
sectional area of a composite system is A,
while the area of the fibers is Af . The fiber area
fraction is f = Af /A which is also the fiber
volume fraction since a unidirectional
composite can be thought of as an extrusion of
the cross-section. 

The modulus of titanium is 115 GPa and of
silicon carbide is 360 GPa. The volume
fraction of the fibers is f = 0.35. The applied
stress is σ = 400 MPa and the total cross-
sectional area of the composite is
5.00 mm by 100 mm.

Determine (a) the stress in the titanium
matrix σm , (b) the stress in the ceramic fiber
σf , (c) the strain in the fiber and the matrix ε
(they are the same), and (d) the effective
Young’s modulus of the system Eeff , i.e., the
applied stress σ divided by the axial strain ε.

15.3 Approximate the elastic properties – Ex ,
Ey , G, νxy , and νyx – for a graphite/epoxy
lamina (ply) with fiber volume fraction
f = 0.57.

Graphite: Ef = 400 GPa, νf = 0.2,
Gf = 170 GPa

Epoxy: Em = 3 GPa, νm = 0.4,
Gm = 1.2 GPa

Compare the results with those found in
Table 15.4.
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15.4 Approximate the elastic properties – Ex ,
Ey , G, νxy and νyx – for an E-glass/epoxy
lamina (ply) with fiber volume fraction
f = 0.60.

Carbon: Ef = 72 GPa, νf = 0.2, 
Gf = 30 GPa

Epoxy: Em = 3 GPa, νm = 0.4,
Gm = 1.2 GPa

Compare the results with those found in
Table 15.4.

15.5 Approximate the elastic properties – Ex ,
Ey , G, νxy , and νyx – for a boron/aluminum
lamina (ply) with fiber volume fraction
f = 0.50.

Boron: Ef = 400 GPa, νf = 0.2,
Gf = 170 GPa

Aluminum: Em = 70 GPa, νm = 0.33,
Gm = 26 GPa

Compare the results with those found in
Table 15.4.

15.6 The metal matrix composite (MMC)
consists of alumina (Al2O3) fibers in a matrix
of an aluminum alloy (Al–4.5 Mg) with fiber
volume fraction f = 0.40. The modulus of each
constituent is:

Alumina: Ef = 285 GPa

Aluminum: Em = 70 GPa 

The yield strength of the matrix is
Sy = 250 MPa. Neglect the Poisson effect.

(a) Determine the elastic modulus Ex of a
unidirectional lamina in the fiber-direction.
(b) An average stress of σ = 200 MPa is
applied to the composite in the fiber direction.
Determine the stress in the fiber σf and in the
matrix σm .

15.7 Repeat Prob. 15.6 but include the
residual stress due to processing the composite
as described below. Neglect the Poisson effect.

A metal matrix composite (MMC) consists
of alumina (Al2O3) fibers in a matrix of an
aluminum alloy (Al–4.5 Mg). The fiber fraction
is f = 0.40. The modulus and coefficient of
thermal expansion α of each constituent are:

Alumina: Ef = 285 GPa

αf = 6.0×10–6/°C

Aluminum: Em = 70 GPa 

αm = 23×10–6/°C
The yield strength of the matrix is
Sy = 250 MPa. Neglect the Poisson effect.

(a) The composite is formed at 600°C, and
then cooled to room temperature (20°C).
Assuming there is no stress at the processing
temperature, estimate the axial residual stresses
at room temperature in each constituent σ f,R
and σm,R . (b) An average stress of
σ = 200 MPa is now applied to the composite
in the fiber direction. Determine the stress in
the fiber σf and in the matrix σm .

15.4 Laminates

15.8 You are to design fiber lay-ups for
different composite systems, i.e., specify the
ply angles: “0°” (a ply in the load direction),
“90°” (a ply transverse to the load), or ±θ° (two
plies at ±θ to the load direction. 
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Note: If you have +θ, you also need –θ to avoid
shear incompatibility). 

Assume that each structure is to be four
plies thick. Also, for combined loading,
assume that the cross-section can be designed
such that each type of load is supported
independently by different parts of the section.
E.g., in flanged beams, the flange supports
bending and the web supports shear.

Qualitatively design the lay-up of: 

(a) an I-beam (four-ply lay-up in both the
web and the flange), (b) a torsion box that
supports both torsion, and bending about the z-
axis and (c) a tube that is to support both
torsion and tension.

15.9 The two-ply lay-up model of a carbon/
epoxy composite ( f = 0.60) panel is θ = ±20°
(the plies are ±20° from the load direction).
The carbon/epoxy ply properties are given in
Tables 15.4 and 15.5.

(a) Determine the global stiffness of the
composite. (b) If the applied load is
σ = 250 MPa, determine the stresses in each
ply. (c) Determine the factor of safety of the
system.

15.10 The two-ply lay-up model of a
graphite/epoxy composite ( f = 0.57) panel is
θ = ±20° (the plies are ±20° from the load
direction, see Prob. 15.9). The graphite/epoxy
ply properties are given in Tables 15.4 and
15.5.

(a) Determine the global stiffness of the
composite. (b) If the applied load is
σ = 250 MPa, determine the stresses in each

ply. (c) Determine the factor of safety of the
system.

15.11 The two-ply lay-up model for a SiC/Ti
(silicon carbide fiber/titanium matrix)
composite is 0°/90°. The modulus of titanium
is 115 GPa, and of silicon carbide is 360 GPa.
The volume fraction of the fibers is f = 0.35.

(a) Determine the elastic properties of the
laminate. (b) Determine the stress in each ply if
the applied stress is σ = 400 MPa.

15.12 A thin-walled cylindrical pressure
vessel is manufactured from a glass/epoxy
composite (Tables 15.4 and 15.5). Half of the
plies are oriented at +θ from the hoop
direction, and half at –θ. The vessel has
average radius R and thickness t. The tensile
strength of the fibers is Su,t .

If the fibers are to be oriented so that each
ply is subjected to tensile stresses only (no
compressive or shear stresses), determine the
optimum value of the fiber angle θ.



www.manaraa.com

Problems: Chapter 16 Smart Systems PP649

Problems: Chapter 16 Smart Systems

16.1 MEMS

16.1 Because the dimensions of MEMS
beams are measured in microns, a variation in
size of just a micron means that the calculated
and actual stiffnesses of as-manufactured
beams can differ significantly. The actual
stiffness can be calibrated against a beam
whose stiffness is known accurately
(Prob. 16.2).

(a) A manufactured SiC (silicon carbide)
MEMS cantilever beam has length 967 μm,
breadth 9.7 μm, and depth 1.8 μm. The
modulus is E = 360 GPa. Determine the
transverse stiffness P/δ of the beam with
respect to a point load at its tip. (b) Compare
the as-manufactured stiffness to the nominal
stiffness of the beam having ideal length
950 μm, breadth 10.0 μm, and depth 2.00 μm.

16.2 The stiffness of a manufactured MEMS
beam is calibrated by comparing it with a beam
whose stiffness to a tip load P is known to be
ko = P/δ = 327 nN/μm. Known beam AC is
built-in at fixed point A, and unknown beam
BC is built-in at movable support B. The beams
contact each other at their mutual tip, point C.
The support of BC is moved normal to the
beam by distance δB , causing tip displacement
δC . Displacements δB and δC are measured.

(a) In terms of known stiffness ko , and
displacements δB and δC , determine the
stiffness of the manufactured beam, BC. (b) If
δB = 9.2 μm and δC = 3.4 μm, determine the
stiffness of BC.

16.3 A MEMS cantilevered system is point-
loaded at point C. Beams AB and BC both have
bending stiffness EI. The connector at point B is
rigid so that the slopes of AB and BC at that
point B are equal. Beam AB is L long. The
design is such that the slope of the structure is
to be zero at the load point (point C). 

Determine the length of the overhang, s, to
achieve this state.

16.4 A device to measure lateral (horizontal)
accelerations has the form shown. The
suspended mass is attached to the fixed base
(the vehicle) through four beams, each of
modulus E, area A, moment of inertia I, and
thermal expansion coefficient α. The beams are
much longer than the heights of the beam
connector and moving mass, so the latter two
can be considered rigid. The moving mass is
vertical distance h above the fixed base.

Determine the change in spacing, Δh,
when the device is subjected to a temperature
ΔT. What is the advantage of this set-up?
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16.5 A device to measure lateral accelerations
has the form shown (see also Prob. 16.4). The
beams are typically of length L = 1000 μm, and
have square cross-section b = d = 10 μm. An
inertial force ma is exerted on the suspended
mass when the fixed base (i.e., the vehicle)
accelerates by a.

Manufacture is such that thicknesses b and
d can vary by ±1 μm. Determine the percentage
variation of the stiffness k = ma/δ  of such
manufactured devices due to this variation.

16.2 Parallel Plate Capacitors

16.6 The capacitance C of parallel plates can
be used to measure the distance d between
them.

Plot capacitance versus distance for the
case of a = 10 mm, b = 10 mm, with d varying
from 5 to 50 μm. Only air exists between the
plates.
 

16.7 Two parallel plates each have an area of
A = 4.0 mm2 and an air gap between them of x.

(a) Determine the extreme values of the
capacitance if x can have extreme values of 1.0
and 25 μm. (b) If the plates are initially 5.0 μm
apart, determine the change in capacitance if
the plates are moved apart an additional
1.0 μm.

16.8 Two parallel plates, both
1000 by 200 μm, are separated by distance x. 

(a) A voltage of V = 10 V is applied across
the plates. Determine the force on the plates
F(x) required to keep them from moving closer
together. (b) For this case, determine the
effective stiffness of the plate system (i.e.,
k = dF/dx).
 

16.9 Two parallel plates are distance x apart.
The plates have an area of A = 4.0 mm2 and are
subjected to a voltage of V = 15 V.

(a) Plot the force F to keep the plates from
moving versus plate distance x, for values of x
from 1 to 25 μm. (b) Estimate the value of the
force when electrostatic breakdown (arcing) is
expected to occur, assuming a breakdown
voltage gradient of 40×106 V/m.

16.3 Capacitive Accelerometer

16.10 A suspended plate is supported by four
cantilever beams. The suspended plate has
mass 3×10–9 kg, and area A = 120×10–9 m2.
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The beams each have length L = 200 μm and
square cross-section of sides B = 6 μm. With
no acceleration, the suspended plate is
d = 5 μm from each of the fixed plates (the
fixed plates are attached to a moving vehicle).
When the vehicle accelerates, the suspended
plate moves closer to one of the fixed plates
(Figure (b)). 

(a) Determine the stiffness of the
cantilever system. (b) Determine the difference
in capacitances ΔC = C1 – C2 due to an
acceleration of magnitude |a| = 5g. C1 is the
capacitance between the upper and lower plates
and C2 is the capacitance between the
suspended and lower plates.

16.4 Electrostatic Snap-Through in 
MEMs Devices

16.11 A suspended plate is supported by four
cantilever beams. Each plate has an area of
A = 120×10–9 m2. The beams each have length
L = 200 μm and square cross-section of sides
B = 6 μm. In the equilibrium condition, the
plates are d = 5 μm from each other. Voltage V
is applied across the plates. 

(a) Determine the stiffness of the
cantilever system. (b) Determine the voltage to
cause snap-through.

16.5 Comb Drive

16.12 Two plates are b wide and are separated
by an air gap d. They overlap by distance a. 

When voltage V is applied across the
plates, determine the ratio of the vertical
attractive force to the horizontal attractive
force.

16.13 A suspended plate of an accelerometer
is supported by four cantilever beams. Each
plate has area a = 600 μm by b = 200 μm. The
suspended plate has a mass of 3×10–9 kg. The
beams each have length L = 200 μm, and
square cross-section of sides B = 6 μm. In the
equilibrium condition, the plates are d = 5 μm
from each other. 

(a) Determine the stiffness of the
cantilever system. (b) Due to acceleration of
the device, the suspended plate moves parallel
to the fixed plate by distance x (Figure (b)).
Determine the change in capacitance of the
parallel plates if x = 40 μm. (c) If the
acceleration of the device has magnitude
|a| = 5g, determine the capacitance of the
parallel plates.
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16.14 A schematic of a device used to apply
small compressive loads to small specimens is
shown. The device consists of several sets of
comb pairs. Only two pairs are shown. 

Each comb pair consists of cantilevered
arm AB fixed at point A, and wing CD which is
cantilevered from point D on rigid and
moveable trunk ED. The arms and wings are
355 and 400 μm long, respectively, and are
23 μm apart. The comb teeth are 15 μm long,
at 7 μm intervals. The arm and wing combs
overlap by 7 μm, and are 1.5 μm apart. The
breadth of the combs is 12 μm (into the paper).
The bending stiffness of the arms and wings is
EI = 8.12×10–10 N·m2.

Voltage is applied across the combs, and
they attract each other. Wings CD approach
arms AB, moving trunk ED upward,
compressing the micro-specimen.

(a) Determine the force generated by one
pair of combs on specimen EF, when the
applied voltage difference between the arms
and the wings is 50 V. (b) Approximate the
deflection of tip point B of arm AB.

(based on M.T.A. Saif and N.C. MacDonald, “A
Millinewton Microloading Device,” Sensors and
Actuators, A52, Elsevier Science B.V., 1996).

16.6 Piezoelectric Behavior

16.15 A piezoelectric material having the
piezoelectric constants given in Table 16.1 is
placed between two electrodes. The system is
loaded by a compressive stress of
σ3 = –200 MPa along the poling direction, as
shown.

Determine the magnitude of the voltage
induced across the electrodes.

16.16 A piezoelectric material having the
piezoelectric constants given in Table 16.1 is
placed between two electrodes. The short-
circuited modulus is Y = 66 GPa. An electric
field of E3a = –50 kV/m is applied across the
electrodes, causing the distance between
electrodes to decrease. In other words, E is
opposite the poled direction, the voltage drop is
negative, or the source voltage V3a is negative.
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Determine the strain (a) in the poling (3-)
direction and (b) in the transverse directions.

16.17 Combine the applied stress and applied
electric field from Prob. 16.15 and Prob. 16.16.
Take Poisson’s ratio to be ν = 0.2.

Determine the strain (a) in the poling (3-)
direction and (b) in the transverse (1-, 2-)
directions.

16.18 Piezoelectric materials can be used in
micro-pump systems. A stack actuator is
subjected to an AC electrical signal,
v(t) = 12 sin(360t) V. The stack is made of
PZT4, with d33 = 285×10–12 m/V. The stack
has a total height of 8 mm and each PZT layer
is t = 100 μm thick.

Determine the double amplitude 2δmax
(the stroke length) of the piezoelectric stack.

16.7 Piezoelectric Bending

16.19 A cantilever bimorph made of PZT4 is
used to cause an upward displacement of δ by
applying voltage V. The bimorph has length
L = 20 mm, layer thickness t = 0.150 mm, and
width B = 1.2 mm (into the board). The PZT
materials has short-circuit modulus Y = 66 GPa

and piezoelectric charge constant d31 =
–122×10–12 m/V.

Determine the displacement δ for an
applied voltage of V = 15 V.

16.8 Shape Memory Alloys

16.20 Two wires are tested in tension in a
strain-controlled test at room temperature. The
first wire is steel, with Es = 200 GPa and
Sy,s = 500 MPa. The second wire is nitinol,
En = 70 GPa and Sy,n = 450 MPa (assumed to
be the same for all phases). The low-
temperature twinned-martensite transforms
into stress-induced martensite at room-
temperature when σ = Str = 350 MPa, with a
transformation strain of εT = 4.9%.

(a) If both systems are loaded to a stress of
σ = 400 MPa, determine the difference in
strain between the steel and transformed
nitinol. (b) Determine the strain in the nitinol
when the stress is removed.

16.21 Truss ABC is subjected to downward
force F = 3.0 kN at joint B at room
temperature. The truss is made of nitinol
(NiTi). This nitinol has modulus E = 70 GPa
(assume E is the same for all phases), and
transforms to stress-induced martensite at
Str = 350 MPa. The transformation into stress-
induced martensite causes the nitinol to
undergo a strain transformation of εT = +5%.
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The cross-sectional area of each bar is
A = 4.0×10–6 m2 and distance L = 15 mm.

Determine (a) the stress in each bar, (b) the
elongation of each bar including the 5%
transformation strain (do the bars actually
transform?), and (c) the downward
displacement v of joint B from its unloaded
position. (d) If the system is now heated to
100°C, and transformation to austenite occurs
(the 5% transformation strain is recovered),
determine the new downward movement of
joint B from its unloaded position. 

Assume the modulus does not change with
temperature, and that the elongations are small
enough that the changes in slope of the truss
members are negligible.
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A.  Trigonometric Formulas and Geometric Properties

Tables A.1 and A.2 give trigonometric formulas and geometric properties for common
shapes. The terms in Table A.2 are defined as follows:

Not all terms are given for all shapes, especially those without an axis of symmetry.

A: Cross-sectional area
cz : Distance from z-axis through centroid 

to furthest material point in y-
direction

: Location of centroid on z-axis in 
figure

cz,max , cz,min : c-Values for sections not 
symmetric about z-axis

: Location of centroid on y-axis in 
figure

cy : Distance from y-axis through centroid 
to furthest material point in z-
direction

J: Polar moment of inertia for round 
sections (for torsion)

Zz , Zy : Section modulus about z- and y-axis, 
respectively: 

;

Iz , Iy : Moment of inertia about z- and y-axis, 
respectively (for bending)

rz , ry : Radius of gyration about z- and y-axis, 
respectively:

;

 z 

 y 

Zz Iz cz⁄= Zy Iy cy⁄=

rz Iz A⁄= ry Iy A⁄=
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Table A.1.  Trigonometric formulas.

Right Triangle
Pythagorean relationships

Definitions

General Triangle
where

Law of Sines

Law of Cosines

Positive quadrants for
sine, cosine, and tangent

Identities

Half and Double-Angle Formulas

Sums and Differences of Angles

Area ab
2

------= α β+ 90°=

c2 a2 b2+=

b2 c2 a2–=

a2 c2 b2–=

αsin βcos a
c
---= =

αcos βsin b
c
---= =

αtan 1
βtan

----------- a
b
---= =

αcsc βsec c
a
---= =

αsec βcsc c
b
---= =

αcot 1
βcot

----------- b
a
---= =

Area ab
2

------ γsin ac
2
------ βsin bc

2
------= αsin= =

Area s s a–( ) s b–( ) s c–( )= s a b c+ +
2

---------------------=

α β γ+ + 180°=

αsin
a

----------- βsin
b

----------- γsin
c

----------= =

c2 a2 b2 2ab γcos–+=

b2 a2 c2 2ac βcos–+=

a2 b2 c2 2bc αcos–+=

θsin2 θcos2+ 1=

1 θtan2+ θsec2=

1 θcot2+ θcsc2=

θsin2 1 2θcos–
2

------------------------=

θcos2 1 2θcos+
2

------------------------=

2θsin 2 θ θcossin=

2θcos θcos2 θsin2–=

α β±( )sin α βcossin α βsincos±=

α β±( )cos αcos βcos αsin βsin+−=
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Table A.2.  Geometric properties of cross-sections.

Square

Diamond

Rectangle

Hollow Rectangle

A d2=

Iz Iy
d4

12
------= =

cz cy
d
2
---= =

Zz Zy
d3

6
-----= =

rz ry
d

12
---------- 0.28868d= = =

A d2=

Iz Iy
d4

12
------= =

cz cy
d

2
------- 0.70711d= = =

Zz Zy
d3

6 2
---------- 0.11785d3= = =

rz ry
d

12
---------- 0.28868d= = =

A bd=

Iz
bd3

12
--------= Iy
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Solid Circle

Hollow Circle

Thin-walled Circle
R = outer radius

Semi-Circle

Table A.2.  Geometric properties of cross-sections.
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Built-up I-beam
d = total depth

, outer rectangle minus inner, or

, parallel-axis theorem 

Channel, 
constant thickness

, outer rectangle minus inner, or

, parallel-axis theorem

Angle, equal leg
thicknesses

Table A.2.  Geometric properties of cross-sections.
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Truss/Space Frame 

Two areas A/2 concentrated 
d apart

Triangle

Hexagon

Half Ellipse

Table A.2.  Geometric properties of cross-sections.
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Quarter Ellipse

Parabola

Half Parabola

Complement of Half 
Parabola

Table A.2.  Geometric properties of cross-sections.
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B.  Representative Properties: Physical, Elastic, and Thermal

Representative densities, elastic
moduli, Poisson’s ratios, and thermal
coefficients are given in Table B.1, in both
SI and US units. There are literally
thousands of materials. The quantities
presented here are for comparison of
various material systems only.

The values listed here should not be
used in the actual design of engineering
systems; the designer should use values

provided by the material supplier and/or
manufacturer.

Key:
ρ : density (kg/m3)
γ : weight density (lb/in.3)
E : Young’s modulus (GPa, Msi)
G : shear modulus (GPa, Msi)
ν : Poisson’s ratio
α : thermal expansion coefficient 

(10–6/°C, 10–6/°F)

Table B.1.  Representative properties of materials, S.I. units (U.S. units). 

Material
ρ (γ )

kg/m3 (lb/in.3)

E
GPa (Msi)

G
GPa (Msi)

ν
α

10–6/°C

(10–6/°F)
Steels and Iron
ASTM A36 (structural) 7850 (0.284) 200 (29) 79 (11.5) 0.3 12 (6.7)
ASTM A710, Grade A 7850 (0.284) 205 (30) 80 (11.6) 0.29 12 (6.7)
Stainless 316 8000 (0.289) 193 (28) 77 (11.2) 0.3 16 (8.9)
Gray cast iron 7150 (0.258) 100 (15) 40 (5.8) 0.26 11.4 (6.3)
Ductile cast iron, annealed 7150 (0.258) 169 (25) 65 (9.4) 0.29 11.2 (6.2)

Aluminum alloys 
Alloy 2014-T6 2800 (0.101) 72 (10.4) 28 (4.1) 0.33 22.9 (12.7)
6061-T6 (structural) 2700 (0.098) 69 (10) 26 (3.8) 0.33 23.6 (13.1)
7075-T6 (aircraft) 2800 (0.101) 72 (10.4) 28 (4.1) 0.33 23.4 (13.0)

Other non-ferrous alloys and metals
Gold, pure, annealed 19,300 (0.697) 77 (11) 27 (3.9) 0.42 14 (7.8)
Nickel Superalloy 8220 (0.297) 207 (30) 80 (11.6) 0.3 13.3 (7.4)
Titanium alloy, 6Al-4V 4430 (0.160) 114 (17) 43 (6.2) 0.34 8.6 (4.8)

Polymers

Epoxy 1250 (0.045) 2.4 (0.35) – –
80–115
(44–64)

Nylon 66 1100 (0.040) 3 (0.44) – 0.39 140 (78)
PVC 1400 (0.051) 3 (0.44) – 0.38 120 (69)

Rubber 1200 (0.043)
0.01–0.1

(0.0015–0.015)
0.003–0.03

(0.0005–0.005)
0.45–0.5 160 (89)

Glass and Engineering Ceramics
Glass 2600 (0.094) 69 (10) 28 (4) 0.23 9 (5)
Alumina, Al2O3 3900 (0.141) 360 (52) – 0.22 7.4 (4.1)
Silicon carbide, SiC 3200 (0.116) 400 (58) – 0.17 4.6 (2.6)
Silicon nitride, Si3N4 3200 (0.116) 300 (44) – 0.3 4 (2.2)

Wood and Concrete
Douglas Fir 
(in bending, parallel ||, 
perpendicular  to grain)

480 (0.017) – –

Concrete, medium strength 2400 (0.087) 25 (3.6) – 0.20 9.9 (5.5)
Concrete, high strength 2400 (0.087) 30 (4.4) – 0.20 9.9 (5.5)

⊥

12 , 0.6⊥||
1.7 , 0.1⊥||( )

4.0 , 28⊥||
2.2 , 16⊥||( )
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 Notes: [a]: in design with Al 6061-T6, the value used for Sy is the minimum expected
value, Sy = 35 ksi = 240 MPa (Aluminum Design Manual, The Aluminium
Association, Inc., 2005).

Table B.2.  Representative properties of materials, SI units (US units).

Material
Sy 

MPa (ksi)

τy
MPa (ksi)

Su
 MPa (ksi)

ε f 
(%)

Steels and Iron
ASTM A36 (structural) 250 (36) 140 (20) 450 (65) 23
ASTM A710, Grade A 450 (65) 260 (38) 495 (72) 20
Stainless 316 310 (45) 180 (26) 620 (90) 30

Gray cast iron – –
200 (29) [T]
650 (94) [C]

–

Ductile cast iron, annealed 330 (48) 170 (25) 460 (67) 15
Aluminum alloys
Alloy 2014-T6 410 (59) 240 (35) 480 (70) 12
6061-T6 (structural) 276 (40) [a] 160 (23) 310 (45) 17
7075-T6 (aircraft) 500 (73) 190 (28) 570 (83) 11

Other non-ferrous alloys and metals
Gold, pure, annealed – – 130 (19) 45
Nickel superalloy 900 (131) 520 (75) 1275 (185) 25
Titanium alloy, 6Al-4V 850 (121) 490 (71) 950 (138) 14

Polymers
Epoxy 30–100 (4–14) – 30–120 (4–17) 3–6
Nylon 66 60 (9) – 75 (11) 150–300
PVC 45 (6.5) – 50 (7) 40–80
Rubber – – 12 (2) 100–800

Glass and Engineering Ceramics
Glass – – 69 (10) –
Alumina, Al2O3 – – 2500 (360) [C] –
Silicon carbide, SiC – – 4000 (580) [C] –
Silicon nitride, Si3N4 – – 3500 (510) [C] –
Wood and Concrete
Douglas fir 
(in bending for tension; parallel || 
and perpendicular  to grain)

– –
[T]

[C]
–

Concrete, medium strength – – 28 (4) [C] –
Concrete, high strength – – 40 (6) [C] –

⊥

100 15( ) ; 2.7 0.4( )⊥||

45 7( ) , 7 1 )( )⊥||

B.  Representative Properties: Strength and Failure Strain

Representative yield strength, ultimate
strength, and failure strains are given in
Table B.2. There are literally thousands of
materials. The quantities presented here
are for comparison of various material
systems only.

The values listed here should not be
used in the actual design of engineering
systems; the designer should use values

provided by the material supplier and/or
manufacturer.

Key:
Sy : yield strength (MPa, ksi)
τy : shear yield strength (MPa, ksi);

estimated from Sy for metals
Su : ultimate strength (MPa, ksi) 

[T] tension, [C] compression
ε f : failure strain, ductility (%), in tension
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C.  Rolled Steel Cross-Sections

Steel beams with cross-sectional shapes
such as I-beams, Channels, and Angles
(with equal and unequal legs), are
manufactured by hot-rolling. These beams
are usually seen during construction of a
commercial building or bridge. They may be
purchased “off-the-shelf” from various steel
companies. The American Institute of Steel
Construction’s Steel Construction Manual
provides tables of the many standardized
sections available and their geometric
properties. 

The figure at right shows a W-Shape or wide-flange shape and the S-shape or
American Standard Shape. The vertical section of the cross-section is the web; the web is
generally designed to support shear forces applied in the y-direction. The horizontal
sections at the top and bottom are the flanges (from the French word for flank). The
flanges are generally designed to support bending moments about the horizontal (z-) axis.

I-beam shapes are designated as follows: W12 × 40 or S20 × 75

• The letter signifies the type of cross-section, W for wide flange and S for standard.
• The first number is the nominal depth, in inches (the exact depth for many S-beams).
• The second number is the weight in pounds per linear foot of the beam, which is 

proportional to its area. The second number is the self-weight of the beam as a 
distributed load. The total weight of a beam is calculated by multiplying the 
second number by the beam’s length in feet. 

For metric I-beams, the depth is given in millimeters and the weight/length
(mass/length) is given in kgf/m.

Tables C.1 and C.2 are a sampling of the many standardized W and S shapes available
(US units); there are many more sizes than presented here. The terms in the tables are
defined as follows: 

Note: The values listed in Tables C.1 and C.2 should not be used for design; the
appropriate manufacturer’s data should be used.

A: gross cross-sectional area w: thickness of web

d: total depth of beam Iz , Iy : moment of inertia about z- and y-axis, respectively

b: width (or breadth) of flange Zz , Zy : section modulus about z- and y-axis, respectively

 f: thickness of flange
rz , ry : radius of gyration about z- and y-axis, 

respectively

Left : W-shape (wide flange) and 
Right : S-shape (American Standard).
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Data for I-beam shapes from the Steel Construction Manual. Copyright © American
Institute of Steel Construction, Inc. Reprinted with permission. All rights reserved.

Table C.1.  Selected W-shapes (Wide Flange Shapes), US units.

Cross-section Flange Web About z-axis About y-axis

Designation A (in.2) d (in.) b (in.) f (in.) w (in.) Iz (in.4) Zz (in.3) rz (in.) Iy (in.4) Zy (in.3) ry (in.)

W24 × 104 30.6 24.06 12.750 0.750 0.500 3100 258 10.1 259 40.7 2.91
W24 × 68 20.1 23.73 8.965 0.585 0.415 1830 154 9.55 70.4 15.7 1.87
W18 × 106 31.1 18.73 11.200 0.940 0.590 1910 204 7.84 220 39.4 2.66
W18 × 76 22.3 18.21 11.035 0.680 0.425 1330 146 7.73 152 27.6 2.61
W18 × 50 14.7 17.99 7.495 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65
W16 × 57 16.8 16.43 7.120 0.715 0.430 758 92.2 6.72 43.1 12.1 1.60
W16 × 40 11.8 16.01 6.995 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57
W16 × 31 9.12 15.88 5.525 0.440 0.275 375 47.2 6.41 12.4 4.49 1.17
W12 × 96 28.2 12.71 12.160 0.900 0.550 833 131 5.44 270 44.4 3.09
W12 × 72 21.1 12.25 12.040 0.670 0.430 597 97.4 5.31 195 32.4 3.04
W12 × 50 14.7 12.19 8.080 0.640 0.370 394 64.7 5.18 56.3 13.9 1.96
W12 × 40 11.8 11.94 8.005 0.515 0.295 310 51.9 5.13 44.1 11.0 1.93
W12 × 30 8.79 12.34 6.520 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52
W12 × 16 4.71 11.99 3.990 0.265 0.220 103 17.1 4.67 2.82 1.41 0.773
W10 × 112 32.9 11.36 10.415 1.250 0.755 716 126 4.66 236 45.3 2.68
W10 × 68 20.0 10.40 10.130 0.770 0.470 394 75.7 4.44 134 26.4 2.59
W10 × 45 13.3 10.10 8.020 0.620 0.350 248 49.1 4.32 53.4 13.3 2.01
W10 × 33 9.71 9.73 7.960 0.435 0.290 170 35.0 4.19 36.6 9.20 1.94
W10 × 30 8.84 10.47 5.810 0.510 0.300 170 32.4 4.38 16.7 5.75 1.37
W10 × 15 4.41 9.99 4.000 0.270 0.230 68.9 13.8 3.95 2.89 1.45 0.810
W8 × 58 17.1 8.75 8.220 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10
W8 × 48 14.1 8.50 8.110 0.685 0.400 184 43.3 3.61 60.9 15.0 2.08
W8 × 31 9.13 8.00 7.995 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02
W8 × 28 8.25 8.06 6.535 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62
W8 × 24 7.08 7.93 6.495 0.400 0.245 82.8 20.9 3.42 18.3 5.63 1.61
W8 × 21 6.16 8.28 5.270 0.400 0.250 75.3 18.2 3.49 9.77 3.71 1.26
W8 × 18 5.26 8.14 5.250 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23
W8 × 13 3.84 7.99 4.000 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843

Table C.2.  Selected Standard S-shapes (American Standard Shapes), US units.

Cross-section Flange Web About z-axis About y-axis

Designation A (in.2) d (in.) b (in.) f (in.) w (in.) Iz (in.4) Zz (in.3) rz (in.) Iy (in.4) Zy (in.3) ry (in.)

S20 × 86 25.3 20.30 7.060 0.920 0.660 1580 155 7.89 46.8 13.3 1.36
S20 × 75 22.0 20.00 6.385 0.795 0.635 1280 128 7.62 29.8 9.32 1.16
S20 × 66 19.4 20.00 6.255 0.795 0.505 1190 119 7.83 27.7 8.85 1.19
S18 × 70 20.6 18.00 6.251 0.691 0.711 926 103 6.71 24.1 7.72 1.08
S18 × 54.7 16.1 18.00 6.001 0.691 0.461 804 89.4 7.07 20.8 6.94 1.14
S15 × 50 14.7 15.00 5.640 0.622 0.550 486 64.8 5.75 15.7 5.57 1.03
S15 × 42.9 12.6 15.00 5.501 0.622 0.411 447 59.6 5.95 14.4 5.23 1.07
S12 × 50 14.7 12.00 5.477 0.659 0.687 305 50.8 4.55 15.7 5.74 1.03
S12 × 40.8 12.0 12.00 5.252 0.659 0.462 272 45.4 4.77 13.6 5.16 1.06
S12 × 35 10.3 12.00 5.078 0.544 0.428 229 38.2 4.72 9.87 3.89 0.980
S12 × 31.8 9.35 12.00 5.000 0.544 0.350 218 36.4 4.83 9.36 3.74 1.00
S10 × 35 10.3 10.00 4.944 0.491 0.594 147 29.4 3.78 8.36 3.38 0.901
S10 × 25.4 7.46 10.00 4.661 0.491 0.311 124 24.7 4.07 6.79 2.91 0.954
S8 × 23 6.77 8.00 4.171 0.426 0.441 64.9 16.2 3.10 4.31 2.07 0.798
S8 × 18.4 5.41 8.00 4.001 0.426 0.271 57.6 14.4 3.26 3.73 1.86 0.831
S6 × 17.25 5.07 6.00 3.565 0.359 0.465 26.3 8.77 2.28 2.31 1.30 0.675
S6 × 12.5 3.67 6.00 3.332 0.359 0.232 22.1 7.37 2.45 1.82 1.09 0.705
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D.  Standard Steel Pipe

Steel pipe comes in several grades: standard, extra strong
(XS), and double-extra strong (XXS). The stronger pipes
have thicker walls, e.g., a “2-in. pipe” of each grade has an
outer diameter of 2.375 in., but the wall thicknesses are:
0.154 (Standard), 0.218 (XS), and 0.436 in. (XXS).

Pipe designation is also given by schedule numbers.
Schedule 40 is equivalent to standard and Schedule 80 to
extra strong. Schedule 160 falls between extra strong and
double-extra strong (e.g., for a “2-in. pipe,” the wall
thickness of Schedule 160 is 0.343 in.).

Table D.1 gives geometric values of Standard Steel Pipe (Schedule 40), “1-in.” and
above. The actual outside diameter is larger than the nominal size. Geometric properties
for other schedules may be found in other references (do not interpolate thicknesses from
the “2-in. pipe” examples above).

 

Data from the Steel Construction Manual. Copyright © American Institute of Steel
Construction, Inc. Reprinted with permission. All rights reserved.

Table D.1.  Selected Standard Steel Pipe (Schedule 40).

Nominal 
Diameter (in.)

Outer
Do (in.)

Inner
Di (in.)

Thickness
t (in.)

Area

A (in.2)

 Weight 
per Foot 

(lb)

I

(in.4)

Z

(in.3)
r

(in.)

1 1.315 1.049 0.133 0.494 1.68 0.087 0.494 0.42

1 1/4 1.660 1.380 0.140 0.669 2.27 0.195 0.669 0.54

1 1/2 1.900 1.610 0.145 0.799 2.72 0.310 0.799 0.62

2 2.375 2.067 0.154 1.075 3.65 0.666 1.07 0.79

2 1/2 2.875 2.469 0.203 1.704 5.79 1.53 1.70 0.95

3 3.500 3.068 0.216 2.23 7.58 3.02 2.23 1.16

3 1/2 4.000 3.548 0.226 2.68 9.11 4.79 2.68 1.34

4 4.500 4.026 0.237 3.17 10.79 7.23 3.17 1.51

5 5.563 5.047 0.258 4.30 14.62 15.2 4.30 1.88

6 6.625 6.065 0.280 5.58 18.97 28.1 5.58 2.25

8 8.625 7.981 0.322 8.40 28.55 72.5 8.40 2.94

10 10.750 10.020 0.365 11.91 40.48 161 11.9 3.67

12 12.750 12.000 0.375 14.58 49.56 279 14.6 4.38
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E.  Structural Lumber

Lumber is referred to by its cross-section’s nominal
dimensions. Wooden studs in residential buildings are made with
“2 × 4” lumber (“2 by 4s”). The actual dimensions are
1.5 × 3.5 in. because the board has been milled down. 

After being cut to nominal size, lumber is dressed, generally
surfaced four sides (S4S). Lumber is typically dressed 0.5 in.
below nominal; i.e., an “6 × 6” is actually 5.5 × 5.5 in.

Table E.1 gives a selection of typical lumber cross-sections.
The weight density of lumber is approximated to be 40 pounds per
cubic foot (lb/ft3).

 

* Based on 40 lb/ft3.

Table E.1.  Selected Section Properties for Structural Lumber.
American Standard Dressed Sizes (S4S).

Nominal Size
b × d (in.)

Dressed Size
b × d (in.)

Area

A (in.2)

About Strong Axis  Weight per
 Foot (lb)*I (in.4) Z (in.3)

2 × 4 1.5 × 3.5 5.25 5.36 3.06 1.46
2 × 6 1.5 × 5.5 8.25 20.8 7.56 2.29
2 × 8 1.5 × 7.25 10.9 47.6 13.1 3.02
2 × 10 1.5 × 9.25 13.9 98.9 21.4 3.85
2 × 12 1.5 × 11.25 16.9 178 31.6 4.69
3 × 4 2.5 × 3.5 8.75 8.93 5.10 2.43
3 × 6 2.5 × 5.5 13.8 34.7 12.6 3.82
3 × 8 2.5 × 7.25 18.1 79.4 21.9 5.04
4 × 4 3.5 × 3.5 12.3 12.5 7.15 3.40
4 × 6 3.5 × 5.5 19.3 48.5 17.6 5.35
4 × 8 3.5 × 7.25 25.4 111 30.7 7.05
4 × 10 3.5 × 9.25 32.4 231 49.9 8.94
4 × 12 3.5 × 11.25 39.4 415 73.8 10.9
6 × 6 5.5 × 5.5 30.3 76.3 27.7 8.40
6 × 10 5.5 × 9.5 52.3 393 82.7 14.5
6 × 12 5.5 × 11.5 63.3 697 121 17.5
6 × 16 5.5 × 15.5 85.3 1707 220 23.6
8 × 8 7.5 × 7.5 56.3 264 70.3 15.6
8 × 12 7.5 × 11.5 86.3 951 165 23.9
8 × 16 7.5 × 15.5 116.3 2327 300 32.0
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Reaction Forces and Moments; Deflection and Slope Equations

Tables F.1, F.2, and  F.3 give formulas
for basic beams under various loads.

In the figures, point A is the left end of
the beam and point B is the right end. The
overall length of the beam is L. The applied
loads are positive downward (with gravity).
If a load acts upward, a negative value for
the load should be used in the equations. 

The positive sense for deflections is shown in the above figure. Deflections are
positive upward; slopes (angles) are positive counterclockwise.

The loads are:

P: point force (positive in direction drawn).
w: uniformly distributed load (positive in direction drawn).
wo: maximum value of distributed load.

The formulas give:

RA: reaction force at point A (positive upwards).

RB: reaction force at point B (positive upwards).

MA: reaction moment at point A (positive for compression at top of beam and
negative for compression at bottom).

MB: reaction moment at point B (positive for compression at top).

Mmax: sense and magnitude of maximum bending moment (positive for
compression at top), and location.

M(x): moment at x.
M(x=a): moment at x = a.
v(x): deflection of beam (positive upwards and negative downwards).
θ (x): slope of beam (positive counterclockwise and negative clockwise).
δmax: maximum deflection (positive upwards and negative downwards), and

location.
θmax: maximum slope (positive counterclockwise and negative clockwise) and

location.

Notes:

• Not all quantities are provided for each beam/load configuration. 

• For statically indeterminate beams, the largest positive and negative moments are listed.

• With the reactions and loads known, shear and moment diagrams may be constructed.

Positive sense of beam deflections 
and slopes.
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Table F.1.  Simply-Supported Beams.

Central Point Load 
(three-point bending)

Offset Point Load
;

Two Equal Point Loads, 
Symmetrically Placed 
(four-point bending)

Two Equal Point Loads, 
Non-Symmetrically Placed ;

RA RB
P
2
---= =

Mmax
PL
4

-------    at center, x L 2⁄= =

v x( ) Px–
48EI
------------ 3L2 4x2–( )= for x L 2⁄≤

θ x( ) P–
16EI
------------ L2 4x2–( )= for x L 2⁄≤

δmax
P– L3

48EI
-------------    at  x L 2⁄= =

RA
Pb
L

-------= RB
Pa
L

-------=

Mmax
Pab

L
----------    at point of load, x a= =

v x( ) Pbx–
6EIL
------------- L2 b2– x2–( )= for x a≤

θ x( ) Pb–
6EIL
------------- L2 b2– 3x2–( )= for x a≤

If a b:  δ≥ max
P– b L2 b2–( )3 2/

9 3EIL
----------------------------------------    at  x L2 b2–

3
-----------------= =

RA RB P= =

Mmax Pa   for a x L a–≤ ≤=

v x( ) Px–
6EI
--------- 3La 3a2– x2–( )= for x a≤

v x( ) Pa–
6EI
---------- 3Lx 3x2– a2–( )= for a x L a–≤ ≤

δmax
P– a

24EI
------------ 3L2 4a2–( )    at center, x L 2⁄= =

RA
P L a– b+( )

L
------------------------------= RB

P L b– a+( )
L

------------------------------=

M x a=( ) RAa=

M x L b–=( ) RBb=

If a b  Mmax,> RAa    at x a= =

If a b  Mmax,< RBb    at x L b–= =
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Two Unequal Loads, 
Non-Symmetrically Placed ;

Uniformly Distributed Load 
(UDL)

UDL over part of Beam at 
one end ;

Linearly Increasing 
Distributed Load

;

Table F.1.  Simply-Supported Beams.

RA

P1 L a–( ) P2b+

L
---------------------------------------= RB

P1a P2 L b–( )+

L
---------------------------------------=

M x a=( ) RAa=

M x L b–=( ) RBb=

If RA P1: Mmax< RAa    at x a= =

If RB P2: Mmax< RBb    at x L b–= =

RA RB
wL
2

-------= =

Mmax
wL2

8
----------    at center, x L 2⁄= =

v x( ) wx–
24EI
------------ L3 2Lx2– x3+( )=

θ x( ) w–
24EI
------------ L3 6Lx2– 4x3+( )=

δmax
5w– L4

384EI
----------------    at  x L 2⁄= =

RA
wa
2L
------- 2L a–( )= RB

wa2

2L
---------=

Mmax

RA
2

2w
-------    at x

RA

w
------= =

v x( ) wx–
24EIL
---------------- a2 2L a–( )2 2ax2 2L a–( )– Lx3+= for x a≤

v x( ) wa2 – L x–( )
24EIL

-------------------------------- 4xL 2x2– a2–( )= for x a≥

RA

woL

6
----------= RB

woL

3
----------=

Mmax

woL2

9 3
------------    at x L

3
------- 0.5774L= = =

v x( )
w– ox

360EIL
------------------- 3x4 10L2x2– 7L4+( )=

δmax 0.00652–
woL4

EI
------------    at  x 0.5193L= =
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Table F.2.  Cantilever Beams.

Point Load at free end
;

;

Point Load at any point

;

;

;

;

Uniformly Distributed Load 
(UDL) ;

;

Linearly Increasing 
Distributed Load

;

;

RA P= MA P– L=

Mmax P– L    at wall, x 0= =

v x( ) Px2–
6EI

------------ 3L x–( )=

θ x( ) Px–
2EI
--------- 2L x–( )=

δmax
P– L3

3EI
-------------    at  x L= = θmax

P– L2

2EI
-------------    at  x L= =

RA P= MA Mmax P–= a=

v x( ) Px2–
6EI

------------ 3a x–( )= θ x( ) Px–
2EI
--------- 2a x–( )= for x a≤

v x( ) Pa2–
6EI

------------ 3x a–( )= θ x( ) Pa2–
2EI

------------= for a x L≤ ≤

v x a=( ) P– a3

3EI
------------= θ x a=( ) P– a2

2EI
------------=

δmax
P– a2

6EI
------------ 3L a–( )   at  x L= =

θmax
P– a2

2EI
------------   for a x L≤ ≤=

RA wL= MA Mmax
wL2–
2

-------------= =

v x( ) wx2–
24EI
------------ 6L2 4Lx– x2+( )=

θ x( ) wx–
6EI
---------- 3L2 3Lx– x2+( )=

δmax
w– L4

8EI
-------------    at  x L= = θmax

w– L3

6EI
-------------    at  x L= =

RA

woL

2
----------= MA Mmax

w– oL2

3
----------------= =

v x( )
wox2–

120EIL
------------------- 20L3 10L2x– x3+( )=

θ x( )
wox–

24EIL
---------------- 8L3 6L2x– x3+( )=

δmax

11– woL4

120EI
----------------------    at  x L= = θmax

w– oL3

8EI
----------------    at  x L= =
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Linearly Decreasing 
Distributed Load

;

;

Table F.3.  Statically Indeterminate Beams: Pinned–Fixed and Fixed–Fixed.

Pinned–Fixed: 
Central Point Load

; ;

Pinned–Fixed: 
Offset Point Load

;

;

Table F.2.  Cantilever Beams.

RA

woL

2
----------= MA Mmax

w– oL2

6
----------------= =

v x( )
wox2–

120EIL
------------------- 10L3 10L2x– 5Lx2 x3–+( )=

θ x( )
wox–

24EIL
---------------- 4L3 6L2x– 4Lx2 x3–+( )=

δmax

w– oL4

30EI
----------------    at  x L= = θmax

w– oL3

24EI
----------------    at  x L= =

RA
5P
16
-------= RB

11P
16

----------= MB Mmax
3– PL
16

-------------= =

M x L 2⁄=( ) 5PL
32

----------   (max. positive moment)=

v x( ) Px–
96EI
------------ 3L2 5x2–( )= for x L 2⁄≤

v x( ) P–
96EI
------------ x L–( )2 11x 2L–( )= for x L 2⁄≥

δmax 0.009317– PL3

EI
---------    at x L

5
------- 0.4472L= = =

RA
Pb2

2L3
--------- a 2L+( )= RB

Pa
2L3
--------- 3L2 a2–( )=

MB
P– ab
2L2

------------- a L+( )= M x a=( ) RAa=

Mmax MB   or   M x a=( )=

v x( ) Pb2x–
12EIL3
------------------ 3aL2 2Lx2– ax2–( )= for x a≤

v x( ) Pa–
12EIL3
------------------ L x–( )2 3L2x a2x– 2a2L–( )= for x a≥

If a 0.414L:  δ< max
P– a

3EI
---------- L2 a2–( )3

3L2 a2–( )2
----------------------------    at x L

L2 a2+
3L2 a2–
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

If a 0.414L:  δ> max
P– ab2

6EI
---------------- a

2L a+
----------------      at x L a

2L a+
----------------= =
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Pinned–Fixed: 
Uniformly Distributed Load

;

Fixed–Fixed Beam:
Central Point Load

Fixed–Fixed Beam:
Uniformly Distributed Load

Table F.3.  Statically Indeterminate Beams: Pinned–Fixed and Fixed–Fixed.

RA
3wL

8
-----------= RB

5wL
8

-----------=

MB Mmax
w– L2

8
-------------= =

M x 3L 8⁄=( ) 9wL2

128
-------------   (max. positive moment)=

v x( ) wx–
48EI
------------ L3 3Lx2– 2x3+( )=

δmax
w– L4

185EI
---------------    at x L

16
------ 1 33+( ) 0.4215= L= =

RA RB
P
2
---= =

MA MB
P– L
8

----------= =

Mmax
PL
8

-------    at center and at ends (negative at ends)=

v x( ) P– x
2

48EI
------------ 3L 4x–( )= for x L 2⁄≤

δmax
P– L3

192EI
---------------    at center, x L 2⁄= =

RA RB
wL
2

-------= =

MA MB Mmax
wL2–
12

-------------= = =

M x L 2⁄=( ) wL2

24
----------   (max. positive moment)=

M x( ) w
12
------ 6Lx L2 6x2––( )=

v x( ) w– x
2

24EI
------------ L x–( )2=

δmax
w– L4

384EI
---------------    at center=
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Index

A
Accelerometer, 5, 519, 527
Actuator, 519

bimorph, 554
displacement, (example) 549
to lift AFM, (example) 551
piezoelectric, 537

Adhesive lap joint, 475
Aircraft wing

deflection, 6
energy method, analysis, 352
loading, 33, 34

Alaska Pipeline, (example) 121
Allowable load (design load, working load), 8
Aluminum Association, Inc., The

Aluminum Design Manual, 75, 306, 307
American Society of Mechanical Engineers 

(A.S.M.E.)
pressure vessel code, 9, 123, 378, 383

Analysis, methods of, 84
Angle of twist

of circular torsion members, 134-138, 151
of closed thin-walled torsion member, 155
of thin-walled circular shaft, 68

Anisotropic, 492
degree of anisotropy, 492

Approximation methods, 346
displacement method, 346
force method, 347

Arcing, 523
Area

bearing, 457
first moment of, 167
gross, 460, 461
net, 461
projected, 458
second moment of, 167

table of values, 168
shear, 459
tributary, 29, 88, 181

Area replacement method, 380
Atomic force microscope (AFM)

actuation of, (example) 551
load on, 5, (example) 38
size of, 3

Austenite, 561
Axial members, 24, 43, 83

columns, see columns
combined thermal-mechanical load, 111
continuously varying stress, 89
displacement method, 103
flexibility, 50, 87
force method, 86
stiffness, 50, 87
summary of stress, strain, elongation, 109

Axial strain
in axial members, 44
in cylindrical pressure vessels, 120

Axial stress
in axial members, 45
in cylindrical pressure vessels, 118

Axis
bending, 166
buckling, 303
strong, 300
weak, 300

B
Balanced joints, 478
Beam, 33, 163

bending, 163
bending moment diagram, 35, 36, 163
composite, 518
curvature-displacement relationship, 175
deflection, 174
design, 213
displacement, see deflection
displacement-distributed load relationship, 

317
I-beam shapes 3, (appendix) 664
limit load, 368
minimum weight design, 217
moment-curvature relationship, 169, 341
piezoelectric (bimorph), 553
plastic hinge, 369, 372
shear force diagram, 35, 36, 163
shear stress, 189, 192
statically indeterminate, 186
tables of loads, reactions, moments and 
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deflections, (appendix) 668-673
Bearing

failure, 461, 470
strength, 461, 470
stress, 457

average, 458
Bending

about two axes, (example) 235, 240
axis, 166
energy, 341
moment, 33
moment-curvature relation, 169, 341
moment diagram, 35, 36, 163
piezoelectric, 553
pure, 164
stiffness, EI, 176
strain, 164, 166
stress, 166, 169

Biaxial stress, 82
in pressure vessels, 119, 122

Bicycle wheel deflection, (example) 108, 130, 
336

Bifurcation point, 295
Bimorph, 553
Bolt-like connections, 457

bearing stress, 457
grid, simple, (example) 466
failure of, 459, 467
polymeric materials, 467
shear stress, 459
single row in load direction, 467
single row normal to load, (example) 464
tear-out, 461

Bolt load, 468
Bolts (fasteners, rivets, etc.), 457-8

bearing stress on, 458
failure

due to bearing, 461
due to shear, 461

shear stress in, 459
Boundary conditions

beams, 176, 183
table of zero values, 183

columns, 297, 300
Bracing, 304
Bridge 

deflection, 5
Golden Gate, 2
load, (example) 28

Brittle materials, 56, 277, see also fracture
cast iron, (example) 280
chalk

bending, (example) 279
twisting, (example) 279

cracks in, 414
failure condition, 278

femur bone, (example) 281
statistical design, 439

effect of volume, 443
stress-strain curve, 56, 277

Buckling, 293
allowable stress, aluminum, 306, 307
boundary conditions, effect of, 300
of a column, 296
of a composite sandwich, (example) 320
effective length, 300
on an elastic foundation, 317
Euler buckling formula, 297
formula, 297
imperfections, effect of, 309
lateral forces, effect of, 312
load, 297, 300
snap-through (oil-canning), 315
strength, 297
of tent pole, (example) 298
of tower, (example) 293

with eccentric load, (example) 309
transition from yielding, 305

Building code
deflection, 6
International Building Code, 4, 6 
loads, 3

Bundle strength, fiber, 453
Bypass

load, 468
stress, 468

C
Capacitance, 521
Capacitive accelerometer, 527
Capacitor, parallel plate, 520, 521

attractive force, 524
internal energy, 522

Car bumper design, energy density, (example) 
62

Center of curvature, 165
Centroid, 24, 43, 45, 167

table for common shapes, 168
Channel section

shear flow, 204
shear stress, 200

Charge, electric, 521
Circle, Mohr’s, see Mohr’s Circle
Circular hole

in finite plate, 126
in infinite plate, 125

Circular shafts in torsion, 133
angle of twist, 68, 133-138
hollow (thick-walled), 136
polar moment of inertia, 138
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shear stress, 70, 133, 135-138
solid, 134 
thin-walled, 68, 133
torsional stiffness, 75, 136-138

Circumferential stress, see Hoop stress
Closed thin-walled torsion member, 153
Coating

thin film, 437, (example) 438
two-bar model, 20

Coefficient of thermal expansion, 110
table of values, 110

Column, 293 (see also buckling)
buckling, see buckling
combined loading, (example) 231
on elastic foundation, 318
intermediate length, 306
long, 306
short, 306
shortening, 308

Comb drive 521, 534
Combined loading, 225

eccentric load, 231
limit load, 378
statics, 39
superposition, method of (principle of), 

226, 229
Compatibility, 84, 86, 93

axial members, 94
beams, 186
torsion members, 134
trusses, 96, 326

Complementary energy, 324
Complementary shear stress, 71
Compliance, 417
Composite, 487

area fraction (continuous fiber), 491
buckling of sandwich, (example) 320
continuous fiber, 489
cylindrical pressure vessel, (example) 509
density, (example) 491
design, orientation of plies, 517
elastic constants, expressions for, 501
elastic relationships, 494
fiber, 489

table of fiber properties, 490
global stiffness, 506
lamina (ply), 489
lamina (ply) properties, 492

elastic calculations, 497
polymer matrix approximations, 503
table of elastic properties, 493
table of strengths, 493

laminate, 489, 504
local ply (lamina) stiffness, 505
longitudinal elastic properties, 497
materials, 20, 487, 489

matrix, 490
table of matrix properties, 490

orientation (angle) of lamina (ply), effect 
of, 512, 517

ply (lamina), 489
stresses, 508

Poisson’s ratio
major, 495
minor, 495

shear elastic properties, 500
specific modulus, 487

table of values, 488
specific strength, 488

table of values, 488
stresses in ply (lamina), 508
transverse elastic properties, 499
tubes in torsion, failure of, 516
volume fraction, 491

Compression, 44, 46
Compressive strength, 278

yielding, 284, 357
Computer tools, 21
Connectors, see bolts
Continuous fiber composite, 489
Continuous shape of elastic curve, 182
Continuously varying stress (strain)

in axial members, 89
in torsion members, (example) 145

Conversion 
factor, 11
of units, 10

Coordinate system
cartesian, 14
global, 14
local, 14

Corrosion, 7
Crack, 6, 413, see also fracture

critical length, 426
table of values, 428

growth, condition for, 419, 425
initiation, condition for, 419, 425
stability, 430

Critical 
crack length, 426
energy release rate (toughness), 

415, 416
table of values, 416

stress intensity factor (fracture toughness), 
425

table of values, 416
Current, electric, 520
Curvature, 165

center of, 165
-displacement relationship, 175
-moment relationship, 169, 176
radius of, 165
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Curve
elastic, 176
resistance, 430
stress-strain, 48

brittle material, 56
ductile material, 51, 355
ideal elastic-plastic, 356
shear, 74

S-N, 64
Cycles to failure (fatigue life), 64
Cyclic loading (mechanical), 5, 63

fatigue 
life, 64
limit, 66
strength, 64
test, 64

maximum stress, 64
mean stress, 64

effect of, 66
minimum stress, 64
R-ratio, 64
S-N curve, 64
stress amplitude, 64

Cyclic thermal loading, 395
Cylindrical pressure vessel, 117

composite, (example) 509
strains, 120
stresses, 119
yielding of, (example) 287

D
Dead load, 3
Deflected shape, beam, 175
Deflection of

aircraft wings, 6
atomic force microscope, (example) 178
beams, 174

tables of values, 668-673
bicycle wheel, (example) 108, 130, 336
bridges, 5, (example) 181
buildings, 6
Golden Gate, 2
truss, (example) 96
vehicle frame, 6

Deflection index, 174, 213
Density, 7

weight density, 7
Design

of adhesive joint, 483
applications in plasticity, 380
of beams, 213
of brittle materials, statistical, 439
elastic, 355
leak-before-break, 429

plastic, 355
of ply orientation in composite laminates, 517

Design Load (allowable load, working load), 8
Diagram

bending moment, 35, 36, 163
free body, 18, 23
shear force, 35, 36, 163
torque, 32

Dielectric, 520
constant (permittivity), 522, 538
electric field in, 522
material, 520
relative dielectric constant, 523, 538

Dilation, 60
Direct strain, see Poisson Effect
Displacement

beam, 174
of point 

in axial system, 89, 100
on truss, 94, 96, (example) 326

Displacement-controlled experiment, 51, 54
Displacement, electric, 522, 538
Displacement method, 84

axial members, 103
minimum complementary energy, 333
torsion members, 149

Double shear, 459
Ductile failure, 277, 284, 355

of cylindrical pressure vessel, (example) 
287

in design, 355
three-dimensional, 290
Tresca criterion, 284
von Mises criterion, 286

Ductile material, 51, 277, 355
stress-strain curve, 51, 277, 355

idealized, 356

E
Eccentricity, 231, 309
Edge distance, bolt, 459
Effective length of columns, 300

table of expressions, 301
Effective modulus

fiber bundle, 454
piezoelectric, 546, 555

Effective stiffness, 129
Effective volume, 449
Efficiency of joint, 470
Elastic, 44
Elastic constants

approximating in a composite, 497
Poisson’s ratio, 58
relationship in isotropic materials, 74
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shear modulus, 73
Young’s modulus, 48

Elastic core
of beam, 368
of torsion member, 365

Elastic curve, 176
continuous, 182
smooth, 182

Elastic design, 355
Elastic (internal) energy, see elastic strain 

energy
Elastic energy release rate, 417
Elastic foundation, buckling on, 317
Elastic limit (first yield), 358
Elastic modulus (Young’s modulus), 48
Elastic-perfectly plastic, 356

beam in bending, (example) 367
idealization of stress-strain response, 356
solid shaft in torsion, (example) 364
two-bar system, (example) 358

Elastic properties, see elastic constants
Elastic shear modulus, 73
Elastic shear strain energy, 76

density, 76
Elastic snap-through, 315
Elastic strain, 356
Elastic strain energy, 61, 323, 417

in axial member, 61
in bending, 341
car bumper design, (example) 62
density, 62
resilience, 62
in shear, 76

density (shear), 76
Elasticity, theory of, 80, 120, 420, 423
Electric 

charge, 521
displacement, 522, 538
field, 521

induced in piezoelectric material, 544
flux density, see electric displacement

Electrostatic 
force, 524, 525
law, 538
snap-through, 532

Elliptical hole in an infinite plate, 124
Energy

bending, 341
density, 62

in shear, 76
internal, 323, 333
internal complementary, 324, 337
methods, 128, 323
potential energy of a force, 332
release rate, 417
shear, 76

total, 333
minimum, 333, 335

total complementary, 337-8
minimum, 347

Energy methods, 128, 323
approximate methods, 346

displacement method, 346
force method, 347

bending, 341
bicycle wheel, (example) 130, 336
deflection calculation, 129
displacement method, 130, 325, 333

(example), 131
force method, 130, 325, 333, 337
square shaft in torsion, (example) 348
three-bar truss, 325
ultra-precision device, (example) 350
virtual work, 330

Energy release rate, 417
Engine loads, 4
Engineering

notation, 18
strain, 44, 404
stress, 46, 404

Equilibrium
of forces, 23
of moments, 23

Equivalent stress (von Mises stress), 286, 385
Euler buckling, 297
Extensometer, 52

F
Factor

load, 446, 449
shape, elastic bending, 210
stress concentration, 124, 467
stress intensity, 423

Factor of Safety, 8
Failure, failure modes

of composite ply (lamina), 508
of composite tubes, 516
of continuous fiber composites, 508
excessive deflection, 5
fatigue, 6, see also cyclic loading
fracture, 6, 413, see also fracture
of joints (connections), 459, 467, 480

of adhesive joint, 480
in bearing, 461
of bolts in shear, 461
at net-section, 460
by tear-out, 461

overloading, 6
yielding, 6

Failure criteria (conditions), 277
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maximum normal stress, 278
maximum shear stress (Tresca), 284
von Mises (maximum energy), 286

Failure probability, 441
Failure strain, 54
Fasteners, see bolts
Fatigue, 6, 63, see also cyclic loading

life, 64
limit, 66
strength, 64
test, 64

Fiber, 489
bundle, 453

strength, 453
carbon, 489
ceramic, 489
in composite, 489
direction (longitudinal), 492
glass, 490
table of fiber properties, 490
volume (area) fraction, 491

First moment of area, 167
First yield, 360, 398
Flexibility

of axial member, 50, 87
matrix (mathematical), 80

of a composite lamina, 494
of thin-walled shaft, 76

Force components, 16
Force-controlled experiment, 54
Force method, 84

axial members, 86
minimum total complementary energy, 337
torsion members, 140

Force sensor, 537, (example) 552, 560
Four-point bend test, 163
Fraction, fiber volume (area), 491
Fracture, 6, 277, 413

critical crack length, 426
table of values, 428

design considerations, 426
effect of volume, 443
failure, 5
fast, 413
mechanics, 414
mixed mode, 434, 436
modes, I, II, III, 433-436
resistance curve (R-curve), 430
stability, 430
tearing modulus, 431
toughness, 425

table of values, 416
Free body diagrams, 18, 23

G
Gage, strain, see strain gage
Gage length, 52
Gamma function, 442
General stress-strain relationship, 80
Geometric boundary conditions, see Boundary 

conditions 
Geometric instability, 293, 305, see buckling
Geometric properties of areas, (appendix) 655-

661
Global 

coordinate system, 14
load sharing, 453, 454
stiffness of a laminate, 504, 506

Goodman diagram, 66
Gross area (section), 460, 461
Gyration, radius of, 299

H
Hardening index, 407
Highway sign

combined loading, 225, (example) 235
free body diagram, 23
statics example, 40

Hinge, plastic, 369, 372
Hollow (thick-walled) circular shaft, 136
Homogeneous, 59, 80
Hooke’s law

general three-dimensional, 80
for shear stress-strain, 73
for springs, 48
for stress-strain, 49

Hoop 
strain, 120
stress, 117

Horsepower, 159
Hysteresis (shape memory alloy), 561

I
I-beams, 181

table of cross-sections, (appendix) 664-665
Idealization, elastic-plastic response, 356
Imperfections

effect on buckling, 309
Indeterminate systems, 85

axial members, 98
beams, 186
torsion members, 147

Induced
electric field, 544
voltage, 543
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Inelastic response, 355
Infinite plate, 124, 420, 425
In-plane maximum shear stress, 257
Instability

geometric, see buckling
plastic (necking), 407

Intermediate length column, 306
Internal complementary energy, 324, 327
Internal elastic strain energy, see elastic strain 

energy
Internal energy, 323
International Building Code

deflection requirement, 6
floor load, table of values, 4

Invariance 
of normal strain, 267
of normal stress, 250

Isotropic, 59, 80, 492

J
Joints, 457

adhesive, 475
balanced, 478
design of, 483
strength of, 480

bolted (riveted), 458
efficiency, 470
failure of, advanced analysis, 467
failure of, basic analysis, 459

lap, 457
Joints, method of, 27, 29

K
Kern, 233

L
Lamina (ply), 489

elastic properties, 492 
approximating, 497

with polymer matrix, 503
comparison of, 496
table of values, 493

failure of, 508
flexibility matrix, 494
local stiffness, 505
stiffness matrix, 494
strength, 492

table of values, 493
stresses, 508

Laminate, 504
failure, 508
global stiffness of, 506

effect of ply (lamina) angle, 512
stresses in plies, 508
two-ply model of, 504

Laminated beam, (example) 194
Lap joint, 457

adhesive, 475
bolted, 458, 467

Large plastic strain, 404
Lateral forces, effect on buckling, 312
Leak-before-break design, 429
Liberty ship, 413, 414
Limit load, 358

A.S.M.E. code, 378
in axial members, (2-bar example) 358
bending, (example) 367
combined loading, 378
direct calculation of, 370
estimates, lower and upper bounds, 374
moment, 368
plastic hinge, 369, 372
in rectangular beam, (example) 367
in solid shaft, (example) 364
surface, 383
torque, 365

Limit surface, 378
Linear-elastic response

loading, 44, 52, 74, 355
unloading after yielding, 54, 355, 357

from limit load, 362, 366, 369
Load, 3

allowable, 8
bolt, 468
on buildings, 3
bypass, 468
combined, 39, 225
cyclic, 5, 63, see also cyclic loading
design, 8
in engines, 4
failure, 8
limit, 538
in micromachines, 5
proof, 8
thermal, 110

cyclic, 395
ultimate, 8
working, 8

Load factor, 446, 449
Load sharing, global, 453, 454
Local coordinate system, 14

of composite ply, 505
Longitudinal (fiber) direction, 492
Longitudinal (axial) strain, 44, 58

in composite ply, 497
in cylindrical pressure vessels, 120

Longitudinal (axial) stress
in cylindrical pressure vessels, 118
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Lumber, table of cross-sections, (appendix) 667

M
Margin of safety, 9
Martensite

stress-induced (deformed), 561
twinned, 561

Mass, 13
Material properties, representative, (appendix) 

662-663
Materials, 7

composite, 20, 489
Material stiffness, see Young’s modulus
Matrix (composite), 489, 491

table of properties, 490
Matrix (mathematical)

flexibility, 80, 494
stiffness, 80, 494, 506
transformation 

in laminate composites, 506
strain gage rosette, 270
stress transformation, 249

Matter, 13
Maximum normal stress (principal), 244, 253

failure criterion, 278
using Mohr’s circle, 263

Maximum shear stress, 244, 257
in beams, 195
failure criterion (Tresca), 284
in-plane, 257
out-of-plane, 272
using Mohr’s circle, 264
in torsion members, 135-138

Maximum stress
in beams

bending, 169
shear, 195

at hole surface, 124
Mean strength (Weibull), 442
Mean stress, 64

effect on fatigue strength, 66
MEMS (microelectromechanical systems), 519, 

520
snap-through, 532

Method of
joints, 27, 29
sections, 29
superposition, 186, 226

Methods of analysis, 84
approximate, 346
displacement, 84, 103
energy, 128, 323
force, 84, 86

Micro-devices

electromechanical, see MEMs
loads on, 5

Minimum energy principles, 332
displacement method, total energy, 333
force method, total complementary energy, 

333, 337
Minimum weight design of beams, 217

performance index, 219
shape factor, 220

Mixtures, rule of, 491, 498
Modeling, 19
Modes of fracture, I, II, III, 433

mixed, 436
Modulus

effective,
fiber bundle, 454
piezoelectric, 555

of elasticity (Young’s), 48
table of values, 49

shear, 73
table of values, 74

specific, 487
tangent, 53, 355
Young’s modulus, 48

Modulus of resilience, 62
Modulus, section, 208
Modulus, Weibull, 441
Mohr’s circle, 261

constructing, 262
three-dimensional, 272
using, 263

Moment, 16
bending, 33
diagram, 35, 36, 163
limit, 368
pure, 164

Moment of inertia, 169, 208
polar, 138

table of values, 138
table of values, 168, 212

Morphing truss, (example) 564
Multiple-bolt connections, 464-468

N
Naval Ordnance Laboratory, 561
Necking, 53, 404

condition for, 407
Net-section, failure of, 460
Neutral 

axis, 165
plane, 165

Nitinol, 561
Nominal (engineering) 

strain, 404
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stress, 404
Non-linear response, 52, 355
Non-uniform stress in statistical design, 444
Normal strain, 44

maximum (principal), 267
Normal stress, 45

maximum (principal), 253
on weld, 243

Notation
engineering, 18
scientific, 18

O
Oil-canning, 315

P
Parallel plate capacitor, see capacitor
Parameters, Weibull, 441, 451
Performance index, bending stiffness, 219
Permittivity (dielectric constant), 522, 538

relative, 523, 538
of vacuum (air), 523, 538

Piezoelectric, 519, 537
actuator, 519, (example) 551, 558
bending, 553
bimorph, 553
constants, 542

table of values, 542
converse effect, 537
coupling, mechanical/electrical, 540
direct effect, 537
effective modulus, 555
induced 

electric field, 544
voltage, 543

law, 540, 548
materials, 519, 537
poling of, 539
positive sense of electric field and voltage 

with respect to poled direction, 
539, 541

sensor, (example) 552, 560
stack, (example) 549

Pipe, steel, standard grade, 666
Plane strain, 81

stress intensity factor, 423
yield condition, 391

Plane stress, 81
in cylindrical pressure vessels, 119
in spherical pressure vessels, 122
stress intensity factor, 423

Plastic deformation, unconstrained, 361
Plastic design, 355

Plastic hinge, 369, 372
Plastic instability (necking), 404

condition for, 407
spherical pressure vessel, (example) 409
three-dimensional, 408

Plastic strain, 54, 356
large, 404
true strain, 405

Plasticity
A.S.M.E. limit surface, 378
area replacement method, 380
in design, 380
in joints, 469
pressurized pipe, (example) 387
reverse, 358
stress redistribution, 361, 370
three-dimensional, 385

Ply, see lamina
Poisson effect, 58

on cross-sectional area, 59
longitudinal (direct) strain, 58
transverse strain, 59
on volume, 60

Poisson’s ratio, 58
of composite materials, 494, 501

major, 495
minor, 495
table of elastic values, 493

of isotropic materials, 59
during plastic deformation, 59, 355
table of elastic values, 59

Polar moment of inertia, 138
error in using thin-walled formula, 152
table of circular cross-sections, 138

Poling, 539
positive sense of electric field and voltage 

with respect to poled direction, 
539, 541

Positive sense
of bending moments in beams, 34, 164, 191
of electric field and voltage with respect to 

poled direction, 539, 541
of moment (torque) about an axis, 16
of shear forces in beams, 34, 164
of stress, 79

Potential energy of a force, 332
Power transmission, 159
Pressure, due to wind, 4
Pressure vessel

cylindrical, 117
leak-before-break design, 429
plastic design, 380
plastic instability, (example) 409
proof test, 9, 123
spherical, 122
thick-walled, 120
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thin-walled, 116
yielding, (example) 287

Prestress
of concrete specimen, (example) 112
of torsion bar, (example) 142

Principal strain, 267
angles (directions of), 267

Principal stress, 253
angles (directions of), 253
using Mohr’s circle, 263

Principle of superposition, 226, 229
Principle of virtual work, 330
Probability 

of failure, 441
of survival, 440

Problem solving, 18
Projected area

bearing, 458
cut-out in plastic design, 382

Proof 
load, 9

fracture, 428
pressure vessels, 9, 123

ring, (example) 344
test, 9, 123, 428

Properties
elastic, 74

approximating, in a composite, 497
mechanical, 7
physical, 7
tables of representative material properties, 

(appendix) 662-663
Proportional limit, 52
Pseudoelasticity, see superelasticity
Punch on ductile material, (example) 392
Pure 

bending, 164
shear, 82, 244

Q 

R
R-curve, see resistance curve
R-ratio, see cyclic loading
Radius of curvature

of beam, 165
of elliptical hole, 124

Radius of gyration, 299
Ratcheting, 395, 400
Ratio, slenderness, 299
Rectangular beams

elastic-plastic stress distribution, 367
moment of inertia, (example) 170

shear stress distribution, (example) 193
Redistribution of stress

due to plasticity, 361, 370
in joints (plasticity, delamination), 461, 469

Redundant 
beam, 186
force, 85, 98, 186
system, 85, 98, 186
torque, 147

Reference 
length, 453
stress, 441, 451
volume, 440, 451

Residual strain, 362
Residual stress, 358

in axial members, 362
in rectangular beam, 369
in thin film on substrate (thermal), 437
in torsional shaft, 366

Resilience, modulus of, 62
Resistance curve (R-curve), 430
Reverse plasticity, 358
Right hand rule, 15
Rivets, see bolts
Rolled steel cross-sections, (appendix) 664-665
Rule of mixtures, 491, 498

S
Scientific notation, 18
Second moment of area (moment of inertia), 167

table of expressions, 168
Section modulus, 208

table of expressions, 212
Sections, method of, 29
Seismic loads, 4
Sensors, 519

force, (example) 552, 560
Shaft, circular cross-section, 133-138
Shakedown, 395, 399

limit, 400
Shape, 3, 208
Shape factor, 208

in design, 210
table of expressions, 212

Shape memory 
alloys, 519, 561
effect, 562

Shear
double, 459
pure, 82, 244
single, 459

Shear center, 204
Shear failure, bolt, 461
Shear flow
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in beams, 196
in closed thin-walled torsion members, 153

Shear force
in beams, 33, 163, 189
in bolts, 459
diagram, 36, 163

Shear modulus, 73
table of values, 74

Shear strain, 68
Shear strength, yield, 74
Shear stress, 70

in adhesive, 475, 477
in beams, 189, 192

effect on deflection, 207, 352
maximum, 195

in bolts, 459
in channel sections, 200
in closed thin-walled torsion members, 154
complementary, 71
concentration factor, in adhesive joints, 480
in I-beam sections, 203
in laminated beams, (example) 194
maximum shear stress

in beams, 195
in-plane (transformation), 257
in torsion members, 135, 137, 138
out-of-plane, 272

on nail surface, (example) 92
in torsion members, 70, 133-138, 153

Shear stress-shear strain curve, 74
Shear yield strength, 74
Significant digits (figures), 17
Single shear, 459
Size, 2

range in engineering structures, 2
Slenderness ratio, 299
Slip, 393
Slope, beam, 176
Smart systems (structures), 519
Smooth shape of elastic curve, 182
Snap-through

elastic, 315
electrostatic, 532

S-N curve, 64
Snow loads, 4
Solid shaft, 134

elastic-plastic response, 364
Spalling, 437
Specific 

modulus, 487
table of values, 488

strength, 488
table of values, 488

Spherical pressure vessel, 122
strain, 123
stress, 122

Spherical stress, 122
Spring constant, 48
Stability of a crack, 430
Standard steel pipe, (appendix) 666
State of stress, 79
Statically 

determinate systems, 85
indeterminate beams, 186
indeterminate systems, 85, 98, 147, 326

Statics, 23
axial members, 24
beams, 33
combined loading, 39
of indeterminate systems, 85
torsion members, 31

Statistical design, 439
effect of volume, 443
load factor, 446, 449
non-uniform stress, 444
Weibull distribution, 440

Steel 
cross-sections, I-beams, (appendix) 664-

665
pipe, standard, (appendix) 666

Stiffness, 1, 2
of axial members, 50, 87
bending, EI, 176
of bicycle wheel, (example) 109
of circular torsion members, 136-138
of closed thin-walled torsion members, 155
of composite 

lamina (ply), 494
laminate (two plies, or more), 508

design for, in beams, 213
effective, of truss, 129
global, 506
of Golden Gate, 2
local (ply, lamina), 506
of material, 7, 48
matrix (mathematical), 80, 494, 506, 508
of spring, 48
of system, 48, 129
of thin-walled circular shaft, 75

Strain, 43
in axial members, 44
in beams

normal, 166
shear, 189 

in cylindrical pressure vessels, 120
definition of, 44
elastic, 356
engineering, 44, 404
at failure, 54
nominal, 404
normal, 44
plane, 81
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plastic, 54, 356, 404
shear, 68
in spherical pressure vessels, 123
thermal, 110, 397
in torsion members, 133-138
true, 405
at yield (yield strain), 54, 356

 table of values, 55
Strain gage, 52, 269

rosette, 269
Strain-hardening (work-hardening), 54
Strain transformation, 266
Strength, 1, 2

of adhesive lap joints, 480
bearing, 461
buckling, 297
of composite lamina (ply), table of values, 

493
design for beams, 213
of material, 7
mean (Weibull), 442
shear yield, 74
ultimate (tensile), 53
yield, 53

table of values, 55
Stress

in adhesive lap joints, 475
axial, 45, 118
in axial members, 45, (example) 87
in beams

bending, 169
shear, 190

bearing 458
biaxial, 82
bypass, 468
circumferential, see stress, hoop
in closed thin-walled torsion members, 153
in composite ply (lamina), 508
compressive, 46
continuously varying, 89
in cylindrical pressure vessels, 119
engineering, 46, 404
general, 78
hoop, 117
hydrostatic, 82, 391
nominal, 404
normal, 45
plane, 81
positive sense, 79
principal, 253
reference, 441, 451
residual

in thin film (thermal), 437
unloading from limit load, 362, 366, 

369
shear, see shear stress

spherical, 122
in spherical pressure vessels, 122
state of, 79
subscripts, 79
tensile, 46
thermal, 110, 113, 397
in thin-walled circular shafts, 70, 133
three-dimensional, 79, 271
in torsion members, 133-8
triaxial, 82
true, 405
uniaxial, 82

Stress concentration factors, 100, 124, 467
bolt-loaded hole, 469
circular hole in an finite plate, 126
circular hole in an infinite plate, 125
elliptical hole in an infinite plate, 124
plastic, 469
shear, in adhesive joints, 480

Stress intensity factor, 423
critical, 425

table of values, 416
plane strain, 423
plane stress, 423
table of expressions, 424

Stress redistribution, 361, 370, 461
Stress-strain

curve, brittle material, 56, 277
curve, ductile material, 51, 277, 355
general 3-d relationship, 80
ideal elastic-plastic, 356
true stress-true strain 

curve, 407
relationship, 406

Stress subscripts, 79
Stress transformation, 245

Mohr’s circle, 261
plane stress equations

in 2θ, 245, 250, 254
in θ, 249

three-dimensional, 271
Strong axis, 300
Subscript, stress, 79
Substrate, 20, 437
Superelasticity, 562
Superposition

beams, indeterminate, 186
examples, 227-241
method of, 226, 229

Survival probability, 440
S.I. system, 10

T
Tangent modulus, 53, 355
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T-beams, 174
Tearing modulus, 431
Tear-out failure, 461
Tensile strength (ultimate), 53, 278
Tension, 44, 46
Tension test, 43
Tent pole buckling, (example) 298
Test

fatigue, 64
four-point bend, 163
proof, 9, 123, 428
tensile, 43
three-point bend, 170
torsion, 43, 68
uniaxial, 43

Theory of elasticity, 80, 120, 420, 423
Thermal 

coefficient of expansion, 110
table of values, 110

loading, cyclic, 395
loss of pre-stress, (example) 112
ratcheting, 395, 400
shakedown, 395, 399
strain, 110
stress, 110, 113, 397

Thermal-mechanical 
cyclic loading, 395

map, 398, 400, 402
loading, 111

Thick-walled (hollow) circular shaft, 136
Thin film on substrate, 20, 437
Thin-walled, 68

closed torsion members, 153
pressure vessel, 117
shaft, 68, 133

Three-bar truss, energy methods, 325
Three-dimensional 

plasticity, 385
stress, 79, 271
stress transformation, 271
von Mises criterion, 290

Three-point bending, 36, 170, 451
Torque, 16
Torsion members, 133

angle of twist, 68, 133-8
box beam, 156
circular shaft, 133-8
closed thin-walled members, 153

angle of twist, 155
shear flow, 154
shear stress, 154
stiffness, 155

displacement method, 149
force method, 140
hollow (thick-walled) shaft, 136
maximum shear stress, 135-8

power transmission, 159
shear stress distribution, 133-8
solid shaft, 134
square shaft, 348
stiffness of, 136-138
summary of stress, strain and angle of twist, 

151
thin-walled circular shaft, 43, 68, 133

angle of twist, 68, 133
flexibility, 76
shear stress, 70, 133
stiffness, 75

Torsion test, 43, 68
Torsion tube, composite 

example, 513
failure of, 516

Torsional flexibility, 76
Torsional stiffness

circular shafts, 136-8
closed thin-walled members, 155
thin-walled circular shafts, 75

Total complementary energy, 338
minimum, 346

Total energy, 333
minimum, 333

Toughness, 416
table of values, 416

Transformation matrix, 249, 506
Transformation of 

strain, 266
stress, 245

Transition zone, buckling, 306
Transmission of power, 159
Transverse (to fiber)

direction, 492
elastic properties, 499

Transverse strain (Poisson effect), 59
Tresca (maximum shear stress) criterion, 284
Tributary area, 29, 88, 181
Trigonometric formulas, (appendix) 655-656
True 

strain, 405
stress, 405
stress-strain curve, 407
stress-strain relationship, 406

condition for plastic instability, 407
three-dimensional true-stress true-strain 

plastic instability, 408
effective true strain, 408
effective true stress, 408

Truss
method of joints, 27, 29
method of sections, 29
three-bar (energy example), 325

Two-bar system, 20, 98
cyclic thermal load, 395
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Two-force member, 24
Two-ply laminate, 504

U
Ultimate (tensile) strength, 53, 278
Ultra-precision device, (example) 350
Unconstrained plastic deformation, 361
Units 

conversion, 10
of power, 159
of stress, 46
S.I. (International System), 10
U.S. Customary (British), 10

Unloading
of ideal elastic-plastic material, 357
of plastic beam from limit load, 369
of plastic shaft from limit load, 366
of two-bar plastic system from limit load, 

362
in uniaxial test 

elastic, 52
after yielding, 54, 355

Unstable crack, 430

V
Valve lifter, (example) 549
Variable stress (strain), 89
Virtual work, 330
Voltage, 519, 520

gradient, see electric field
induced, 543

Volume fraction, fiber, 491
Volume, reference, 440, 451
Volumetric strain, 60
von Mises 

failure criterion, 286
three-dimensional, 290

stress (equivalent stress), 286
stress, three-dimensional plasticity, 385

W
Weak axis, 300
Weakest link statistics, 443
Weibull 

distribution, 440
modulus, 441
parameters, 441

determining, 451
Weight, 13
Wind load (pressure), 4
Work

on axial members, 61
on system of axial members, 129
on thin-walled shaft, 76
virtual, 330

Work-hardening, see strain-hardening
Working Load (allowable load, design load), 8

X

Y
Yield condition (criterion)

comparison of criteria, 289
plane strain, 391
Tresca, 284
von Mises, 286, 290, 385

Yield, first yield, 360, 364, 367, 398
Yielding, 6, 53

shear, 74
Yield strain, 53
Yield strength, 53

shear, 74
table of values, 55

Young’s modulus (elastic modulus), 48
table of values, 49

Z
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